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Abstract

It is becoming a common practice to use surrogate models instead of finite element (FE) models in most
of the structural optimization problems. The main advantage of these surrogate models is to reduce
computation time as well as to make design optimization of complex structures possible. For surrogate
modeling, firstly input-target pairs (training set) are required which are obtained by running the FE
model for varying values of the design parameter set. Then the relationship between these pairs is de-
fined via curve fitting where the created curve is named as a surrogate model. Once the surrogate model
is found, it replaces the FE model in the optimization problem. Finally the optimization is performed
using suitably chosen algorithm(s). Since solving an FE model may take very long time for certain ap-
plications, gathering the training set is usually the most time consuming part in the overall optimization
process. Therefore, in this research the merits of the Component Mode Synthesis (CMS) method are
utilized to gather this set for structures including repetitive patterns (e.g. fan inlet case). The reduced
FE model of only one repeating pattern is created using CMS and the obtained information is shared
with the rest of the repeating patterns. Therefore, the model of an entire structure is obtained without
modeling all the repetitive patterns. In the developed design optimization strategy Backpropagation
Neural Networks are used for surrogate modeling. The optimization is performed using two techniques.
Genetic Algorithms (GAs) are utilized to increase the chance of finding the location of the global op-
timum. Since the optimum attained by GAs may not be exact, Sequential Quadratic Programming is
employed afterwards to improve the solution. An academic test problem is used to demonstrate the
strategy.

Keywords: Structural Optimization, Repetitive patterns, Component Mode Synthesis, Surrogate Mod-
eling, Backpropagation Neural Networks, Genetic Algorithms, Sequential Quadratic Programming.

1. Introduction

Currently structural designs such as cars, aircrafts and aerospace appliances are analyzed extensively
using FE method, possibly years before the first prototype is built. The benefits of the FE method
may include; increased accuracy, faster and less expensive design cycle, better comprehension of the
structure behavior. Therefore, it is an indispensable tool for the complicated engineering analyses. The
correct static analysis of a complex structure highly depends on the size of the mesh. Thus, most of
the structural models for industrial applications are composed of fine meshes which may involve several
millions of degrees of freedom (d.o.f). On the other hand, investigating the dynamic properties of that
structures require only few deformation modes which could be calculated with coarse meshed FE models.
Consequently, reducing these models for structural dynamic analysis is essential in order to prevent time
and computer memory consumption. The so-called Component Mode Synthesis (CMS) technique has
been utilized since 1960s for the dynamic analysis of complex structures. The idea behind this technique
is: dividing the structure into a number of substructures, calculating the corresponding reduced order
FE models and then assemble them for obtaining a reduced order FE model of the complete structure.
This technique is commonly preferred in the industry because it allows modeling of each substructure
by different design groups and also any design changes in a single substructure affect only the system
matrices of that substructure. Hence; if a modification is required in any specific substructure of a
complex structure (e.g. solid rocket boosters of a space shuttle), only the system matrices of that
particular substructure are changed and coupled with the rest of the already calculated substructure
matrices which causes a significant save in computation time. Most of the structural designs involve
repeating patterns in their geometry for instance; wings of a plane, one slice of a fan inlet case, etc.
Generating the system matrices of one repeating pattern and utilizing the copies of it for the identical



parts is another attribute coming with CMS.

One of the common problems identified by structural dynamics is the harmonic excitation of a struc-
ture at one of the resonance frequencies by an external force. This may cause large strains and large
stresses in a structure which may lead to failure by fatigue. In most of the situations it is not possible to
control the frequency content of the external load excitation. Therefore, resonance conditions can only
be avoided by changing the design in order to keep the resonance frequency away from the excitation
frequency. In reality there are always other factors that have to be considered besides shifting the nat-
ural frequencies. These might be; additional constraints coming from practical design and performance
requirements for instance minimum total mass, effect of the modifications on the other dynamic prop-
erties, restrictions on the physical properties of the structure such as bounded lengths or widths. Under
the concept of design optimization, all these criterion can be tackled at the same time.

In [1], the idea of integrating CMS into the design optimization scheme was in its infancy. The
strategy and the employed techniques are improved a lot from then to now. The essence has been
given to certain applications where the benefits of using CMS may cause a significant reduction in the
computation time. In this research, attention is focused on the optimization of structures which have
problems in their dynamic properties and repeating patterns in their geometries. The Craig-Bampton
method is employed as an CMS method for the calculation of the corresponding reduced order FE models.
Since it is still very time consuming to employ these models directly in the optimization problem, they
are replaced by their surrogate models for the sake of computational efficiency. For surrogate modeling,
firstly input-target pairs (training set) are required. Therefore after creating a sample set (inputs) based
on the selected design parameters, the CMS reduced system matrices of the substructures involving
the selected design parameters are computed for each element of the sample set. If there exists similar
substructures, only one of them is taken into account and its system matrices are shared between the
other similar ones. Next, all the reduced system matrices are assembled according to each element of
the input set, solved and the targets are attained. Then the relationship between input-target pairs
is defined via curve fitting where the created curve is named as a surrogate model. In our strategy
Backpropagation Neural Networks (NNs) are used for surrogate modeling. Once the surrogate model
is found, it replaces the reduced FE model in the optimization problem. Finally the optimization is
performed using suitably chosen algorithm(s). In this research, optimization is performed using two
techniques. Genetic Algorithms (GAs) are utilized to increase the chance of finding the location of
the global optimum. Since the optimum attained by GAs may not be exact, Sequential Quadratic
Programming (SQP) is employed afterwards to improve the solution. In other words, GAs are employed
to provide an initial point for SQP which may lead to an exact global optimum.

This paper is built up as follows: In section (2), Component Mode Synthesis and the Craig-Bampton
method are explained in details. In section (3) and (4); Neural Networks and the employed optimization
strategies; Genetic Algorithms and Sequential Quadratic Programming; are pointed out. The suggested
optimization strategy is introduced in section (5). Next, the strategy is demonstrated on an academic
test problem and finally in section (7), conclusions are presented.

2. Component Mode Synthesis and Craig-Bampton Method
CMS has proven to be an efficient method for dynamic analysis of complex structures because of its
economic and executive properties. It involves breaking up a large structure into several substructures
(components), obtaining reduced order system matrices of each component and then assembling these
matrices for attaining reduced order system matrices of the entire structure. All substructure calculations
are independent from each other, therefore design changes in one component has no effect on the models
of the other components.

In mathematical words, the technique can be explained as follows:

Let us assume that an FE model of a structure is constructed on a domain 2 and it is divided into
N non-overlapping substructures where each component is defined on the sub-domain 2¢. Thus, except
the nodes on the interface boundaries, each node belongs to one and only one component. The linear
dynamic behavior of an undamped component, labeled c, is governed by the local equilibrium equations,

Meii¢ + Keu® = +g¢ c=1,2,....N (1)

where M€, K¢ and u® are the mass matrix, stiffness matrix and vector of local d.o.f of the component,



respectively. The vector f€ represents the external loads and the vector g€ stands for the interface forces
between the component ¢ and the neighboring components that assures dynamic equilibrium at the
interfaces. The partitioned form of Eq.(1) can be written as follows:
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where i and b refer to interior and boundary, respectively.

It has been already discussed that in dynamic analyses using the information of all d.o.f is not
necessary. Thus; in CMS for reducing the structure model, internal node displacements u§ of each
substructure are replaced with their approximation. This is done by employing a transformation matriz
T< and a vector of internal nodes n° such as

o =) g

and dim(n°) < dim(u§). T€ is built up using reduction bases.

In Craig-Bampton method [2], the reduction basis are obtained utilizing the fized interface normal
modes and the constraint modes of each component.

The fixed interface normal modes are calculated by restraining all d.o.f. at the interface and solving
the usual eigenvalue problem

(K§, —wiM5) {65}, =0 j=1,2,...,F (4)
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where w;, {¢5} j stand for the eigenvalue and the corresponding eigenvector of the j** normal mode, F
is the number of truncated normal modes. The fixed interface normal modes of a component ¢ are

¢c:[{¢>§}1 {65}, - {¢f}p]: [ﬂc j=1.2

0y 0y 0 0y, ’ 7.”’F. (5)

The constraint modes are calculated by statically imposing a unit displacement to the interface d.o.f.
one by one while keeping the displacement of other interface d.o.f. zero and the interior d.o.f. of the

substructure force free such that,
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where Rj, stands for the unknown reaction forces. The constraint mode matrix 7 of component c is
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Therefore, the Craig-Bampton transformation matriz T g for component c is

e _ e v 3
CB — Ob Ibb ( )
and the Craig-Bampton reduced stiffness and mass matrices are; Ké&p = TEVBTKc ¢p Mép =

¢p  MCT 5, respectively. The external loads and the internal forces are 5, = Tgp' £¢, gty =
¢ 57 g¢, respectively.
After reducing the system matrices of each substructure, the next step is the assembly of all these
matrices. The substructures can be interpreted as macro elements for the assembly. The local reduced
d.o.f of a component c is related to the reduced d.o.f u, of the entire structure by

[}

The matrix B¢ is a boolean matrix which relates the boundary d.o.f uf and the interior d.o.f n° of
component c to the corresponding d.o.f of the entire structure. Hence, Eq.(9) is a compatibility condition



between each substructure ¢, c = 1,2, ..., N and the structure. Using this condition, the local equilibrium
equations, Eq.(1), including the Craig-Bampton reduced system matrices can be assembled as:

M1, + K,u, = £, (10)
where
N T N T N T
M, =Y B M{zB° | K,=) B K{zB° |, f.=) B fiy
c=1 c=1 c=1

are the reduced mass and stiffness matrices and the external load vector of the entire structure. It is
important to point out that the interface forces g¢ 5 are all cancelled out after assembly. This assembly
is called primal assembly where the substructures are assembled using the compatibility of the interface
nodes.

3. Neural Network Surrogate Models

The Artificial Neural Network (ANN) structure is inspired by the working principle of the brain. The
neurons considered in ANN are simple abstractions of biological neurons and they are used to predict
the relations between a particular input-target data set. As it is deduced from [3], a two layer NN having
a nonlinear transfer function with sufficient number of neurons in the hidden layer and a linear transfer
function in the output layer can be trained to approximate any function. This ability to approximate
functions to any desired degree of accuracy makes NNs attractive tools for surrogate modeling. A two
layer NN structure is illustrated in Figure 1.

hidden layer output layer

Figure 1: A two layer NN structure.

A mathematical description of a two layer NN can be given as

XxX=Ax+b
x = f(%)

where x € RVix1 y ¢ RVix1 represent the input-target vectors (training set), X € RM»*1 gtands for the
hidden layer outputs (at the same time an input for the output layer) and N;, N, }17 N }2L denote the number
of input vector elements, hidden layer neurons and output vector elements, respectively. The number of
neurons utilized in the hidden layer have an effect on the complexity of the network. The vector function
f: RVix1 — RVa*1 yged in the hidden layer stands for a set of nonlinear (sigmoid) transfer functions
and allows the network to learn nonlinear and linear relationships between input-target pairs. The linear
transfer functions employed in the output layer enables the network to produce values outside the range
of sigmoid functions. The abbreviations A € R¥»*Ni. B € RNiXNu b € RNiX1 and ¢ € RV2*! stand
for the network parameters. The weights A, B have an effect on the slope of the network output and
the bias terms b, c shift the entire network output on the coordinate axis [4].

Working principle of NNs are the same as the Least Squares Method (LSM). NNs are provided with
a set of input-target pairs {p1,t1},{p2,t2}, ..., {Pg,to} where p, is an input to the network and t,
is the corresponding target (input might be thickness and width, target might be one of the natural
frequencies). First, input pairs are applied to the network and the corresponding network outputs are



obtained. Then, these outputs are compared to the target values and the network parameters (weight
and bias terms) are adjusted in order to minimize the mean square error between the network output

and the target
Q

i P = ;@q — ()T (g — ¥(py)) (12)

where @) is the total number of input-target pairs and y is a function of network parameters. Eq.(12)
defines an unconstrained optimization problem and can be solved using any appropriate iterative al-
gorithm. Most of the traditional numerical algorithms need the knowledge of the gradient. Thus, for
the solution of Eq.(12), the partial derivatives of F,, with respect to the network parameters are re-
quired. Since F}, is an implicit function of the hidden layer parameters, the chain rule of calculus is
used to calculate the derivatives which proceeds from the output layer through the hidden layer. The
Backpropagation NNs take their name from this property.

As it is mentioned before, NN complexity is determined by the number of neurons utilized in the
hidden layer. The increasing number of neurons leads to highly nonlinear NN structures which may
cause over-fitting. Over-fitting occurs when the error on the training set is driven to a very small value
but in the case of a new input-target pair involvement, the network becomes too poor to predict the new
situation. Thus, the number of hidden layer neurons play a crucial role in learning process. When there
is no information about the complexity of the underlying behavior, this number can not be estimated
beforehand. In order to prevent finding it by trial and error, there are several developed techniques. In
this study regularization is utilized which ensures that the surrogate model computed by the network is
no more curved than necessary. This is achieved by modifying Eq.(12) with a penalty term F),

min F = oFy, + BF). (13)

where o and 3 stand for objective function parameters. One possible choice for the penalty term comes
from the observation that an over-fitted function with regions of large curvature have large network
parameters at these locations. If these parameters are penalized then it is possible to attain a smooth
network response. In this study, the sum of squares of the network parameters is employed as a penalty
term. Another challenge in Eq.(13) is the decision of the objective function parameters « and . Their
relative size determines the training process. If a > 3, the training algorithm minimizes the model
error. If @ < f3, the training algorithm smoothes the network response. The Bayesian regularization of
Mackay [5] is used for the calculation of these parameters and Eq.(13) is solved by Levenberg-Marquardt
method. The algorithm defined in [6] is utilized for this purpose in our research.

There are few points that are useful to take into account about NNs. Before training NNs, mapping
the training data into the range [—1, 1] enables to obtain better results. Additionally, in some situations
the Backpropagation algorithm does not present the correct weights and biases for the optimum solution.
That is because the nonlinear transfer functions in the hidden layer introduce many local minima into
Eq.(13). The numerical techniques used to minimize this function are gradient based methods. Therefore,
depending on the initial point, network solution can be trapped in one of the local minima. This can
be prevented by reinitializing the network and retrain it several times until satisfactory convergence is
obtained.

As a conclusion, unlike Response Surface Methodology and Kriging, NNs do not require any prelim-
inary assumptions on the shape of the surrogate model. This is automatically done by utilized transfer
functions and the hidden layer neurons in the network structure. Probable over-fitting caused by the
improper hidden layer neuron number selection is prevented by regularization. In that sense, NNs are
very flexible and effective tools for surrogate modeling if they are used in a proper way.

4. Optimization

Many structural optimization problems require the solution of non-convex nonlinear optimization prob-
lems where non-convexity may introduce multiple local optima. Pursue of global optimum is one of the
main concerns of many researchers. Classical Nonlinear Programming (NLP) techniques may have the
risk of being trapped in one of the local optima based on the selected initial point. Therefore in our
strategy, Sequential Quadratic Programming (SQP); a widely used classical NLP technique; is utilized
in combination with GAs. GA is employed to provide an initial point for SQP which may lead to a



global optimum. Then SQP is called with that point to find an exact optimum solution.

4.1. Genetic Algorithms

Genetic Algorithm (GA) is a method for solving parameter optimization problems in the global sense by
imitating the principles of natural evolution. The working principle of the method can be summarized
as follows: First, GA is initialized with a random set of points (population). Next, the value of the
objective function is calculated for each element of this set. Then GA selects some of these points based
on their objective function values and creates a new set of points using them with some rules (mutation,
crossover, etc.). Afterwards it replaces the previous population with the new one and follows the same
procedure until there is no improvement in the population. The best point (one with minimum objective
function value for a minimization problem) of the last population is the optimum solution.During its
process, GA does not require any derivative information of an objective function.

The algorithm utilized in this paper solves problems including bound and linear constraints and
unconstrained optimization problems by generating feasible points. The feasible points are computed
either by making random changes to a single point (mutation) or by combining the vector entries of a
pair of points (crossover).

Since a region restricted by bound and linear constraints define a convex set, the feasible crossover-
point can be generated using the convex set definition such as:

crossover-point = ax, + (1 — a)z,, o € [0,1]

where x,,, x, are the selected points for crossover.

The mutation operator creates mutation-point by selecting a feasible direction in the design space
and modifying the selected point on that direction with a sufficiently small step size.

When nonlinear constraints are involved into the optimization problem, they are introduced to the
objective function with some parameters and a subproblem is created. Then GA solves this subproblem,
modifies the parameters according to some rules and creates a new subproblem. This results in a new
optimization problem. Until the stopping criteria is met this procedure is followed. For problems having
nonlinear constraints, the Composite Lagrangian Barrier-Augmented Lagrangian (CLB-AL) algorithm
of Conn et al. [7,8] provides a framework for the employed GA algorithm.

Unfortunately there is no convergence theory for GAs. Their solutions are based on estimations and
might not be exact. On the other hand, a solution provided by GAs is likely to be close to a global
optimum. It is also important to mention that, compared to the classical NLP techniques they are slow.

4.2. Sequential Quadratic Programming

In SQP, an NLP problem is attempted to solve using a sequence of Quadratic Programming (QP)
subproblems. At each major iteration of SQP, an approximation is made for the QP problem parameters
for generating a subproblem. Then the subproblem is solved and its solution is used to define a search
direction for the next iteration point. The QP parameters are updated utilizing the new iteration point
which generates a new subproblem. This procedure continues until a convergence to an optimum is
obtained.

The construction of QP subproblems are the same for all SQP strategies. Available strategies only
differ by selection of an QP solver and a merit function which promotes convergence from arbitrary
starting points. In this study, null space active set method of Gill et. al. [9] is used for solving QP
subproblems. The merit function is selected as in [10].

SQP is based on a strong convergence theory and its solutions are exact. Its disadvantage is that
depending on the selected initial point it might be trapped in one of the local optima.

5. The Design Optimization Strategy
The design optimization strategy is illustrated in Figure 2. It starts with the problem analysis which
firstly involves understanding the problem under consideration. Then selection of the design parameters
and parameterization of the FE model for surrogate modeling, based on the obtained observations.
Finally, decision of the objective and constraint functions of the optimization problem is made.

The second step in the strategy is the design of experiments. Here, a set of sample points are
selected from the design space for surrogate modeling. In most of the situations there is no flexibility
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Figure 2: The design optimization strategy.

to select as many sample points as wanted. Therefore, in order to extract more information about the
general response trend, it is required to select these limited amounts of points from good locations of
the design space. At this point, it is crucial to make the distinction between the Classical Design of
Experiments (CDOE) and the Design of Computer Ezperiments (DOCE). CDOE is based on laboratory
experiments and random error exists in these experiments. On the other hand, DOCE is based on
computer simulations which are deterministic. In other words, no matter how many times the same
simulation is run, the results are always the same. Additionally, unlike CDOE, DOCE is based on the
assumption that the true response trend is unknown. Thus for extracting more information about the
trend, the main objective of DOCE is to distribute the sample points all over the design space. In this
research this is done using the Latin Hypercube Sampling [11].

After generating the sample points, the next step is finding the response of the FE model for each
of these points. This step could be the most time consuming step of the overall design optimization
strategy based on the complexity of the FE model. For certain applications, using CMS may cause a
lot of reduction in computation time. In this research, the attention is paid on structures which have
repeating patterns in their design. Reduced order FE models of these structures are obtained using the
Craig-Bampton technique. For repeating patterns only one repeating pattern is taken into account in
the calculations.

At the end of the previous step, the training set is generated. Hence, a surrogate model can be found
using Backpropagation NNs. Then, it replaces the CMS based FE model in the optimization problem.

Next, the optimization is performed using first GA. Then its solution is provided as an initial point
for SQP for finding an exact solution. Therefore, the chance of obtaining an exact global optimum
solution is increased.

As it is mentioned earlier, there is no flexibility to select as many sample points as wanted at the
beginning of the strategy. Since the obtained surrogate model is based on that limited amount of data,
it may not represent the actual trend well. When the problem is optimized using that surrogate model,
the attained results may not be trustable. Hence, it is very important to validate the response of the sur-
rogate model with the response of the CMS based FE model. This is done at the end of the optimization
step. The CMS based FE model is run for the optimum design parameters. If its response compromises
with the response of the surrogate model, the scheme is stopped. Otherwise, it is an indication of a poor
surrogate model. The optimum design parameters and the corresponding CMS based FE model response
are added to the training set, NNs are trained again for obtaining a better surrogate model. The same
procedure is followed until the error between the CMS based FE model result and the surrogate model
result is small enough.

6. Demonstration of the Strategy

For the demonstration of the introduced strategy, a structure which resembles a fan inlet case is selected.
The structure and its repeating component are illustrated in Figure 3a, the physical and the design
parameters of the component are shown in Figure 3b. The thicknesses thck of the struts are selected as
design parameters and the struts which have n3, n = 0,..., 3 rotational distance between each other are
assumed to have the same thickness values. In Figure 3c, the identical colors represent the struts that
have the same thickness values. Since there are 24 struts on the structure, there exit 6 design parameters
as total which are also summarized in Figure 3c via numbering. The structure is a free-free structure.
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Figure 3: The selected structure for the demonstration of the strategy.

For the same parameter values all the substructures are identical in the local coordinates. Thus,
the Craig-Bampton transformation, stiffness and mass matrices of each substructure are all the same.
Consequently, the reduced FE model of the entire structure can be obtained using the reduced FE model
of one repeating component.

In this study, the reduced system matrices of a selected repeating component are generated using the
Craig-Bampton method for different design parameter values in ANSYS. Assigning these matrices to
the rest of the substructures via multiplying them with the corresponding rotation matrices, assembling
the substructure system matrices for each design parameter configuration and solving the eigenvalue
problem are performed in MATLAB. In the FE model, Shell181 elements are used which are suitable for
analyzing thin to moderately thick shell structures. Each element has 6 d.o.f at each node which are the
translations and rotations on the x, y, z coordinates. The in-plane vibrations are the only concern for
this problem. Therefore, the rotations on x, y axes and the translations on z axes are suppressed in the
element. The selected material properties are as follows: Young’s modulus (F) is 116 GPa., Poisson’s
ratio (v) is 0.3 and the density (p) is 4.5 gr/cm3.

In the initial design, the thicknesses of the struts are selected as thck; = 0.3 cm, ¢ = 1,2,...,6.
Thus, the total mass of the structure is 0.4936 kg and the 5" natural frequency (2"? bending frequency)
is 702.23 Hz. with a mode shape illustrated in Figure 4a. Because of the fact that the structure is a
free-free structure, the first three modes of the structure are rigid body modes.

For the structural optimization problem; the total mass of the entire structure is desired to be
minimized by adjusting the thicknesses of the struts while increasing the 5! natural frequency from
702.23 Hz. to 750 Hz. and preserving the 5" mode shape of the initial design.

The optimization problem is formulated as follows:

Inin pV (thek;)
sbj. to f5 =750
MACs > 0.9
0.1<thek; <05 i=1,...,6. (14)

In Eq.(14), V represents the volume of the entire structure which is a function of the design parameters
thek;, i =1,2,...,6. In order to keep the mode shape of the initial design the same, the Modal Assurance
Criteria (MAC) is used to check the correlation between the 5 eigenvector of the initial design and the
5t eigenvector of the current design.

The MAC is a scalar value between 0 and 1, representing the correlation number between two mode
shapes. A MAC value near 1 indicates a high degree of correlation between two mode shapes. If u and
v are assumed to be two eigenvectors their MAC value is

(u-v)”

MAC = ————
[[ul[[[v]]?

(15)
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where is the dot product. As it might be realized, MAC is nothing but the square of the cosine of
the angle between two vectors.

Two NN surrogate models with 25 hidden layer neurons are employed in the optimization problem
which take the place of f; and MAC5. For generating a training set for surrogate modeling only one
repeating component is used. First, a 60 x 1 DOCE set, Dy, is generated for the varying thickness
values of that component. Then, the Craig-Bampton stiffness and mass matrices are calculated for each
element of this set. The DOCE set D; and its corresponding system matrices are stored in a library
for later use. The next step is sharing the obtained system matrices with the rest of the substructures.
Since there are 6 design parameters in the overall structure, the 60 x 6 DOCE set, Dy, is generated
where each column of Dr is the permuted version of D;. Therefore each row of Dp represent one
possible design configuration for the entire structure. Due to the fact that the system matrices of each
configuration have already been calculated and stored in a library, it is only required to call the system
matrices from the library, multiply them with the corresponding rotation matrices for locating them to
their global coordinate positions, assemble them and solve an eigenvalue problem. At the end of the
solution process a set of eigenvalues for the 5" natural frequency and the corresponding eigenvectors are
obtained. D7 and the frequency set are used for training the NN which is taking the place of f5. The
correlation between the computed eigenvectors and the 5 eigenvector of the initial design is calculated
using Eq.(15) and a set of MAC values is obtained. Afterwards, Dy and the MAC set are used for
training the NN which is taking the place of MACs.

In the validation step, before generating the CMS based FE model for the optimum design parameter
values, the system matrices of each substructure configuration is first looked for in the library. If they
already exist in the library, they are called from there. Otherwise they are generated and saved in the
library. Then all the system matrices of the optimum configuration are gathered in the global coordinates
and solved. The obtained solutions are compared with the results of the two NNs. If the relative error
between them is smaller than 0.005 for each case, the procedure is stopped else it is continued until the
relative error is smaller than the desired value.

(a) Initial design (b) Optimum design

Figure 4: The initial and the optimum designs and the corresponding 5** mode shapes.

The results of the optimization problem are summarized in Table 1. The optimum design and its 5"

mode shape are illustrated in Figure 4b. As it might be realized, in the optimum design the thicknesses of
the struts at the bending locations are reduced to their minimum limits for the sake of reducing the total
mass and the thicknesses of the rest of the struts are adjusted in order to satisfy the defined constraints.

7. Conclusions

It is becoming a common practice to use surrogate models instead of FE models in the design optimiza-
tion process. On the other hand, FE models are still required to gather a training set for surrogate
modeling. For certain applications using CMS in FE modeling may cause a lot of reduction in compu-
tation time. In this research, the benefits of CMS is utilized for the optimization of structures which
have repeating patterns. In the introduced design optimization strategy, the Craig-Bampton method is



Table 1: Summary of the Optimization Problem

Initial Design Parameters [0.30.30.30.30.30.3] MAC;5(NN) 0.9747

Optimum Design Parameters [0.1 0.2823 0.3267 0.3176 0.1 0.1] MAC;(CMS) 0.9759

# of designs in the Library (Initial) 60 Final f5(NN) 750 Hz.
# of designs in the Library (Final) 150 Final f5(CMS) | 749.88 Hz.
Initial Mass 0.4936 kg. Optimum Mass | 0.3904 kg.

used for reducing the FE model. Additionally, only one repeating pattern is modeled using that method
and the calculated system matrices are utilized for the rest of the repeating patterns. Therefore, extra
calculations for obtaining the system matrices of each repeating pattern is avoided which may cause
a significant decrease in computation time. Backpropagation NNs with Bayesian regularization is em-
ployed for surrogate modeling. The strength of this method shows itself when there is no idea about the
nonlinearity of the input-target relationship. The two step optimization strategy increases the chance
of finding an exact global optimum. The introduced design optimization strategy is demonstrated on a
problem where the structure has repeating patterns. The results indicate that the suggested strategy is
performing well and very promising for real life applications.
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