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Abstract 

 The relationships between water level and discharge along the river channel are vital for 

decision support systems in river basin management. Normally the reliability of the so-called 

rating curves along the river channel depends greatly on the accuracy and duration of the 

measured discharge and water level data. In the Elbe Decision Support System (DSS), the 

rating curves are combined with the HEC-6 model to investigate the effects of river 

engineering measures on the Elbe river system. Under such situations, the uncertainty 

originated from the HEC-6 model is of great importance for the reliability of the rating curves. 

This paper presents a two-step approach to analyze the uncertainty in the rating curves and 

propagate it into the vegetation model used in the Elbe DSS. The first step is to identify the 

uncertainty sources. An analytical method is adopted to propagate the uncertainty sources into 

the final rating curves. The second step is to propagate the uncertainties in the rating curves 

into the model outputs of the vegetation model using Monte Carlo Analysis. By this two-step 

uncertainty analysis approach, the uncertainty in the rating curves is successfully propagated 

into the vegetation model in the Elbe DSS. The final Monte Carlo Simulation results show 

large uncertainties in the model outputs.  

 

Keywords: Elbe Decision Support System; Rating curves; Uncertainty propagation; 

Vegetation model; Monte Carlo Analysis; HEC-6 

 

1. INTRODUCTION 

Integrated river basin management involves issues like water quality, water supply, 

hydropower, flood risk, and ecology. In recent years, integrated river basin management is 

becoming more complicated because of conflicting water management issues, large amount of 

information, and changing environmental conditions. Decision support systems are one of the 

possible solutions to aid decision makers in dealing with such complicated management 
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issues (Loucks and Da Costa 1991; Jamieson and Fedra 1996; Todini 1999; Salewicz and 

Nakayama 2004). To make a sound decision, decision makers need to be aware of the 

existence of uncertainty in the evaluation of river engineering measures in the DSSs. It is 

therefore proposed that the modellers provide model outputs with uncertainty information to 

decision makers. Uncertainty assessment is regarded as one of the most important issues in a 

decision support system. However, in most DSSs in river basin management, the uncertainty 

has not been taken into account. 

A decision support system is currently under way for the Elbe River which is located in 

Central Europe. This decision support system focuses on the German part of the Elbe — the 

river section between the Czech Border (river km 0) up to weir Geesthacht (river km 568) 

(see Fig. 1). The DSS integrates important issues like water quality, flood risk, navigation, 

and ecology (De Kok et al. 2000). To cope with these different issues, several models are 

adopted, such as 1D hydraulic models (the rating curves and the HEC-6 model), a 

hydrological model HBV (Bergström 1995), a flood risk model, a shipping model, and a 

vegetation model. Among these models, the rating curves are one of the substantial 

components of the Elbe DSS. They serve as inputs into other models, such as the shipping and 

vegetation models.  

The rating curves are often used to produce hydrological data. The reliability of the rating 

curves is essential to model relationships between the water level and discharge along the 

river channel. In this paper, the uncertainty in the rating curves is identified and a two-step 

uncertainty analysis approach is used to propagate this uncertainty into the Elbe DSS. The 

vegetation model is selected as an example. 

 

2. MODELS 

 

2.1 RATING CURVES AND HEC-6 

In the Elbe DSS, two 1D hydraulic models are used to provide inputs to the vegetation 

model. One is based on the fitted rating curves and the other one is the HEC-6 model (US 

Army Corps of Engineers 1993).  

The rating curves describe the relationships between the discharge (Q) and water level (H) 

along the river normally based on measurements at gage stations. It is a simple but useful 

method. The disadvantage of this method is that the rating curves based on measurements 

cannot model the effects of river engineering measures on the water levels. One such measure 

is channel dredging, which changes the geometry of the river channel and may change the 

rating curves along the river after implementation. The rating curves in the Elbe DSS are 

represented by (Shaw 1994) 
bQaH *=                               (1) 

Where Q is the discharge (m
3
/s), H is the water level (m), and a and b are location 

dependent parameters which can be found by least-square fitting.  
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The main function of the HEC-6 model is to compute the water levels for steady river flow 

in the main channel. It is a one-dimensional open channel flow model. The advantage of 

HEC-6 is its capability to take into account the effects of river engineering measures. One 

disadvantage is that this model cannot be used directly to compute the flood duration in the 

Elbe DSS while the flood duration is one dominant component for the vegetation model. 

In order to investigate the effects of different river engineering measures, the two models 

are combined in the Elbe DSS. First the HEC-6 model is used to produce the discharge and 

water level data for different measures for each location along the Elbe River. Then these 

discharge and water level data are analyzed to derive the rating curves along the river by 

regression analysis. By doing this, new rating curves can be obtained to account for the 

possible measures that affect the geometry of channel and floodplains. The rating curves are 

finally used as inputs into the vegetation model in the DSS. 

 

2.2 VEGETATION MODEL 

The vegetation model is used to produce maps for the dominant groups of vegetation (so 

called biotypes) in the floodplain area along the Elbe (Fuchs et al. 2002). The vegetation 

model uses the flood duration (i.e. the total number of flooding days per year), the distance to 

the main channel, and land use to determine the presence or absence of biotypes. This model 

has been developed by the German Federal Institute (one of the main decision makers for the 

Elbe DSS). Eleven different biotypes are identified in the vegetation model, which are shown 

in Tab. 1. 

One important concept in this vegetation model is the flood duration. The lognormal 

distribution is used to model the daily discharge statistics (Shaw 1994). The number of 

flooding days based on the critical discharge in the floodplain area is calculated for each cell 

(x, y) in the area using the approximation of error function. The approximation is given by  
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Where the discharge parameters µ and σ  are location dependent and given by the daily 

discharge range (Matthies et al. 2003). The critical discharge Qcrit is defined as the discharge 

at which a certain piece of land (x, y) starts to flood. In order to determine this critical 

discharge, the elevation of the land z(x, y) and the rating curves are needed. The error 

function erf can be found in Abramowitz and Stegun (1972). 

The decision variables here are the frequencies of 11 biotypes in Tab. 1. They are 

calculated as the individual number of cells of each biotype divided by the total number of 

cells of all biotypes in the floodplains. The decision variables are to characterize the biotype 

diversity in the floodplains along the Elbe.  The equation is 

total

i

i
N

N
Per =

             (3) 

Where Ni is the number of cells of ith biotype in the floodplains and Ntotal is the total 

number of cells of all biotypes. 
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3. UNCERTAINTY SOURCES 

Two linear regression analyses are involved in estimating the uncertainty in the rating 

curves. As stated before, the rating curves along the Elbe main channel are fitted from the 

discharge and water level data calculated from the HEC-6 model by linear regression analysis. 

This is the first linear regression analysis. In addition, the water levels upstream and 

downstream are highly dependent on each other. This is presented by a high dependence of 

the parameters a / b upstream and downstream (Eq. (1)). The dependence is modelled by 

another linear regression analysis in order to estimate the final uncertainty in the rating curves 

(uncertainty in the regression parameters). This is the second regression analysis. Due to data 

availability, the uncertainty analysis is only applied to the river section 345-425 km. 

The reliability of the rating curves depends greatly on the accuracy of the water levels 

calculated by the HEC-6 model. One source of uncertainty in the rating curves is therefore the 

error in the computed water levels from HEC-6. In the Elbe DSS, HEC-6 calculates the water 

levels for 10 different discharges for every 100 meters along the concerned river section. 

These 10 values correspond to the discharges of different return periods, which represent a 

whole range of the river flows in the Elbe. A rough estimation of the error is obtained from 

the calibration of HEC-6 along the Elbe river sections 252-272 km, 291-299 km, and 332-343 

km (Nestman and Buchele 2002). According to them, the differences between the measured 

and calculated water levels are from 4 cm to 10 cm. A maximum value of 10 cm is adopted in 

this paper as the error in the calculated water levels in the concerned river section. This error 

will be propagated into the parameters a and b in Eq. (1) for each river location. Assume there 

is no correlation between the parameters a and b. 

 

4. A TWO-STEP UNCERTAINTY PROPAGATION APPROACH 

In order to investigate the effect of the uncertainty in the rating curves on the vegetation 

model, a two-step approach is proposed. First an analytical method is used to investigate the 

uncertainty in the rating curves. Then this uncertainty is propagated into the model outputs of 

the vegetation model by using Monte Carlo Analysis. 

 

4.1 STEP 1: ANALYTICAL UNCERTAINTY PROPAGATION  

The analytical approach is to investigate the uncertainty in the parameters a and b in Eq. (1) 

and then propagate this uncertainty into the parameters in the second regression analysis. 

Assume the error in the water levels is normally distributed and the standard deviation is 

estimated to be 5=Hσ  cm. To apply an analytical method, the equation of the rating curves 

(Eq. (1)) is transformed to 
QbaH logloglog +=                      (4) 

Assume x=log Q and y=log H. Then have HH

y H
Hy

σ
σσ =

∂
∂

= 22 )(
. Furthermore, assume 

A=log a and B= b. According to Sabatelli et al. (2002), the estimation of A and B are shown 

in Eq (5) 
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A first- order error propagation equation is then used to propagate the error originated from 

HEC-6 into the uncertainty in A and B. This equation can be found in Bevington and 

Robinson (1992). The standard deviations of A and B are computed 
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So the uncertainty in the original parameters a and b is 

A

Aa eσσ =
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The second linear regression analysis is used to model the dependence of upstream and 

downstream a and b. The equations to model the dependency are:  

xefy 11 +=  for parameter a 

xefy 22 +=  for parameter b           (8) 

The uncertainty in a and b that is calculated by Eq. (7) is propagated into the regression 

parameters e1, f1, e2, and f2 in Eq. (8). The method to calculate the uncertainty in regression 

parameters can be found in Sabatelli et al. (2002).  

 

4.2 STEP 2: MONTE CARLO ANALYSIS 

The second step is to propagate the uncertainty in the regression parameters e1, f1, e2, and f2 

into the vegetation model by Monte Carlo Analysis. The sampling scheme used in Monte 

Carlo Analysis is Latin Hypercube Sampling (LHS) (Saltelli et al. 2000). This sampling 

scheme first segments the assumed probability distributions into a number of intervals, each 

having equal probability. Then, from each interval, a value is selected at random according to 

the probability distributions within the interval. Latin Hypercube Sampling is generally more 

precise for producing random samples than conventional Monte Carlo sampling, because the 

full range of the probability distribution is sampled more evenly. 

 

5. RESULTS 

 

5.1 UNCERTAINTY IN REGRESSION PARAMETERS  

The uncertainty in the rating curves is propagated into e1, f1, e2, and f2 using the analytical 

method described in Section 4. Tab. 2 shows the computed mean values and corresponding 

uncertainties (expressed by standard deviations) of the regression parameters e1, f1, e2, and f2. 
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The numbers in these four regression parameters have quite different orders of magnitude. 

The order of magnitude of the uncertainty in f1 is relatively high compared to those of other 

parameters. So does the mean values.  

 

5.2 UNCERTAINTY IN THE FREQUENCIES OF 11 BIOTYPES 

The uncertainty in the regression parameters shown in Tab. 2 is then propagated into the 

vegetation model. Assume these four parameters are normally distributed. 100 Latin 

Hypercube simulations are used in this uncertainty analysis. As stated before, the decision 

variables here are the frequencies of 11 different biotypes in the floodplains. Fig. 2 and 3 

show examples of the scatter plots expressing the relationships between the four regression 

parameters and the frequencies of Biotype 3 and 4. The effects of the regression parameters 

are different for these two biotypes. For Biotype 3, the scatter plots show a high screwed 

relationship between the four parameters and the vegetation model outputs. Most model 

outputs center around the mean value 0.04. The frequency of Biotype 3 decreases 

monotonously with the parameter f1. For Biotype 4, the model outputs distribute more or less 

evenly and a monotonously increase with f1 can be observed. These graphs show that the 

effect of regression parameter f1 on the model outputs and its uncertainty is more important 

than those of the other parameters. As expressed in Eq. (8), f1 is the regression parameter 

related to the parameter a in Eq. (1). This indicates that the parameter a may be more 

important than the parameter b in this case.  

Fig. 4 shows the uncertainties in the frequencies of 11 biotypes in the floodplains along the 

Elbe. ‘Bio 0’ in this figure indicates the situation with no data available. The error bars show 

the mean values, 10, and 90 percentiles of the model outputs. 10 percentile of the model 

outputs indicates the value that is greater than 10 percent of the values in the frequencies of 

biotypes along the concerned river section. The values of 10 and 90 percentiles indicate the 

amount of uncertainty in the frequencies of 11 biotypes. From this figure, high uncertainties 

can be observed in the model outputs of this vegetation model.  For example, for Biotype 4, 

the mean value is around 0.06. The 10 and 90 percentiles are 0.02 and 0.13 respectively, 

which shows high variability of the value of the frequency of Biotype 4. 

Some facts can be figured out from the uncertainty results shown in Fig. 4 as well. For 

example, the error bar of Biotype 2 shows that Biotype 2 is likely to disappear in the future 

under the current uncertainty analysis. If more diverse biotypes in the floodplains are hoped, 

measures need to be identified by relevant decision makers to increase the frequency of 

Biotype 2.  As shown in Tab. 1, Biotype 2 is soft wood. Therefore renaturation in the 

floodplains may be a good solution to increase the biotype diversity. The error bars shown in 

Fig. 4 can actually provide very useful information of the uncertainty in the biotype diversity 

in the floodplains along the Elbe in the future to decision makers for making a better decision. 

 

6. CONCLUSIONS 

The rating curves are a vital component of the Elbe DSS in producing the hydrological data 

and modelling the effects of river engineering measures (combined with other hydraulic 
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models). The example of the vegetation model in the Elbe DSS in this paper demonstrated the 

propagation of uncertainty originated from the rating curves into the model outputs by a two-

step uncertainty analysis approach. Although the uncertainty propagated into the frequencies 

of 11 biotypes is high, it provides useful insights on the uncertainty information for further 

decision making in river basin management.  As it is known, models are never perfect. 

Knowing about the uncertainty can help decision makers understand the gaps in the current 

knowledge. Uncertainty analysis can thus provide the possibility to collect additional 

information to reduce the uncertainty and achieve better decision making. 

The two-step approach proposed in this paper is a quantitative method to propagate the 

uncertainty into model outputs. This approach increases the accuracy of uncertainty analysis 

by applying an analytical error propagation equation. The example of the vegetation model in 

the Elbe DSS shows a successful application of this approach. The extension of its 

applicability can be a full analysis of uncertainty in the data and models in the decision 

support system and thus to assist decision makers with the complicated management problem. 
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Table 1. Biotypes in the floodplains along the Elbe River 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biotype 

number 

Biotype description 

0 no data 

1 Seasonally flooded grassland  

2 Softwood floodplain forest 

3 Hardwood floodplain forest 

4 Reed  

5 Herb fringes and herb meadows 

6 Grassland of wet to moist sites 

7 Intensively used, species-poor, moist grassland 

8 Other reeds  

9 Herby flood banks and -plains near the water 

10 Dry and warm ruderal sites with dense vegetation 

11 Moist ruderal sites 
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Table 2. Uncertainty in e1, f1, e2, and f2 

Regression 

parameters 

Units Means Standard 

deviations 

1e  - -1.51E-1 1.16E-3 

1f  - 79.81 0.46 

2e  - 2.18E-4 7.26E-6 

2f  - -2.41E-2 2.78E-3 
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Fig. 1 Elbe River in Germany 
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Fig. 2 Regression parameters vs. model outputs for Biotype 3 

 

 

Fig. 3 Regression parameters vs. model outputs for Biotype 4 
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Fig. 4 Error bars for the frequencies of 11 dominant biotypes in the Elbe floodplains (‘Bio 0’ 

is the situation without data, ‘Bio 1’ ~ ‘Bio 11’ are the 11 dominant biotypes in the 

Elbe floodplains) 

 

 


