Protium, an Infrastructure for Partitioned Applications

Cliff Young, Lakshman Y.N., Tom Szymanski, John Reppy, David Presotto,
Rob Pike, Girija Narlikar, Sape Mullender, and Eric Grosse
Bell Laboratories, Lucent Technologies
{cyoung,ynl,tgs,jhr,presotto,rob, girija,sape,ehg} @research.bell-labs.com

Abstract

Remote access feels different from local access. The
major issues are consistency (machines vary in GUISs,
applications, and devices) and responsiveness (the user
must wait for network and server delays). Protium attacks
these by partitioning programs into local viewers that
connect to remote services using application-specific pro-
tocols. Partitioning allows viewers to be customized to
adapt to local features and limitations. Services are
responsible for maintaining long-term state. Viewers
manage the user interface and use state to reduce commu-
nication between viewer and service, reducing latency
whenever possible.

System infrastructure sits between the viewer and ser-
vice, supporting replication, consistency, session manage-
ment, and multiple simultaneous viewers. The prototype
system includes an editor, a draw program, a PDF viewer,
a map database, a music jukebox, and windowing system
support. It runs on servers, workstations, PCs, and PDAs
under Plan 9, Linux, and Windows; services and viewers
have been written in C, Java, and Concurrent ML.

1 Introduction

In the 1970's, one could walk up to any telephone in
the world and use it as easily as one’s home telephone.
The computer revolution might have followed suit, but
the opposite holds. It is nearly impossible to use the
neighbor’s computer: data files are unavailable or not
available in a consistent place, the wrong applications are
installed, and the preferences for those applications are
personalized.

Why can't one use any computer on the planet? The
reasons are historical and economic. First, the last twenty
years of the computing industry have been about personal
computing. Mainframe and minicomputer users shared a
consistent (if sometimes unresponsive) environment in
their single, shared system. In contrast, every PC is cus-
tomized, binding large amounts of state to each PC. The
move to PCs gave users responsiveness at the cost of con-
sistency. Secondly, networked computing environments
work “well enough” within a single security domain such
as a corporate intranet or university-wide network. Such
environments do allow users to log into multiple termi-

0-7695-1040-X/01 $17.00 © 2001 IEEE

47

nals, and this covers a large percentage of shared-use
cases. Third, remote access tools are “good enough™:
users are willing to dial into or tunnel to their corporate
intranet to get access, despite added latency or inconsis-
tency. Lastly, the Internet grew up only in the last decade;
before that one couldn't think of being connected to every
computer in the world. A new generation of computing
devices is upon us; each person will have many devices
and each person will expect the multiple and remote
devices to work consistently. We will have to rewrite all
of our applications for the new devices anyway; why not
rewrite them so they work better?

Our goal is to be able to use any Internet-connected
device as if it were the machine in our office. Further, we
want this access consistently and responsively. Consis-
tency is similarity of experience across devices. The user's
session must migrate from device to device. Each applica-
tion will adapt to each end device so that it exploits the
device's unique capabilities and works around the device's
limitations. Responsiveness implies that remote access is
as comfortable as a local application. Many remote access
systems have addressed one or the other of these two
goals; few address both.

Protium splits applications into two pieces. One runs
near the user; the other runs in a service provider that is
highly available, has persistent storage, and has abundant
computation cycles. We call these pieces viewers and ser-
vices, respectively, to emphasize that state is maintained
by the service. Viewers and services communicate via an
application-specific protocol; the application designer
must partition the application to maximize consistency
and responsiveness. Applications are built as if only a sin-
gle viewer-service pair existed, with certain additional
constraints. These constraints allow the Protium infra-
structure to support connection, reconnection, multiple
simultaneous viewers, state consistency and replication,
and session management.

The Protium prototype includes a text editor, a
MacDraw-style drawing program, a PDF viewer, a map
viewer with map database, a digital music jukebox, and
windowing system support. Viewers and services have
been written in C, Java, and Concurrent ML and run
under the Plan 9 Operating System, inside Java applets,
and under Linux. All of these viewers and services inter-
operate.

2 A Better World

We'd like to be able to work all day at the office, using
a research operating system such as Plan 9 or Linux. At
the end of the day we'd like to walk away from the office
computer, possibly with state uncommitted to stable stor-
age. On the train home, we'd like to be able to pull out a
wireless PDA or cellular phone, and have the portable
device replicate the office session. PDA-specific viewers
for each of our applications will be launched that show
the exact same state, including uncommitted changes, as
the work session back in the office. The PDA is limited,
but one could imagine reading drafts of a document or
fixing typos even on its small screen and using its limited
input capabilities. When we get home, the home computer
runs only Windows. But using a web browser and Java
applets we again replicate the session, getting Java ver-
sions of each of our applications with the same session
state as we had at the end of our train ride. In each remote
case (PDA and Java), the applications respond immedi-
ately to user input; updates spool back to the office server.

Our two consistency-related goals are session mobility
and platform independence. The example shows session
mobility where the user accessed the same state of appli-
cations using three different systems. We will not supply a
precise definition of “session” in this paper; however, an
intuitive definition would be the state of all applications
currently open on one's workstation screen. Platform
independence involves accessing the same session on a
variety of devices and operating systems: a workstation
running a workstation OS, a PDA with its proprietary OS,
and a Windows home PC with a standard browser. And to
make things difficult, we will not sacrifice responsiveness
for these consistency goals.

This example sounds like typical ubiquitous comput-
ing propaganda, but our system concretely provides them:
we have a prototype system running. We next describe the
assumptions about future technologies that underlie our
engineering choices, then go on to describe our approach
and prototype system. Before concluding, we explain why
prior approaches fail some of our requirements.

3 Assumptions

‘We make some assumptions about the future. On the
technical front, Moore's law continues, exponentially
improving processing power, memory sizes, device sizes,
heat dissipation, and cost. As a corollary, the world will
move to multiple devices per person. Bandwidth will
increase in the backbone network and will increase (albeit
less quickly) to portable and home devices. Wired or
wireless remote coverage will improve over the next
decade; we thus choose not to focus on disconnected
operation. However, we also assume that communications
latency will not improve much in the next decade.

While the speed of light places a fundamental lower
bound on communications, it takes light only about 130
milliseconds to go around the world. Our latency assump-

48

tion instead rests on the current realities in data network-
ing, where differentiated services have not yet been
deployed and switching delays are significant. Even with
a speedy core Internet, however, it seems believable that
last hop communications services would still experience
notable delays for the next decade (today, we regularly
experience /0 second round-trip times on CDPD modems
and WAP cellular phones; systems must respond within
100 milliseconds to feel instantaneous and within 1.0 sec-
ond not to disrupt the user’s flow of thought [3]). Further-
more, 130 milliseconds is very long for a computer, so
services that rely on other services still face latency
issues.

On the social front, we have two assumptions. First,
we believe that there will be a new round of operating
system wars for the PDA/cellphone market. The market
will determine which (if any) of the current contenders
(PalmOS, Windows CE, Psion, to name a few) will win.
In the meantime, we should deploy systems that work
well regardless of programming language or operating
system.

Our second social assumption is that distributed pro-
gramming is hard. If we can find ways to sweep many of
the traditional distributed programming problems under
the rug of our infrastructure, the average programmer
might be able to write a robust distributed application. A
secondary goal is that writing an application in our system
will not be much harder than writing a standalone GUI-
based application is today.

4 Partitioned Applications

Our approach draws its inspiration from two applica-
tions that work when a low-performance channel connects
the user and his data: the Sam text editor [4] and the
IMAP mail protocol [1]. Sam comes in two pieces. Sam’s
service runs near the file system where editing takes
place; Sam’s viewer runs on whatever device the user has
at hand. Viewer and service communicate using a proto-
col that keeps track of the state of both halves. IMAP
works similarly but for mail instead of editing. Both
applications divide the task into two parts: a service that is
highly available and has large compute and storage
resources, and a viewer that needs a connection to the ser-
vice and some kind of user interface but need not down-
load the entire program state. Perhaps the central question
of our project is: can we generalize from Sam and IMAP
to all applications? And can we build infrastructure that
makes this easy? We call this approach, “partitioned
applications,” because the network breaks the application
into parts.

Another way of looking at Protium is that we are “put-
ting the network into the application.” Most previous
approaches divide remote from local at an existing
abstraction layer, for example the file system, the GUI
API (The X Window System [6]), or the frame buffer.
Partitioning incorporates these prior approaches; it just
adds a new dimension of flexibility.

monolithic

application

view multiplexing

Figure 1: A monolithic application, the same application after partitioning, and multiple
viewers connected to a single service through a view multiplexer.

Partitioning induces rich systems issues. For example,
what manages a session? How does one connect or recon-
nect to a service? What maintains consistency, replicates
state, or provides multicasting across simultaneously
active viewers? What happens when a viewer crashes or
the viewer device is lost? Our prototype system suggests
preliminary answers to each of these questions.

S Prototype System

Our prototype system currently supports five applica-
tions in addition to the session service/view manager.
These are a simple text editor, a MacDraw-style drawing
program, a PDF image viewer, a map program (with both
photographic images and polygonal graphics), and a
music jukebox. These represent a variety of interesting
desktop applications, so we are encouraged that we have
been able to build them with our current infrastructure.
However, for us to really claim that we are building a gen-
eral system, we need to build more applications. We are
investigating video and hope to add PDA applications
(calendar, email, address books) to our suite.

One of the most interesting research issues involves
adapting viewers to the platform on which they run. There
are at least four different kinds of platforms: big bitmaps
(desktops and laptops), small bitmaps (PDAs and cell-
phones), text, and voice. We present some preliminary
results about device-specific adaptation in the section on
session management, but this topic remains largely
untouched.

Building applications around a protocol gives us a high
degree of language and operating system independence.
Our prototype applications run under Plan 9 (all viewers
and the edit and draw services), Java (all but the PDF
viewer; map and juke services), and Linux (draw and PDF
services). The Plan 9 programs were written in C; the
Linux programs were written in Concurrent ML. Porting
remains a significant task, but this wide variety of lan-
guages and systems supports a claim to language and OS
independence.

Just rewriting applications into two pieces doesn’t
make a systems project. For Protium, the interesting
issues are in the infrastructure, and we describe two
pieces of the infrastructure here, followed by an applica-
tion example. The first piece of infrastructure, the view
multiplexer, supports multiple viewers on a single service,

49

while simulating a connection to a single counterpart to
each viewer or service. The second piece of infrastructure,
the session service, bundles together multiple services
into a session; it has a corresponding piece, the view man-
ager, which runs on the viewing device. After describing
the pieces of infrastructure, we will go on to an applica-
tion example, our map program.

5.1 Multiplexed Viewers

Each viewer or service is designed as if it spoke to a
single counterpart service or viewer, respectively. But we
want to be able to support multiple viewers simulta-
neously connected to a single service. The view multi-
plexer simulates a single viewer to a service. New viewers
that wish to connect to a running service do so through the
view multiplexer, so the service need not be aware that a
new viewer has connected. Figure 1 shows a view multi-
plexer interposed between a service and multiple viewers.

To do its job, the view multiplexer snoops the mes-
sages between service and viewer. Each message in the
system has a tag to help the multiplexer. Most communi-
cation is synchronous from viewer to service, in viewer-
initiated request-response pairs. Viewers can generate
read, lightweight write, and heavyweight write messages.
Services respond with either acknowledgements (ACKs)
or negative acknowledgements (NACKs); the infrastruc-
ture is allowed to NACK a message without allowing the
message to reach the service. Viewers must also be able to
handle asynchronous update messages, which are gener-
ated by the infrastructure when one viewer receives an
ACK; an update tells a viewer that some other viewer suc-
ceeded in updating the state. Since all viewers see all
ACKs, they can keep their views of the state up-to-date.
Lastly, services can asynchronously broadcast to all view-
ers; broadcast messages support streaming media. This
consistency model is similar to publisher-subscriber con-
sistency models.

In addition to multicasting ACKs (as updates) to all
viewers, the view multiplexer helps build responsive
viewers. Using a simple token-passing scheme, the view
multiplexer allows one viewer to become privileged.
Lightweight writes from the privileged viewer are imme-
diately ACKed; this allows the privileged viewer to
deliver local response time. These writes must then be
propagated to the service and the other viewers; formal

services

session
service

viewers

view
manager

Figure 2: Three applications (with service and viewer pieces) connected through the ses-
sion service/view manager multiplexor/demultiplexor pair.

requirements of the protocol and the service implementa-
tion guarantee that the service will acknowledge the write.
Lightweight writes should be common actions that do not
require support from the service, e.g., responding to key-
strokes or mouse events. Global search-and-replace or
commit to stable storage should be heavyweight writes.
Token management matches our intended uses, where a
single user expects immediate response from the device
he uses but can tolerate delayed updates in other devices.

5.2 Session Management

Intuitively, a session is the state of one’s desktop. The
Protium session service runs on the service side and bun-
dles together multiple services into a single session. A
device-specific view manager connects to the session ser-
vice and runs the viewers that correspond to the services
in the session. The session service and view manager
form a multiplexer/demultiplexer pair, linking multiple
viewers to multiple corresponding services. In our intro-
ductory example, the view manager launched the viewers
on the PDA and under the Java-enabled browser.

The session service and view manager behave as
another application pair, so the pipe between them can be
managed by the view multiplexer just like for any other
application. The session and view managers can also hier-
archically encapsulate and route messages for the under-
lying service/viewer pairs; however, services and viewers
are free to communicate out-of-band if the designer so
chooses. Figure 2 depicts a set of applications managed
by a session service and view manager. We can compose
view multiplexers and session/view manager pairs in arbi-
trary nesting; the two sets of multiplexers recurse.

In addition to managing the set of applications, the
view managers adapt window system events to their
devices. Moving or resizing a window on a big screen
causes a corresponding move or resize on another big
screen. Moves and resizes have no small screen analog
(because applications typically use the whole screen);
however, focus changes and iconification work similarly
on big and small screens. We have not yet implemented
the text-only or voice-based viewers, so we have no expe-
rience in this area; a text-only view manager should work
like a shell. Another open problem is adapting to differ-
ently sized big screens.

50

5.3 A Protium Application: Map

Some of us (Szymanski and Lakshman) are interested
in geographic data such as terrestrial maps, aerial images,
elevation data, weather information, aviation maps, and
gazetteer information; one goal is synthesizing these
views coordinated by positional information. Gigabytes
of data come from scattered sources and multiple servers.
We had built a Java geodata viewer that could navigate
and edit the data. Different types of geodata show as
selectable display layers. Different layers or different
parts of the same layer may be served by different
machines. However, all servers and the viewer have the
same abstract view of the data and hold some piece of the
data locally. This uniform view results in a simple proto-
col between the viewer and the servers.

We used the Protium infrastructure to share the geo-
data viewer, the basic idea being that multiple viewers can
share a session, moderated by a session server, that tracks
what is being viewed and tells viewers what data to get
and from where. Actual data travels out-of-band; only
control messages route through the Protium infrastruc-
ture. The session server also supports textual messaging
so that a shared viewer can be used to give driving direc-
tions to someone (with appropriate maps and messaged
instructions) at a remote location.

The map application is designed to hide latency from
the user. For example, the viewer displays street names
and addresses in a tool tip; a remote query would make
this feature too slow and too variable in latency. All geo-
graphical data is kept in a tiled format, compressed using
a method appropriate to its type, and transmitted to the
viewer upon demand or (sometimes) before. The map
viewer stores this data in a two-level cache in which the
lower level (which counteracts network latency) contains
compressed data, and the upper level (which counteracts
decompression latency) contains fully expanded data
structures needed to support user interactions. Requests to
map services are executed in batches that are satisfied in
an out-of-order fashion. This overlaps server processing
with both network transmission time and client decom-
pression time. This architecture provides a degree of
responsiveness that could not be approached with a con-
ventional browser/server structure.

As part of this exercise, we implemented a new viewer
in C under Plan 9. The Java and Plan 9 viewers differ
greatly: the Plan 9 viewer targets the small but colorful
iPAQ display and uses pen input; the Java viewer runs on
big screens and uses the real estate for a complex GUI.

The session server (excluding marshalling code) is
about 330 lines of Java. An additional 286 lines allow the
existing viewer to interoperate with the session server.
The Plan 9 viewer required 3527 lines of C of which
about 300 lines deal with communication and the rest deal
with graphics and event handling. Thus, with a small
amount of effort, we were able to convert an existing sin-
gle-user application (which was already split into service
and viewer parts) into a shared application.

6 Remote Access

The body of related work is far too vast to survey in a
position paper; remote access systems span many disci-
plines including operating systems, networking, distrib-
uted systems, and databases. This section instead
highlights major approaches to remote access and
explains why they do not meet our goals.

Most remote access systems fail one or both of our
consistency and responsiveness requirements. Rlogin and
its more secure modern descendant, ssh [7}, are platform
independent but do not provide session mobility. Distrib-
uted file systems (examples abound; AFS, Coda, and
Locus/Ficus to name a few) allow one to access stable
storage wherever the network reaches but say nothing
about how to provide applications. Remote Procedural
Call packages similarly do not show how to provide
applications. Distributed object frameworks such as
CORBA and DCOM address the same problem as we do,
but suffer performance problems because their abstraction
of remote and local objects hides latency from designers
[8]. Recent work in thin-client computing and its prede-
cessor, client-server computing, give some forms of con-
sistency but force clients to wait during both network and
server latencies.

A number of systems apply the brute-force approach of
sending screen differences and raw user input information
across the network. Examples include Virtual Network
Computing (VNC) from AT&T Research [5], the SunRay
product from Sun Microsystems, Citrix System’s Win-
dows-based product, and Microsoft’s NetMeeting. All of
these systems provide bit-for-bit consistency but suffer
when network latency increases. They also do not adapt to
the constraints of local devices: viewing large virtual
screens on small physical devices is difficult, and the sys-
tem architecture prevents further device-specific adapta-
tion.

Philosophically, the Berkeley Ninja project is closest to
our approach [2]. We follow Ninja’s approach of keeping
stable storage in a service provider (Ninja calls this a
“base’”) and allowing “soft” state in the viewers to be lost.
Ninja focuses on scalable services; Protium focuses on the

51

applications we use daily on the desktop. Protium’s infra-
structure works primarily between service and viewer.

7 Experiences

To partition an application, one must focus on the
application-specific protocol. We would like to present a
how-to guide on partitioning, but the lessons so far sound
like platitudes, including “match messages to user input”,
“separate control and data”, and “beware round trips.” In
an early version of the draw protocol, each object deleted
required a separate message. If the user selected a number
of objects and issued a delete command, some of the
deletes might fail, leaving the application in a confusing
state. The juke, map, and PDF applications have large
data streams (music, graphics/image, and image); waiting
for a large object to be transmitted can keep a small con-
trol message from taking effect. Designing protocols
without a delay simulator is dangerous: what works
acceptably on a LAN may be unusable with a 1-second
round-trip time. We hope to be able to summarize and
illustrate more such principles in the future.

Protocol designers must decide which application state
is viewer-specific and which is service-mediated. For
example, the edit application keeps scroll bar position and
text selection local to the viewer. The draw application
tries to do the same, but some operations (grouping,
ungrouping, and deleting objects) reset the selection to be
consistent across all viewers. More ambitiously, it might
be useful to be able to preview the next PDF page on
one’s remote control device while continuing to show the
current page on the video projector device, but this is not
yet supported by the PDF protocol. Some applications
have added state expressly for collaborative or remote-
control purposes: the map and PDF programs both sup-
port telestrator-style overlays, and the map program also
includes a chat room.

Writing viewers is harder than we would like. Viewers
include all of the state and complexity of a traditional
stand-alone application, augmented by the complexity of
managing a single outstanding request while being able to
accept asynchronous updates and broadcasts. Backing out
attempted changes when a NACK arrives further compli-
cates design. All of our viewer programs are multi-
threaded; this seems a higher standard than we would care
to impose on the average programmer. We are exploring
programming idioms, APIs, and library support that might
simplify viewer development.

8 Discussion and Conclusion

This system is not about the next killer application. If
anything, we are rebuilding all of our old applications to
live in a new world. This follows our biases as system
builders: we know how to build infrastructure. If this
project or one like it succeeds, we will have universal data
service, like universal telephone service. The new devices

require rewriting all of our old applications anyway. We
might as well get some benefit out of it.

The Protium approach makes additional demands on
application programmers. The initial designer of an appli-
cation creates an application-specific protocol, while
designers of new viewers or services must adhere to that
protocol (if our project succeeds, then perhaps standards
for application protocols will emerge). Porting an applica-
tion to a new platform involves at least porting the viewer.
Building a viewer combines both traditional GUI issues
and communicating back to the service. Services may also
need to be ported.

What is the best way for Protium to support existing
applications? It depends on the application. Programs
with clean separation between display and state integrate
easily with Protium; most programs, however, are large,
complex, and have tangled state- and display-manage-
ment code. We observe that the move to new devices such
as PDAs and phones will force such programs to be
rewritten anyway; integrating the program with Protium
as part of the rewrite will be a modest extra requirement
and will benefit the application by making it use the net-
work more effectively.

Considering applications in a partitioned context pro-
vides new opportunities to use old tricks. Persistence is a
service-only problem; the service need not worry about
geographic distribution, so known persistence techniques
apply. Viewers that are lost or lose state are easily
replaced or restored because the service is the repository
of record. The connection between service and viewer can
be a network socket; known techniques for authentication
and encryption therefore apply. Security, logging, cach-
ing, and prefetching seem like obvious features to add.
This paper concentrates on the single user; Protium also
gives limited support for collaboration and remote con-
trol. We think of these as bonuses rather than our primary
research goal; it seems a high enough goal to be able to
use any computer in the world.

Protium is the most common isotope of hydrogen, the
most common element in the universe. A protium atom
has two pieces that are closely coupled and essential to
the nature of hydrogen, but the two pieces are different
from each other. And while the two pieces are themselves
basic, the exploration of their interaction has occupied
scientists for more than a century.

9 References

[1] M. Crispin. Internet Message Access Protocol — Version
4revl. RFC2060 (December 1996).

[2] S. D. Gribble, et al. The Ninja Architecture for Internet-
Scale Systems and Services. To appear in a Special Issue of
Computer Networks on Pervasive Computing.

[3]1 R.B. Miller. Response time in man-computer conversa-
tional transactions. Proc. AFIPS Fall Joint Computer Confer-
ence, 33:267-277, 1968.

[4] R. Pike. The text editor Sam. Software Practice and Expe-
rience, 17(11):813-845, 1987.

[5] T. Richardson, et al. Virtual Network Computing. IEEE
Internet Computing, 2(1): 33-38, Jan/Feb 1998.

[6] R.W. Scheifler and J. Gettys. The X window system. ACM
Transactions on Graphics, 5(2):79-106, Apr. 1986.

[71 T. Ylonen. The SSH (Secure Shell) Remote Login Protocol.
In Internet Drafts (November 1995).

8] J. Waldo, et al. A Note on Distributed Computing. In Lec-
ture Notes in Comp.Sci. 1222, Springer, 1997.

s Nobi . . .
Sovice Indspandanc T RN

ncy 1s contral

Fly At Night / Chifliwack 21977 © 7 7
Seqa / Al Farka Toure and Rye Cooder / 0

stie /

e Lost You / Jackie Witson 7 1957

Henry Vill § Am / Herman's Hermits /7 1965
“ Get Satisfied / George Cinton / 0

§ av 3 cpu
¥ weitten to ¢

LN

(6] TWM kon MTR
=]]

Tl m e[e

Toure and Rye ©

Figure 3: Screen shots of Protium applica-
tions under Plan 9 (top), Linux/Java (middle),
and Windows/Java (bottom). Within each
screen, the applications are edit (top left),
draw (left), juke (top right), map (bottom), and
PDF (bottom right, Plan 9 only).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

