
 
 

  
Abstract — In this paper an overview of the EU-FP6 “Smart 

Chips for Smart Surroundings” (4S) [7] project is given. The 
overall mission of the 4S project is to define and develop efficient 
(ultra low-power), flexible, reconfigurable core building blocks, 
including the supporting tools, for future ambient systems. 
Dynamic reconfiguration offers the flexibility and adaptability 
needed for future ambient devices, it provides the efficiency 
needed for these systems, it enables systems that can adapt to 
rapidly changing environmental conditions, it enables 
communication over heterogeneous wireless networks, and it 
reduces risks: reconfigurable systems can adapt to standards that 
may vary from place to place or standards that have changed 
during and after product development.  
 

Index Terms — Coarse-grain reconfigurable, ambient systems, 
low power, SoC, DRM, MPEG-4. 

I. INTRODUCTION 

he overall mission of the 4S project (Smart Chips for 
Smart Surroundings) is to define and develop efficient 

(ultra low-power), flexible, reconfigurable core building 
blocks for future ambient systems including the supporting 
tools. As an application we have chosen a concrete worldwide 
broadcast radio application (DRM) and MPEG-4 video that 
can be used in an ambient system scenario. 

Ambient systems (also known as ambient intelligence or 
ubiquitous computing) are networked embedded systems 
intimately wirelessly integrated with everyday environments 
and supporting people in their activities. These systems will 
create a smart surrounding for people to facilitate and enrich 
daily life and increase productivity at work. It is likely that 
these systems will be quite different from current computer 
systems, and will have to be based on radically new 
architectures comprising a set of reconfigurable "building 
blocks" (IP blocks) and flexible interconnection mechanisms. 
These components often have conflicting requirements; they 
have to be flexible, adaptive as well as energy-efficient and 
low-cost.  

Hence, the systems architecture of future ambient devices 
poses a lot of challenges: these devices have a very small 
energy budget, they are always operational (although quite 
often in a low-power mode), are small in size but might require 
a performance that exceeds the levels of current PDA 
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computers. State-of-the-art processor architectures cannot 
provide the processing power required by a fully operational 
ambient device given the tight energy limitations. To realize 
ambient devices within the energy budget flexible and highly 
efficient architectures are needed. Moreover, without 
significant energy reduction techniques and energy-efficient 
adaptive architectures, battery-life constraints will severely 
limit the capabilities of these devices. The development of 
such architectures and supporting tools is at the core of the 4S 
project. 

II. HETEROGENEOUS RECONFIGURABLE COMPUTING 

Reconfigurable systems offer the required flexibility and 
can adapt processing resources dynamically to the demand of 
applications. Our Heterogeneous Reconfigurable SoC (HR-
SoC) consists of: bit-level reconfigurable tiles (e.g. embedded 
FPGAs), word-level reconfigurable tiles, and general-purpose 
programmable tiles (DSPs and microprocessors). The tiles are 
interconnected by a suitable NoC.  

Typically, some algorithms are more suited for bit-level 
reconfigurable architectures (e.g. PN-code generation), others 
for DSP-like implementations and others for word-level 
reconfigurable platforms (e.g. FIR filters or FFT algorithms). 

The programmability of the architecture enables the system 
to be targeted at multiple applications within the target 
domain. The reconfigurable tiles and firmware can be 
upgraded at any time (even when the system is already 
installed). 

A HR-SoC combines performance, flexibility and energy-
efficiency. It supports high performance through massive 
parallelism, it matches the computational model of the 
algorithm to the granularity of the processing entity, it can 
operate at minimum supply voltage and clock frequency and so 
provides energy-efficiency and flexibility at the right 
granularity only where needed and desirable. 

Until recently only a few reconfigurable architectures have 
been proposed for wireless devices and to our knowledge none 
for ambient devices. Most reconfigurable architectures were 
targeted at simple glue logic or at dedicated high-performance 
computing. However, there are a number of reasons for using a 
HR-SoC in future ambient devices e.g.: 
• Standards evolve quickly; this means that future systems 

have to have the flexibility and adaptivity to adapt to 
slight changes in the standards. By using reconfigurable 
architectures instead of ASICs costly re-designs can be 
avoided. For ambient devices standards are still under 
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development, therefore devices need to be highly flexible 
and adaptable to new developments. Downloadable 
reconfigurations (long-term reconfiguration) enable new 
or adapted services / standards on existing devices, 

• The costs of designing complex ASICs is growing rapidly, 
in particular the mask costs of these chips is very high. 
With reconfigurable processors it is expected that less 
chips have to be designed (re-usability/adaptivity of 
silicon area), so companies can save dramatically on mask 
costs and due to higher production volumes the purchase 
costs for the end users will be reduced, 

• The system can adapt to the environment and to the needs 
of the user rather than having the user adapt to a fixed 
system (the ambient intelligence approach). When the 
system can adapt - at run-time - to the environment 
significant power-saving can be obtained and less 
transmission and processing power is needed, 

• Heterogeneous reconfigurable modules containing digital 
as well as analogue building blocks (e.g. programmable 
filter banks and multi-standard advanced synthesizer 
blocks, including fully integrated VCOs) will result in 
solutions for flexible on-chip RF front ends, covering a 
multitude of services for upcoming applications with one 
set of hardware, 

• Finally, traditional (DSP) algorithms are rather static. The 
emergence of new ambient applications that require 
sophisticated adaptive, dynamical algorithms has drawn 
renewed attention to run-time dynamic reconfiguration. 

The blocks cover both digital and mixed signal structures 
applicable to communication devices. Furthermore, we 
develop efficient NoCs to interconnect all tiles of the SoC. 

The overall important characteristic is the life-time of a 
communication stream. We aim to develop a SoC for a 
multimedia terminal where we can assume that the data 
streams are semi-static and have periodic behavior. This means 
that for a long period of time subsequent data items of a stream 
follow the same route. This will last for seconds and more, 
because a user will listen to its radio or has a phone 
conversation for a considerable time. However, the control 
system might change some settings of processes due to 
changing environmental conditions. 

According to the type of services required, the following 
types of traffic can be distinguished in the network: 
• GT (guaranteed throughput) this is the part of the traffic 

for which the network has to give real-time guarantees 
(i.e. guaranteed bandwidth, bounded latency). 

• BE (best effort) this is the part of the traffic for which the 
network guarantees only fairness but does not give any 
bandwidth and timing guarantees. 

In our proposed NoC we support both GT and BE traffic. 

A. Prototyping 

Within the 4S project we are developing two prototypes. 
The first prototype called BCVP (Basic Concept Verification 
Platform) is constructed with off-the-shelf components. It 
contains a Dimitri chip [3] (containing two ARM9 cores, two 

DDCs, a Viterbi decoder and peripheral IO), ZBT DRAM, a 
Xilinx XC2V3000 or XC2V8000 FPGA and a PACT/XPP64-
A1 [4]. The second prototype called HiCVP (Highly 
Integrated Concept Verification Platform) consists of a highly 
integrated SoC. This chip is in its definition phase and will 
probably contain one ARM926 core [6], boot memory, Viterbi 
decoder, two DDCs (Digital Down Converters), two A/D 
converters, peripheral IO, and four Montium tiles [5]. 

III. APPLICATION DOMAIN 

A. DRM 

As a key application for the 4S project we have chosen digital 
broadcast radio (in particular DRM) and MPEG-4 video. The 
DRM (Digital Radio Mondiale) standard [1][2] has been 
adopted by the ETSI at a European level and by the IEC 
(International Electrotechnical Committee) at a worldwide 
level. DRM offers digital radio broadcast in three frequency 
bands up to 30 MHz (long, medium and short waves).  
DRM brings important improvements compared to existing 
analogue broadcasts in the above mentioned frequency bands: 
stereophonic sound, several audio services on one channel, 
FM-like sound quality without fading, low rate data 
transmission, additional services, ease of use for the listener, 
etc. Depending upon the frequency band, a transmitter can 
cover a region, a country or even reach any point in the world. 

B. MPEG-4 video 

MPEG-4 video is an ISO/IEC standard developed by the 
MPEG (Moving Picture Experts Group), the committee that 
also developed the standards known as MPEG-1 and MPEG-2. 
MPEG-4 builds on the proven success of three fields:  
• Digital television;  
• Interactive graphics applications (synthetic content);  
• Interactive multimedia (World Wide Web, distribution of 

video and access to content)  
In the 4S-project we will mainly concentrate on the visual part 
of MPEG-4. 

IV. DESIGN TRAJECTORY 

Proper development tooling is essential for programmable 
devices. This is a major requirement for the system engineer to 
program the reconfigurable device. 

Reconfigurable processors substantially reduce development 
cycles and costs normally associated with ASIC design, 
including nonrecurring engineering (NRE) costs, mask sets, 
fabrication runs, and perhaps most importantly, respins. 
However, controlling the development time and costs in a 
reconfigurable processor design requires a comprehensive set 
of tools – a design environment with a graceful flow from 
systems design to executable files that configure the 
reconfigurable architecture and a run-time system that maps 
the processes to processors. 

In fact the availability of high-level design entry tooling is 
critical for the viability of any reconfigurable architecture. In 
the 4S project we will develop methods and techniques to 



 
 

support the mapping of typical algorithms found in the ambient 
intelligence application domain onto heterogeneous 
reconfigurable architectures. These techniques have to identify 
the characteristic properties of the algorithm at hand and match 
these with the characteristic properties of the different target 
technologies (analogue, bit-level reconfigurable, word-level 
reconfigurable, programmable etc.). 

Figure 1 shows the design trajectory of the 4S project, the 
compile-time design flow and the run-time flow (controlled by 
the RTOS). The design-time tool chain is based on existing 
tools for the tiles, with possible extensions. This allows the 
integration of the implementation results of the various tiles 
providing co-simulation, combined power estimation and 
performance characteristics. For each task, a set of 
precompiled functions with tile-specific characteristics 
concerning power, tile utilization and performance is provided.  

At run-time the operating system (RTOS) dynamically 
selects the required task from the set. The decision which of 
the available tasks from the set is utilized is based on the 
actual needs of the application. The selection criteria can be 
current power constraints (e.g. low battery), utilization of 
resources of the hardware platform by other applications (e.g. 
the coarse-grained reconfigurable tile is currently utilized by 
another application) or user demands (e.g. user wishes higher 
audio quality). In this section we give an overview of the 
design methodology and of the existing and developed tools.  

A. Task graph 

The whole software trajectory starts with a high-level task-
level system description of the application. We assume that the 
applications are written in C/C++ in terms of task graphs 
consisting of functional processes with standard 4S inter-
process communication primitives.  

As a first step in the design methodology, the application 
software, written in C/C++, can be simulated and validated on 
a functional verification platform. The advantage of this early 
simulation is that the overall application structure can be 
verified independently of the actual functional implementation. 
Note that by writing applications as communicating processes 
the programmer automatically does the (manual) partitioning.  

B. Compiling individual functional processes to processors 

Functional processes can be implemented on various 
hardware/software tiles (e.g. implementation of a 256pFFT on 
an ARM, on a Montium or on an embedded FPGA); the 4S 
inter-process communication primitives must be mapped onto 
specific NoC capabilities.  

The next step is that individual functional processes are 
compiled or synthesized to appropriate processing tiles. 
Individual functional processes might have functional 
equivalent process implementations on more than one 
processing platform. At design-time all these implementations 
will be generated. At run-time the operating systems decides 
which implementation will be used depending on available 
tiles, QoS and energy constraints. The tools for compiling 
processes to processing tiles are not developed in this project, 

but we assume they are available. However, when small 
hardware changes require adaption of the tools, this will be 
done inside of the project, but it is not the main focus of the 4S 
project. 

C. Annotation of process implementations 

The in the previous step derived implementations of the 
processes will be annotated with performance characteristics 
(e.g. number of clock cycles, energy consumption, memory 
requirements, average load on a processing element). These 
performance figures are used by the run-time system to find 
the most optimal processing element for each process [9]. 

For most processing tiles there are tools available to derive 
the performance figures, but for other processing tiles the 
performance figures will be derived in the 4S project (either 
measured or derived from datasheets). Table 1 shows an 
example of process characterizations. 

In addition to that the inter-process communication 
primitives have to be annotated with performance 
characteristics e.g. throughput [bits/sec], maximum latency [s], 

etc. This annotation cannot be done automatically as some 
figures like energy consumption are data dependent. 
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Figure 1: Software design flow and innovation 
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Performance characterization Process Processing 

tile [mW/

MHz] 

Clock 

cycles 

Memory 

[bytes] 

Load [%] 

 

Process A 

(Correlati

on) 

ARM9 

Montium 

FPGA 

1 

0.1 

0.4 

100 

50 

30 

1k 

2k 

2.5k 

50 % 

100 % 

10 % 

Process B 

(FFT) 

ARM9 

Montium 

3 

0.5 

800 

200 

10k 

10k 

60% 

100% 

Process C 

(Viterbi) 

ASIC 

ARM9 

Montium 

FPGA 

0.05 

0.9 

0.3 

0.1 

10 

300 

200 

75 

2k 

15k 

5k 

8k 

100% 

10% 

50% 

25% 

Table 1: Example of performance characterization 
Modeling the overall system is beneficial and necessary for 

the project in multiple ways. Simply relying on existing tools 
is not enough for the highly heterogeneous system envisaged; 
the close co-operation of vastly different modules and the 
development of algorithms for optimization of application 
mapping with respect to a set of parameters (energy 
consumption, QoS, etc.) can be considerably eased by the use 
of a comprehensive system model that combines 
characterizations provided by the aforementioned tools.  

As modeling language, SystemC is used because of its 
flexibility and the wide range of abstraction levels covered. It 
is suitable for high-level interface definition as well as low-
level (nearly) hardware accurate modeling.  

D. Run-time tools 

To support run-time adaptive behaviour, trade-offs between 
different parameter sets should be made to determine the most 
optimal set for the current situation. In the 4S project we 
introduce a run-time control system, which is based on a model 
that selects at run-time a set of parameters that minimizes the 
cost, while satisfying the requested quality. 

The run-time system consists of a collection of tools that are 
controlled by a distributed operating system called OSYRES 
[8]. The task of OSYRES is to start a new application graph by 
allocating processes to processing elements and application 
channels to NoC links. Finding the right processor for a certain 
process and finding the appropriate communication path is 
performed by the spatial mapping tool (SMIT) [9]. Based on 
the result of SMIT, OSYRES will install the required 
processes (which might mean reconfiguration or program re-
loading) and will initiate the right communication mechanisms. 

This instantiation of an application is performed when an 
application is started, however, when certain events happen the 
mapping might be reconsidered and/or communication links 
might be rerouted. Events that might trigger a (re-)mapping 
could be:  
• the user starts an extra application that needs to be 

mapped on processing tiles, 
• the user decides to kill an application which frees its 

occupied processing tiles,  
• the QoS of the wireless link might change and therefore 

extra functionality (e.g. extra filtering) has to be 
performed that needs extra processing resources,  

• the user might want to listen to another broadcast station 
that happens to use another set of parameters, and 
therefore the baseband processing tasks have to be 
updated. 

• on a regular interval the system could do a test whether 
the current mapping is still sufficiently optimal. 

Changing of the mapping can mean that an entire 
application graph needs to be removed and replaced by 
another graph or that only a single process in a process graph 
is changed or moved to another tile. 

V. FIRST RESULTS AND CONCLUSION 

Currently the first prototype of 4S (BCVP) is operational. 
The OSYRES operating system is running on the two ARM9 
cores. A first FPGA board is also operational. The FPGA 
board can be used for functional verification of sub-modules 
(e.g. the Montium core and the NoC), but can also be used as 
an interface to the PACT/XPP. The Montium is running on the 
FPGA at 9 MHz, and shows the same results as predicted by 
the RTL simulation. The specification and design of the 
HiCVP chip is work in progress, and will be finalized end 
2005.  

It is envisaged that in the long run, work performed within 
this project will lay the foundations for the development of a 
new range of ultra low-power components, architectures, tools, 
guidelines and standards that underpins the future development 
of ambient systems. 
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