

Abstract — In this paper an overview of the EU-FP6 “Smart

Chips for Smart Surroundings” (4S) [7] project is given. The
overall mission of the 4S project is to define and develop efficient
(ultra low-power), flexible, reconfigurable core building blocks,
including the supporting tools, for future ambient systems.
Dynamic reconfiguration offers the flexibility and adaptability
needed for future ambient devices, it provides the efficiency
needed for these systems, it enables systems that can adapt to
rapidly changing environmental conditions, it enables
communication over heterogeneous wireless networks, and it
reduces risks: reconfigurable systems can adapt to standards that
may vary from place to place or standards that have changed
during and after product development.

Index Terms — Coarse-grain reconfigurable, ambient systems,
low power, SoC, DRM, MPEG-4.

I. INTRODUCTION

he overall mission of the 4S project (Smart Chips for
Smart Surroundings) is to define and develop efficient

(ultra low-power), flexible, reconfigurable core building
blocks for future ambient systems including the supporting
tools. As an application we have chosen a concrete worldwide
broadcast radio application (DRM) and MPEG-4 video that
can be used in an ambient system scenario.

Ambient systems (also known as ambient intelligence or
ubiquitous computing) are networked embedded systems
intimately wirelessly integrated with everyday environments
and supporting people in their activities. These systems will
create a smart surrounding for people to facilitate and enrich
daily life and increase productivity at work. It is likely that
these systems will be quite different from current computer
systems, and will have to be based on radically new
architectures comprising a set of reconfigurable "building
blocks" (IP blocks) and flexible interconnection mechanisms.
These components often have conflicting requirements; they
have to be flexible, adaptive as well as energy-efficient and
low-cost.

Hence, the systems architecture of future ambient devices
poses a lot of challenges: these devices have a very small
energy budget, they are always operational (although quite
often in a low-power mode), are small in size but might require
a performance that exceeds the levels of current PDA

* PACT Germany
† University of Karlsruhe Germany
‡ Thales Communications, France
§ Atmel Germany

computers. State-of-the-art processor architectures cannot
provide the processing power required by a fully operational
ambient device given the tight energy limitations. To realize
ambient devices within the energy budget flexible and highly
efficient architectures are needed. Moreover, without
significant energy reduction techniques and energy-efficient
adaptive architectures, battery-life constraints will severely
limit the capabilities of these devices. The development of
such architectures and supporting tools is at the core of the 4S
project.

II. HETEROGENEOUS RECONFIGURABLE COMPUTING

Reconfigurable systems offer the required flexibility and
can adapt processing resources dynamically to the demand of
applications. Our Heterogeneous Reconfigurable SoC (HR-
SoC) consists of: bit-level reconfigurable tiles (e.g. embedded
FPGAs), word-level reconfigurable tiles, and general-purpose
programmable tiles (DSPs and microprocessors). The tiles are
interconnected by a suitable NoC.

Typically, some algorithms are more suited for bit-level
reconfigurable architectures (e.g. PN-code generation), others
for DSP-like implementations and others for word-level
reconfigurable platforms (e.g. FIR filters or FFT algorithms).

The programmability of the architecture enables the system
to be targeted at multiple applications within the target
domain. The reconfigurable tiles and firmware can be
upgraded at any time (even when the system is already
installed).

A HR-SoC combines performance, flexibility and energy-
efficiency. It supports high performance through massive
parallelism, it matches the computational model of the
algorithm to the granularity of the processing entity, it can
operate at minimum supply voltage and clock frequency and so
provides energy-efficiency and flexibility at the right
granularity only where needed and desirable.

Until recently only a few reconfigurable architectures have
been proposed for wireless devices and to our knowledge none
for ambient devices. Most reconfigurable architectures were
targeted at simple glue logic or at dedicated high-performance
computing. However, there are a number of reasons for using a
HR-SoC in future ambient devices e.g.:
• Standards evolve quickly; this means that future systems

have to have the flexibility and adaptivity to adapt to
slight changes in the standards. By using reconfigurable
architectures instead of ASICs costly re-designs can be
avoided. For ambient devices standards are still under

Overview of the 4S Project

Gerard Smit, Eberhard Schüler*, Jürgen Becker†, Jérôme Quévremont ‡, Werner Brugger§
contact University of Twente the Netherlands

T

0-7803-9294-9/05/$20.00 ©2005 IEEE

development, therefore devices need to be highly flexible
and adaptable to new developments. Downloadable
reconfigurations (long-term reconfiguration) enable new
or adapted services / standards on existing devices,

• The costs of designing complex ASICs is growing rapidly,
in particular the mask costs of these chips is very high.
With reconfigurable processors it is expected that less
chips have to be designed (re-usability/adaptivity of
silicon area), so companies can save dramatically on mask
costs and due to higher production volumes the purchase
costs for the end users will be reduced,

• The system can adapt to the environment and to the needs
of the user rather than having the user adapt to a fixed
system (the ambient intelligence approach). When the
system can adapt - at run-time - to the environment
significant power-saving can be obtained and less
transmission and processing power is needed,

• Heterogeneous reconfigurable modules containing digital
as well as analogue building blocks (e.g. programmable
filter banks and multi-standard advanced synthesizer
blocks, including fully integrated VCOs) will result in
solutions for flexible on-chip RF front ends, covering a
multitude of services for upcoming applications with one
set of hardware,

• Finally, traditional (DSP) algorithms are rather static. The
emergence of new ambient applications that require
sophisticated adaptive, dynamical algorithms has drawn
renewed attention to run-time dynamic reconfiguration.

The blocks cover both digital and mixed signal structures
applicable to communication devices. Furthermore, we
develop efficient NoCs to interconnect all tiles of the SoC.

The overall important characteristic is the life-time of a
communication stream. We aim to develop a SoC for a
multimedia terminal where we can assume that the data
streams are semi-static and have periodic behavior. This means
that for a long period of time subsequent data items of a stream
follow the same route. This will last for seconds and more,
because a user will listen to its radio or has a phone
conversation for a considerable time. However, the control
system might change some settings of processes due to
changing environmental conditions.

According to the type of services required, the following
types of traffic can be distinguished in the network:
• GT (guaranteed throughput) this is the part of the traffic

for which the network has to give real-time guarantees
(i.e. guaranteed bandwidth, bounded latency).

• BE (best effort) this is the part of the traffic for which the
network guarantees only fairness but does not give any
bandwidth and timing guarantees.

In our proposed NoC we support both GT and BE traffic.

A. Prototyping

Within the 4S project we are developing two prototypes.
The first prototype called BCVP (Basic Concept Verification
Platform) is constructed with off-the-shelf components. It
contains a Dimitri chip [3] (containing two ARM9 cores, two

DDCs, a Viterbi decoder and peripheral IO), ZBT DRAM, a
Xilinx XC2V3000 or XC2V8000 FPGA and a PACT/XPP64-
A1 [4]. The second prototype called HiCVP (Highly
Integrated Concept Verification Platform) consists of a highly
integrated SoC. This chip is in its definition phase and will
probably contain one ARM926 core [6], boot memory, Viterbi
decoder, two DDCs (Digital Down Converters), two A/D
converters, peripheral IO, and four Montium tiles [5].

III. APPLICATION DOMAIN

A. DRM

As a key application for the 4S project we have chosen digital
broadcast radio (in particular DRM) and MPEG-4 video. The
DRM (Digital Radio Mondiale) standard [1][2] has been
adopted by the ETSI at a European level and by the IEC
(International Electrotechnical Committee) at a worldwide
level. DRM offers digital radio broadcast in three frequency
bands up to 30 MHz (long, medium and short waves).
DRM brings important improvements compared to existing
analogue broadcasts in the above mentioned frequency bands:
stereophonic sound, several audio services on one channel,
FM-like sound quality without fading, low rate data
transmission, additional services, ease of use for the listener,
etc. Depending upon the frequency band, a transmitter can
cover a region, a country or even reach any point in the world.

B. MPEG-4 video

MPEG-4 video is an ISO/IEC standard developed by the
MPEG (Moving Picture Experts Group), the committee that
also developed the standards known as MPEG-1 and MPEG-2.
MPEG-4 builds on the proven success of three fields:
• Digital television;
• Interactive graphics applications (synthetic content);
• Interactive multimedia (World Wide Web, distribution of

video and access to content)
In the 4S-project we will mainly concentrate on the visual part
of MPEG-4.

IV. DESIGN TRAJECTORY

Proper development tooling is essential for programmable
devices. This is a major requirement for the system engineer to
program the reconfigurable device.

Reconfigurable processors substantially reduce development
cycles and costs normally associated with ASIC design,
including nonrecurring engineering (NRE) costs, mask sets,
fabrication runs, and perhaps most importantly, respins.
However, controlling the development time and costs in a
reconfigurable processor design requires a comprehensive set
of tools – a design environment with a graceful flow from
systems design to executable files that configure the
reconfigurable architecture and a run-time system that maps
the processes to processors.

In fact the availability of high-level design entry tooling is
critical for the viability of any reconfigurable architecture. In
the 4S project we will develop methods and techniques to

support the mapping of typical algorithms found in the ambient
intelligence application domain onto heterogeneous
reconfigurable architectures. These techniques have to identify
the characteristic properties of the algorithm at hand and match
these with the characteristic properties of the different target
technologies (analogue, bit-level reconfigurable, word-level
reconfigurable, programmable etc.).

Figure 1 shows the design trajectory of the 4S project, the
compile-time design flow and the run-time flow (controlled by
the RTOS). The design-time tool chain is based on existing
tools for the tiles, with possible extensions. This allows the
integration of the implementation results of the various tiles
providing co-simulation, combined power estimation and
performance characteristics. For each task, a set of
precompiled functions with tile-specific characteristics
concerning power, tile utilization and performance is provided.

At run-time the operating system (RTOS) dynamically
selects the required task from the set. The decision which of
the available tasks from the set is utilized is based on the
actual needs of the application. The selection criteria can be
current power constraints (e.g. low battery), utilization of
resources of the hardware platform by other applications (e.g.
the coarse-grained reconfigurable tile is currently utilized by
another application) or user demands (e.g. user wishes higher
audio quality). In this section we give an overview of the
design methodology and of the existing and developed tools.

A. Task graph

The whole software trajectory starts with a high-level task-
level system description of the application. We assume that the
applications are written in C/C++ in terms of task graphs
consisting of functional processes with standard 4S inter-
process communication primitives.

As a first step in the design methodology, the application
software, written in C/C++, can be simulated and validated on
a functional verification platform. The advantage of this early
simulation is that the overall application structure can be
verified independently of the actual functional implementation.
Note that by writing applications as communicating processes
the programmer automatically does the (manual) partitioning.

B. Compiling individual functional processes to processors

Functional processes can be implemented on various
hardware/software tiles (e.g. implementation of a 256pFFT on
an ARM, on a Montium or on an embedded FPGA); the 4S
inter-process communication primitives must be mapped onto
specific NoC capabilities.

The next step is that individual functional processes are
compiled or synthesized to appropriate processing tiles.
Individual functional processes might have functional
equivalent process implementations on more than one
processing platform. At design-time all these implementations
will be generated. At run-time the operating systems decides
which implementation will be used depending on available
tiles, QoS and energy constraints. The tools for compiling
processes to processing tiles are not developed in this project,

but we assume they are available. However, when small
hardware changes require adaption of the tools, this will be
done inside of the project, but it is not the main focus of the 4S
project.

C. Annotation of process implementations

The in the previous step derived implementations of the
processes will be annotated with performance characteristics
(e.g. number of clock cycles, energy consumption, memory
requirements, average load on a processing element). These
performance figures are used by the run-time system to find
the most optimal processing element for each process [9].

For most processing tiles there are tools available to derive
the performance figures, but for other processing tiles the
performance figures will be derived in the 4S project (either
measured or derived from datasheets). Table 1 shows an
example of process characterizations.

In addition to that the inter-process communication
primitives have to be annotated with performance
characteristics e.g. throughput [bits/sec], maximum latency [s],

etc. This annotation cannot be done automatically as some
figures like energy consumption are data dependent.

High Level System
Description

(e.g. DRM)

coarse
grain

reconf.
Compiler

Functional multi-path
Partitioning

DSP
Compiler

 Microprocessor
Compiler

fine grain
reconf.

Compiler

Configuration
of hardwired

Blocks

Design Iteration

Compile Time
Tool Flow

QoS

RTOS
User

Demands

Run Time

Coarse grain
reconf.

Fine grain
reconf.

DSP
Dedicated
Hardware

MicroprocessorsAnalog

Task Sets

Dynamic
Mapping

Tiles

Power Constraints

Designs of one task with
different constraints

Performance
Estimation

Power
Estimation

Co-Simulation

Task Sets

Existing
Tools +

extensions

Design

Figure 1: Software design flow and innovation

 (shadow: main issues for 4S)

Performance characterization Process Processing

tile [mW/

MHz]

Clock

cycles

Memory

[bytes]

Load [%]

Process A

(Correlati

on)

ARM9

Montium

FPGA

1

0.1

0.4

100

50

30

1k

2k

2.5k

50 %

100 %

10 %

Process B

(FFT)

ARM9

Montium

3

0.5

800

200

10k

10k

60%

100%

Process C

(Viterbi)

ASIC

ARM9

Montium

FPGA

0.05

0.9

0.3

0.1

10

300

200

75

2k

15k

5k

8k

100%

10%

50%

25%

Table 1: Example of performance characterization
Modeling the overall system is beneficial and necessary for

the project in multiple ways. Simply relying on existing tools
is not enough for the highly heterogeneous system envisaged;
the close co-operation of vastly different modules and the
development of algorithms for optimization of application
mapping with respect to a set of parameters (energy
consumption, QoS, etc.) can be considerably eased by the use
of a comprehensive system model that combines
characterizations provided by the aforementioned tools.

As modeling language, SystemC is used because of its
flexibility and the wide range of abstraction levels covered. It
is suitable for high-level interface definition as well as low-
level (nearly) hardware accurate modeling.

D. Run-time tools

To support run-time adaptive behaviour, trade-offs between
different parameter sets should be made to determine the most
optimal set for the current situation. In the 4S project we
introduce a run-time control system, which is based on a model
that selects at run-time a set of parameters that minimizes the
cost, while satisfying the requested quality.

The run-time system consists of a collection of tools that are
controlled by a distributed operating system called OSYRES
[8]. The task of OSYRES is to start a new application graph by
allocating processes to processing elements and application
channels to NoC links. Finding the right processor for a certain
process and finding the appropriate communication path is
performed by the spatial mapping tool (SMIT) [9]. Based on
the result of SMIT, OSYRES will install the required
processes (which might mean reconfiguration or program re-
loading) and will initiate the right communication mechanisms.

This instantiation of an application is performed when an
application is started, however, when certain events happen the
mapping might be reconsidered and/or communication links
might be rerouted. Events that might trigger a (re-)mapping
could be:
• the user starts an extra application that needs to be

mapped on processing tiles,
• the user decides to kill an application which frees its

occupied processing tiles,
• the QoS of the wireless link might change and therefore

extra functionality (e.g. extra filtering) has to be
performed that needs extra processing resources,

• the user might want to listen to another broadcast station
that happens to use another set of parameters, and
therefore the baseband processing tasks have to be
updated.

• on a regular interval the system could do a test whether
the current mapping is still sufficiently optimal.

Changing of the mapping can mean that an entire
application graph needs to be removed and replaced by
another graph or that only a single process in a process graph
is changed or moved to another tile.

V. FIRST RESULTS AND CONCLUSION

Currently the first prototype of 4S (BCVP) is operational.
The OSYRES operating system is running on the two ARM9
cores. A first FPGA board is also operational. The FPGA
board can be used for functional verification of sub-modules
(e.g. the Montium core and the NoC), but can also be used as
an interface to the PACT/XPP. The Montium is running on the
FPGA at 9 MHz, and shows the same results as predicted by
the RTL simulation. The specification and design of the
HiCVP chip is work in progress, and will be finalized end
2005.

It is envisaged that in the long run, work performed within
this project will lay the foundations for the development of a
new range of ultra low-power components, architectures, tools,
guidelines and standards that underpins the future development
of ambient systems.

ACKNOWLEDGMENT

This work is part of the 4S project that has been supported
by the Sixth European Framework Programme under project
number IST 001908.

REFERENCES
[1] “Digital Radio Mondiale (DRM); System Specification”, ETSI, ES 201

980 V2.1.1, Nov. 2003.
[2] http://www.drm.org
[3] J. Quévremont, M. Sarlotte, B. Candaele, “Development process of a

DRM digital broadcast SoC receiver platform”, Annales des
Télécommunications, Sept-Oct 2004.

[4] “XPP64-A1 Reconfigurable Processor – Datasheet”, Rev.1.1, PACT
XPP Technologies AG.

[5] P. M. Heysters, “Coarse-grained reconfigurable processors”, CTIT
Ph.D.-thesis series No. 04-66, 2004.

[6] http://www.arm.com
[7] http://www.smart-chips.net
[8] OSYRES-Operating framework for reconfigurable embedded systems,

see www.ti-wmc.nl/downloads/Product_Sheet_OSYRES.pdf
[9] Lodewijk T. Smit, Gerard J. M. Smit, Johann L. Hurink, Hajo

Broersma, Daniel Paulusma, and Pascal Wolkotte. “Run-time mapping
of applications to a heterogeneous reconfigurable tiled system on chip
architecture” in Proceedings of the International Conference on Field-
Programmable Technology, pages 421-424, December 2004.

	Index
	SOC 2005 Home Page
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tutorial
	MonTut-Tutorial

	Tuesday, 15 November 2005
	TueAmOR2-Invited1
	TueAmOR3-Industry1 and Coffee
	TuePmOR1-Invited2
	TuePmOR2-Processors
	TuePmOR3-Invited3
	TuePmOR4-Industry2 and Coffee
	TuePMOR5-Invited4

	Wednesday, 16 November 2005
	WedAmOR1-Configurable and reconfigurable technologies
	WedAmOR2-Industry3 and Coffee
	WedAmOR3-Invited5
	WedAmOR4-Exploring New Directions
	WedPmOR1-Design Flow
	WedPmOR2-High-Performance Systems
	WedPmOR3-Invited6

	Thursday, 17 November 2005
	ThuAmOR1-4S Special Session
	ThuAmPO1-Poster1 and Coffee
	ThuAmOR2-Invited7
	ThuPmOR1-SoC Applications
	ThuPmOR2-Invited8
	ThuPmPO1-Poster2 and Coffee
	ThuPmOR3-Invited9

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Engineering education to qualify for SoC
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Gerard Smit

