Ontological Perspective in Metamodeling for Model
Transformations

Arda Goknil
Ege University
Computer Engineering Department
35100, Bornova, Izmir, Turkey

arda.goknil@ege.edu.tr

ABSTRACT

Model Driven Engineering (MDE) aims to facilitate build-
ing larger and more complex, reliable software systems by
introducing a higher abstraction level than the code level.
The technical space concept discusses how the basic MDE
principles may be mapped onto modern platform support
and several technical spaces are proposed to support MDE.
In this paper, we propose to use the ontology technical space
in model transformations to achieve the targets of MDE. Us-
ing the ontology technical space will enable us to model not
only the meta concepts but also the semantic context which
can be used in model inferencing. Within this context, we
define meta models of object oriented models ontologicaly.

Categories and Subject Descriptors

D.2.10 [Design]|: representation; H.1.1 [Systems and In-
formation Theory]: general systems theory

General Terms
Design, Languages, Theory

Keywords

Model Transformations, Transformation Languages, Meta-
modeling, Ontology

1. INTRODUCTION

Software engineering principles guided developers in build-
ing complex software systems for years. The need for larger,
more complex, and also reliable software causes software de-
velopment activities to get complicated. Model Driven En-
gineering (MDE) tackles this problem of software develop-
ment by using models at different levels of abstraction for
developing systems. Thus, the main activity of MDE de-
velopers is to design models like they used to develop code.
The main idea behind this is to enable software developers
to work in a higher abstraction layer than the code level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

Metainformatics Symposium, November 9-11, 2005, Esbjerg, Denmark.

© 2005 ACM 978-1-59593-719-3/05/11 ...$5.00

Yasemin Topaloglu
Ege University
Computer Engineering Department
35100, Bornova, Izmir, Turkey

yasemin.topaloglu@ege.edu.tr

The transitions between the models in different abstraction
levels and the code generation from these models are pro-
vided by model transformations. As a consequence, models
and model transformations become the primary artifacts of
software development [12].

The current solutions for Model Driven Engineering can
be grouped in the technical spaces [13]. A technical space is
a working context with a set of associated concepts, body of
knowledge, tools, required skills, and possibilities [2]. The
Model Driven Architecture (MDA) [16] approach is a tech-
nical space which was offered by the Object Management
Group (OMG) for model driven engineering. Although sev-
eral other technical spaces like the EMF technical space, the
Microsoft DSL Tools technical space use different standards,
they have similar goals for model driven engineering. We
propose bridging between the MDA technical space and the
ontology technical space in order to model not only the meta
concepts but also the semantic context. In this paper, we
define an ontological modeling infrastructure in the ontol-
ogy technical space where all the reasoning facilities are al-
ready available. Our approach uses Web Ontology Language
(OWL) in the ontology technical space.

An ontology is defined as a formal explicit description of
concepts in a domain of discourse, properties of each con-
cept describing various features and attributes of the con-
cept, and restrictions of slots [14]. Web Ontology Language
(OWL) is a technology for ontology development and knowl-
edge representation in Semantic Web [4]. OWL defines and
instantiates Web Ontologies. Recent works [1] [7] [8] discuss
that UML [15] could be a key technology for the ontology
development bottleneck. A number of partial solutions are
currently available as a result of these works and the OMG
initialized a working group to create Ontology Definition
Metamodel (ODM) to define M2 level UML-ontology-OWL
transformation [18]. Alternatively to the established views,
we proposed another approach for the collaboration between
MDA and OWL in our previous work [9]. While recent works
discuss the contributions of MDA to ontology development,
we discuss the possible contributions of ontologies to MDA.
We proposed an ontology based model transformation in-
frastructure to transform application models by using query
statements, transformation rules and models defined as on-
tologies in OWL [9]. When we discuss the modeling stan-
dards in the technical space concept, we realize that defining
transformation components in OWL is not enough for the
ontology technical space.

In this paper, we discuss our ontological modeling ap-
proach in the ontology technical space and present an ontol-

ogy for object-oriented models. The paper is organized as
follows. In Section 2, we discuss the general characteristics
and underlying concepts of the ontology technical space ap-
proach. In Section 3, we present an ontological metamodel
for object-oriented models. Section 4 includes the conclu-
sions.

2. OVERVIEW OF THE APPROACH IN THE
ONTOLOGY TECHNICAL SPACE

2.1 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a result of the ongoing
process of defining a standard ontology web language. It
is an extension of Resource Description Framework (RDF)
[22].

A Class identifier describes a named class in OWL ontol-
ogy. For instance, “<owl:Class rdf:ID= “Student”>" defines
a class “Student” which is an instance of “owl:Class”. In
the ontology, many individuals can be instantiated from the
defined classes.

It is possible to constrain the range of a property in spe-
cific contexts in a variety of ways [4]. The various forms
can only be used within the context of a property restric-
tion (owl:Restriction). Property restrictions include value
(owl:allValuesFrom, owl:some ValuesFrom, owl:hasValue) and
cardinality constraints (owl:cardinality, owl:mazCardinality,
owl:minCardinality). For example, the following description
is a value constraint:

<owl: Restriction>
<owl:onProperty rdf:resource="#manages”/>
<owl:allValuesFrom rdf:resource="#Student”/>
</owl: Restriction>

It defines an anonymous class of all individuals whose
manages property only has range values of class Student.
Similarly, the following description is a cardinality constraint
which defines a class of all individuals that manages one stu-
dent at least:

<owl: Restriction>
<owl:onProperty rdf:resource="#manages”/>
<owl:cardinality rdf:datatype="
&xsd;nonNegativelnteger ”>1
</owl: cardinality >
</owl: Restriction>

OWL has three class axioms for additional conditions:
owl:disjoint With, owl:equivalentClass, and rdfs:subClass.
The rdfs:subClassOf construct relates a more specific class
to a more general class. It is the fundamental taxonomic
constructor [4].

<owl: Class rdf:ID="University”>
<rdfs:subClassOf rdf:resource=
’#GraduateSchool”/>
<owl:disjointWith rdf:resource="#Institute”>
</owl: Class>

The statement in the above defines that the class Univer-
sity is a subclass of class GraduateSchool, and it is disjoint
with class Institute. There are two kinds of properties de-
fined in OWL: object property which relates individuals to
individuals, and datatype property which relates individuals
to data values.

<owl:ObjectProperty rdf:about="#hasStudent”>
<rdfs:domain rdf:resource="#University”/>

<rdfs:range rdf:resource="#Student”/>
</owl:ObjectProperty >

There are also constructors used to relate two properties
(owl:inverseOf and owl:equivalentProperty), to specify car-
dinality constraints on properties (owl:FunctionalProperty
and owl:InverseFunctionalProperty), to define logical char-
acteristics of properties (owl: Transitive Property and
owl:SymmetricProperty), and to relate individuals
(owl:sameAs, owl:samelndividualAs, owl:differentFrom and
owl:AllDifferent).

2.2 Basic Components of the Approach

Model transformation is the core activity in MDE to gen-
erate new models or to change the existing models. A model
transformation takes one or more source models as input
and produces one or more models as output according to a
set of transformation rules. The metamodeling technique is
used to define these models and transformation rules [20].
A metamodel describes models by defining the meta entities
and the relationships among these entities together with the
semantics of these relationships. The meta class instances of
the metamodel define the models and transformation rules
generated from the metamodel. Extensible languages like
XML Metadata Interchange (XMI) and Extensible Stylesheet
Language Transformations (XSLT) can be used to encode
models and transformation rules with meta class instances
[5][21] [23].

There are various standards and tools defined for the re-
alization of MDE principles. For example, the OMG MDA
technical space is defined around the standards like MOF,
XMI, OCL, UML, and CWM [16]. It has been found very
convenient to use XML as a support notation for model se-
rialization, since XML documents correspond to trees which
are easier to serialize than a graph. Since XMI is a standard
model serialization procedure which is based on XML for
MDA models (i.e. MOF compliant-models), using XMI to
serialize models provides only model representation.

In our ontology technical space, the components and stan-
dards are realized around the ontology engineering and web
ontology language (OWL). We use OWL not only as a no-
tation for model serialization. OWL vocabulary constitutes
the main library for deriving models instead of MOF. It al-
lows both representation of models and reasoning on models.

Our proposal includes ontology based definitions for the
three components of a model transformation defined in MOF
2.0 Query/Views/Transformations RFP [17]. The QVT RFP
is issued by the Object Management Group (OMG) and
seeks a standard solution for model manipulation in the con-
text of MDA. There are available submissions [6] to the QV'T
RFP. The three main areas of model transformation defined
by QVT [17] are:

e (Queries, which take a model as input, and selects spe-
cific elements from that model.

e Views, which are models that are derived from other
models.

e Transformations, which take a model as input and up-
date it or create a new model.

Although our definition does not use the standards like XMI,
and MOF which are defined in the OMG MDA technical
space, we describe our ontological components according

Source Target

Mataisvadad Metamodes

Target

Ontology

Figure 1: Overall Approach of Ontology Based
Model Transformation

to the QVT parts. This provides another bridge between
the OMG MDA technical space and the ontology technical
space.

Figure 1 shows the overall architecture of ontology based
model transformation. Source and target ontologies in our
approach correspond to the source and target meta mod-
els in QVT. These ontology documents include the classes
which correspond to the meta classes in the meta models.
They define the main entities and the possible associations
which the instance source and target ontologies use to derive
the individuals. The engine transforms the instance source
ontology to the instance target ontology according to the
transformation rule ontology.

2.3 Related Work

There are two dimensions in the research projects about
the collaboration of ontology concepts and model driven en-
gineering. The mappings and transformations between the
UML constructs and the OWL elements to develop ontolo-
gies are the main concerns of the research projects in the
first dimension. Recent works [1] [7] [8] discuss that UML
could be a key technology for the ontology development bot-
tleneck. A number of partial solutions are currently avail-
able as a result of these works and Object Modeling Group
(OMG) initialized a working group to create Ontology Defi-
nition Metamodel (ODM) to define M2 level UML-ontology-
OWL transformation. ODM aims to generate ontology de-
scriptions from UML models. On the other hand, we pro-
pose another approach for the collaboration between model
driven engineering and OWL which is in the second dimen-
sion research of the ontology and model driven engineer-
ing collaboration. While recent works discuss the contribu-
tions of model driven engineering to ontology development,
we discuss the possible contributions of ontologies to model
driven engineering in the context of ontology based model
transformations.

Roser and Bauer [19] propose a structure for ontology
based model transformations. Their proposal includes a
connection between syntax defined in metamodels and the
semantics of the ontology elements. This approach defines
a generator that takes meta models, ontologies and spec-
ifies semantic transformation to generate an intermediate
model transformation language that aims to obtain a com-
mon representation of model transformations independent
to specific transformation languages [19]. Their architec-
ture includes semantic transformation and syntax-semantic

binding (metamodel-ontology binding, ontology-metamodel
binding). The tasks performed can be grouped as; deriv-
ing semantic information from metamodels with metamodel-
ontology binding, transforming the derived ontology to tar-
get ontology with semantic transformation, and expressing
ontology elements of the transformed ontology in metamod-
els with ontology-metamodel binding.

In our previous work [9], we proposed an ontology based
model transformation infrastructure to transform applica-
tion models by using query statements, transformation rules
and models defined as ontologies in OWL. In [9], we defined
a simple query and a transformation language as ontologi-
cally. There are two related ontology documents to query
application models. The Query Ontology defines the main
query entities and the possible associations of these entities.
The Instance Query Ontology selects the specific elements in
the application document, and it is derived from the meta
entities which are defined in the Query Ontology. The re-
lationship between the Query Ontology and the Instance
Query Ontology is similar with the relationship between the
Source Ontology and the Instance Source Ontology. When
our approach is considered from the perspective of technical
space concepts, also the semantic context of the models can
be derived and defined as ontologies.

3. MODELING THE COMPONENTS AS ON-
TOLOGIES

3.1 Ontological Definition of Software Models

In Model Driven Engineering, the basic principle is that
everything is a model [3]. Although there are different tech-
nical spaces in meta modeling for MDE, the 3+1 meta mod-
eling hierarchy is the main concept to define models and
meta models as shown in Figure 2 [2].

cenformsTe The
Madelling

Layers

Maodel

representeday

Figure 2: The Four Layer Classical Architecture [3].

The four-layer architecture is divided into two groups called
the modeling layers and the system layers [2]. MO layer is
the ontological layer and represents the real world system.
M1 layer represents this layer and this instantiation relation-
ship is not the same with the instantiation relationship with

the upper layers. In this hierarchy, the meta layers do not
include the domain and semantic context. It is not possible
to inference on the models. This meta modeling hierarchy
operates at the syntactical level [19].

In [2], it is argued that some functionalities are easier
to provide in a technical space with a M3 based on OWL
than on the MOF. Bezivin [2] states that, since an object
may be referred by different names, OWL has a better name
management. OWL also allows inferring from the properties
of an individual that is a member of a class.

In our approach, models are defined as ontologies. Figure
3 shows our ontology structure to define models as ontolo-
gies and the relationship between the two technical spaces.
While MOF is the base meta-meta model in the MDA tech-
nical space, OWL vocabulary constitutes the main library
for derived ontologies to define models. The Model Ontol-
ogy defines the main entities and the possible associations of
these entities in the model. The main difference between the
Model Ontology and UML meta-model is that Model Ontol-
ogy does not operate at syntactical level and it includes con-
straints and semantic context. Unlike XMI, OWL is more
than a notation for model serialization. It allows both rep-
resenting models and reasoning on models. OWL vocabu-
lary serves richer vocabulary to Model Ontology rather than
MOF serves to M2 level. The restriction mechanism in OWL
allows defining constraints about the individual ontologies
derived from model ontologies and is compared with Object
Constraint Language [24].

owL

Voeabulary

MoF

.

<<instancalz> cedassOfas

MDA
Space LML Mt Model
Meta Model Dntalogy

Y Y

seingtanea0izs <amdvidualdfze

Lt Indvidual
Model ontalogy

LUser
Objects

Figure 3: The Proposed Ontological Layers for Map-
ping MDA and Ontology Technical Spaces

We aim to define the relationship M2/M1 layers in UML
and the equivalent modeling ontologies in OWL. In the On-
tolology Definition Metamodel [18], it is proposed to consti-
tute the relationship between an M1/MO model in UML and
the equivalent model in OWL, so this study on ODM will
enable UML based ontology development. ODM'’s design
rationale is mainly for ontology engineering. The main dif-
ference between ODM and our approach is that we mainly
study on M2 layer while ODM is working on M1 layer. ODM
aims to support generation of ontology descriptions from
UML models. In our approach, we try to define UML con-
structs in OWL. This approach enables us to study in the
M2 layer instead of M1 layer.

3.2 Representation of an Object Oriented Meta-
model Ontologically

3.2.1 Model Ontology Definition

The model ontology defines the main entities and the pos-
sible associations of these entities in the model. Figure 4
shows a simplified object oriented metamodel which we de-
fine ontologically in our Model Ontology.

We define the basic modeling elements in UML ontologi-
cally in the Model Ontology. Both UML and OWL are based
on classes. An OWL class is declared by assigning a name
to the relevant type. Every class in Figure 4 is assigned to
the owl:Class by giving names in our Model Ontology. For
example

<owl: Class rdf:ID="Class”/>
<owl: Class rdf:ID="Method”/>

The owl:Class comes from the OWL vocabulary and it is
used to define the types of the Class and Method classes in
the Model Ontology. This derivation is similar to instance
of relation between M3 and M2 layers.

tgen

fram -

1
Class Association

+name: sering b Stelog

Parameter

Eontaine containg
hagParam

Variable Maethod
+name: STLing +name: String

- 1 +
T santmy
Message
+visibility: Steing einibility: Steing
» |[tewOEFaEs: it L

santTo

- accaseas

1.*

Figure 4: Example of A Simplified Object Oriented
Metamodel.

Relationships among classes in OWL are called properties.
A binary association translates directly to an
owl:ObjectProperty. If the association name occurs more
than once in the same model, it must be disambiguated in
the OWL [18]. In Figure 4, the Contains relationship occurs
more than once in the model. In our Model Ontology, we
could not use the same name “contains” in more than one
object property so that we concatenate the member names
to the association name.

<owl:ObjectProperty rdf:about="#containsVar”>
<rdfs:domain rdf:resource="#Class”/>
<owl:inverseOf rdf:resource=
’#containedByCls”/>
<rdfs:range rdf:resource="#Variable”/>
</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="containsMet”>
<rdfs:domain rdf:resource="#Class”/>
<rdfs:range rdf:resource="#Method”/>
<owl:inverseOf rdf:resource=
"#containedByClass”/>
</owl:ObjectProperty >

The owl property always has a domain and range speci-
fied. The containsVar object property has a domain named
Class and a range named Variable. The restriction mech-
anism in OWL can be used to define the cardinality con-
straint in the relation. owl:cardinality, owl:mazCardinality
and owl:minCardinality permit the specification of the num-
ber of elements in a relation. The relation between Class
and Variable is a one-to-many relation. The cardinality con-
straint in containsVar object property defines the multiplic-
ity of Variable because the range in this property is Vari-
able. The multiplicity of the Variable class is many so that
we do not have any cardinality constraint in containsVar
property. But one object property is not enough to define a
relationship in M2 level. For example we can not restrict the
cardinalities of both nodes in one object property. For our
case we have another object property which is the inverse of
containsVar property.

<owl:ObjectProperty rdf:about=
7#containedByCls”>
<rdfs:domain rdf:resource="#Variable”/>
<rdfs:range rdf:resource="#Class”/>
<owl:inverseOf>
<owl:ObjectProperty rdf:ID=
”containsVar”/>
</owl:inverseOf>
</owl:ObjectProperty >

containsByCls object property has a domain named Vari-
able and a range named Class and it is the inverse of con-
tainsVar property. The owl:inverseOf construct is used
to define such an inverse relation between two properties
and these two properties constitute the contains relation-
ship between the Class and Variable classes. The cardinal-
ity constraint of Class class in this relation is defined as
owl:Restriction in containedByCls object property.

<owl: Restriction>
<owl:cardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#int ”
>1</owl: cardinality >
<owl:onProperty >
<owl:ObjectProperty rdf:ID=
”containedByCls”/>

</owl:onProperty >

</owl: Restriction>

The attributes whose types are primitive data type in the
Model Ontology are defined as owl: DatatypeProperty.

<owl:DatatypeProperty rdf:ID="nuOfPars”>
<rdfs:range rdf:resource=
“http://www.w3.org /2001 /XMLSchema#int”/>
<rdfs:domain rdf:resource="#Method”/>
</owl:DatatypeProperty >

3.2.2 Individual Ontology Definition

Individual Ontology corresponds to user defined object ori-
ented models. Figure 5 shows a basic object oriented model
which defines Student-Book classes and the relation between
them in UML.

The base model elements are in the Model Ontology and
instance models are defined in the Individual Ontology by
deriving the base classes from the Model Ontology. The in-
dividual Of relation in Figure 3 specifies this derivation pro-
cess. It is possible for ontologies to be treated as reusable

Student b Book
+ID 15BN
+name +name

+horrowBook () +getISBNI)

Figure 5: A Simple Object Oriented Model

modules and imported into different documents. An OWL
document may contain an individual of class defined in an-
other ontology, which contains meta-data about that docu-
ment itself. In our case, the Individual Ontology defining the
Student-Book Model imports the Model Ontology to create
individuals as shown below:

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="Model. rdf”/>
</owl:Ontology >

The owl:imports construct allows to include by reference
in a knowledge base the axioms contained in another ontol-
ogy. Using an owl:imports statement is the fact that with
“imports” both ontologies stay in different files. There is
also another ongoing work to provide modelers with suit-
able means for developing ontologies in a modular way and
to provide an alternative to the owl:imports construct [10].
This ongoing project [10] will provide us both syntactic and
logical modularity in combining the Model Ontology and the
Individual Ontology.

The Individual Ontology contains the instances which be-
long to the user model. To represent the object oriented
model in Figure 5, we use the base classes in the Model On-
tology defined in Figure 4.

<Class rdf:ID="Book”>
<name rdf:datatype=
"http://www.w3.org /2001 /XMLSchema#string”>
Book</name>

In Figure 5, the Book class has two variables and one
method. These variables and method individuals are linked
with the Book class with appropriate object properties de-
rived from the Model Ontology.

<containsVar>
<Variable rdf:ID="BookName”>
<Vvisibility rdf:datatype=
"http://www.w3.org /2001 /XMLSchema#string”
>True</Vvisibility >
<Vname rdf:datatype=
"http://www.w3.org /2001 /XMLSchema#string”
>name</Vname>
<containedByCls rdf:resource="#Book”/>
</Variable>
</containsVar >

<containsMet>
<Method rdf:ID="getISBN”>
<Mname rdf:datatype=
"http://www.w3.org /2001 /XMLSchema#string”
>getISBN < /Mname>
<Mvisibility rdf:datatype=
"http://www.w3.org/2001/XMLSchema#string”
>True</Mvisibility >
<containedByClass rdf:resource="#Book”/>
</Method>
</containsMet>

The containsVar tag is inside the Book class and this tag
contains the declaration of the BookName variable individ-
ual. In the Individual Ontology, there is no need to declare

the inverse object property of containsVar or containsMet
object properties. Their inverse object properties are used
to restrict the cardinality of the domains of these object
properties. To constitute the relation between the Student
and Book classes, we create an individual named borrows
from the Association base class. This individual has two
object property named from and to with their inverse ob-
ject properties. We omit the AssociationEnd class in the
Model Ontology to simplify the Model Ontology. The hier-
archy between the classes in the ontology as shown below:

<Association rdf:ID="borrows”>
<to>
<Class rdf:ID="Book”>
<invTo rdf:resource="#borrows”/>
</Class>
</to>
<invFrom>
<Class rdf:ID="Student”>
<from rdf:resource="#borrows”/>
</Class>
</invFrom>
</Association>

Some functionalities are easier to provide with this M3
based on OWL approach than on the MOF. OWL itself has
a restriction mechanism compared with other predicate def-
inition languages like OCL. Modeling and restricting shared
knowledge in OWL allows us to define more specialized do-
mains in platform independent models. In the Model Ontol-
ogy, we can define a domain class as the set of individuals
which satisfy a restriction expression. These expressions can
be a boolean combination of other classes (intersectionOf,
unionOf, complementOf), or property value restriction on
properties [18]. OWL allows us to define these kinds of re-
strictions on public and shared domain classes.

4. CONCLUSION

In this paper, we presented a semantic perspective in meta
modeling for model transformations based on ontologies. We
provided ontological model definitions that can be used in
model transformations. We used OWL in the definition of
ontologies since OWL is executable and also supported by
various tools. Using OWL in model transformation infras-
tructure allows us to use the current semantic technologies
for constituting the transformation engines. Some program-
matic environments [11] include OWL APIs which provide
persistent storage, reading and writing OWL documents.
Loading and compiling the parts of model transformation
can be processed by the help of current ontology APIs.

It is our belief that that ontology technical space will play
an important role in the development of model driven en-
gineering. The ontological metamodeling infrastructure we
propose will enable to inference on various models. In our
future work, we will investigate possible inference opportu-
nities on ontology-based models and other ontology-based
transformation alternatives. Ontology technologies like on-
tology mapping and inference engines will support us in
model inferencing, management and model transformations.
Now defining models as ontologically gives us a great oppor-
tunity about inferencing on the software models.

5. REFERENCES

[1] Kenneth Baclawski, Mieczyslaw M. Kokar, Paul A.
Kogut, Lewis Hart, Jeffrey E. Smith, Jerzy Letkowski,

and Pat Emery. Extending the unified modeling
language for ontology development. Journal on
Software and System Modeling, Vol.1(2):142-156,
2002.

[2] Jean Bezivin. Model driven engineering: Principles,
scope, deployment and applicability. Technical Report
TR-01-01, Summer School on Generative and
Transformational Techniques in Software Engineering,
2005.

[3] Jean Bezivin. On the unification power of models.
Software and System Modeling, Vol.4:171-188, 2005.

[4] Mike Dean, Guus Schreiber, Frank van Harmelen, Jim
Hendler, Tan Horrocks, Deborah L. McGuinness,
Peter F. Patel-Schneider, and Lynn Andrea Stein.
OWL Web Ontology Language Reference W3C
Recommendation. W3C, February 2004.

[5] Birgit Demuth, Sven Obermaier, and Heinrich
Hussmann. Experiements with xmi based
transformations of software models. In Proeedings of
WTUML: Workshop on Transformations in UML,
Genova, Italy, April 2001.

[6] Keith Duddy, Anna Gerber, Michael Lawley, Kerry
Raymond, and Jim Steel. Model transformation: A
declarative, reusable patterns approach. In EDOC,
pages 174-185. IEEE Computer Society, 2003.

[7] Kateryna Falkovych, Marta Sabou, and Heiner
Stuckenschmidt. Uml for the semantic web:
Transformation-based approaches. In Knowledge
Transformation for the Semantic Web, pages 92-106.
2003.

[8] Dragan Gasevic, Dragan Djuric, Vladan Devedzic, and
Violeta Damjanovic. Approaching owl to mda through
technological spaces. In Essentials of the 3rd UML
Workshop in Software Model Engineering (WISME
2004), 2004.

[9] Arda Goknil and N. Yasemin Topaloglu. Ontology
based model transformation infrastructure. In Savitri
Bevinakoppa, Luis Ferreira Pires, and Slimane
Hammoudi, editors, WSMDEIS, pages 55—64.
INSTICC Press, 2005.

[10] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin.
Combining owl ontologies using e-connections. Journal
of Web Semantics, Vol.4:42, 2005.

[11] HP-Labs. Jena - a semantic web framework for java,
available at http://jena.sourceforge.net/.

[12] Sheena R. Judson, Robert B. France, and Doris L.
Carver. Specifying model transformations at the
meta-model level. In Essentials of the 2nd UML
Workshop in Software Model Engineering (WISME
2003), 2003.

[13] Ivan Kurtev, Jean Bezivin, and Mehmet Aksit.
Technical spaces: An initial appraisal. In Tenth
International Conference on Cooperative Information
Systems (CooplS), Federated Conferences Industrial
Track, California, 2002.

[14] Natalya F. Noy and Deborah L. McGuinness.
Ontology development 101: A guide to creating your
first ontology. Technical report, Stanford Knowledge
Systems Laboratory, March 2001.

[15] OMG. Omg unified modeling specification, 2001.
Version 1.4.

[16] OMG. Mda guide version 1.0.1, 2003. Document

20]

(21]

Number: omg/2003-06-01 (2003).

OMG. Submissions for mof 2.0
query/views/transformations request for proposal,
2003.

OMG. Ontology definition meta-model, April 2004.
Stephan Roser and Bernhard Bauer. Ontology-based
model transformation. In Proceedings of the
ACM/IEEE 8th International Conference On Model
Driven Engineering Languages And Systems
(MoDELS/UML-2005) - Doctoral Symposium, 2005.
Shane Sendall and Wojtek Kozaczynski. Model
transformation: The heart and soul of model-driven
software development. IEEE Software,
Vol.20(5):42-45, 2003.

Miroslaw Staron and Ludwik Kuzniarz. Implementing
uml model transformations for mda. In Kai Koskimies,
Johan Lilius, Ivan Porres, and Kasper Osterbye,
editors, Proceedings of the 11th Nordic Workshop on
Programming and Software Development Tools and
Techniques NWPER’2004, number 34 in General
Publications, August 2004.

W3C. W3c resource description framework, available
at http://www.w3.org/rdf/.

Annika Wagner. A pragmatical approach to rule-based
transformations within uml using xmi.difference. In
Proeedings of WITUML 02: Workshop on Integration
and Transformation of UML models, Jul 2002.
Yuxiao Zhao, Uwe Assmann, and Kristian Sandahl.
Owl and ocl for semantic integration. Technical
report, Programming Environmental Lab (PELAB),
Department of Computer and Information Science,
Link6ping University, Sweden, May 2004.

