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Abstract— In this paper, we present a sound integration
mechanism for Markov processes that are abstractions of
stochastic hybrid systems (SHS). In a previous work, we have
defined a very general model of SHS and we proved that the
realization of an SHS is a Markov process. Moreover, we
have developed a verification strategy for the reachability
analysis problem. We develop further this line of research
by making verification modularly. To achieve this, the state
space is decomposed into regions that might share a common
border. An abstraction can be constructed on each region
and the abstraction method can vary from one region to
another. We show how these abstractions can be integrated
to provide an abstraction for the entire system. We illustrate
this technique for the reachability analysis problem.

Keywords: Markov processes, stochastic hybrid system,
reachability analysis, superposition.

I. INTRODUCTION

The use of randomisations makes possible a very
expressive modelling of hybrid systems, but the price to
be paid is an extremely complex verification process. This
issue is addressed, in this work, by exploiting the idea of
modularity. The modular (or compositional) verification
has become recently a topic of intensive investigations.
The peculiar structure of SHS and the inherent high level
mathematics involved suggest that the modular verifi-
cation should be related to the topological structure of
the large, mathematically complex state spaces of these
systems. Unfortunately, there is a fundamental obstacle
in composing subsystems verified by different methods.
There is no result to guarantee that inconsistencies will
not appear when superimposing topological subspaces of
the state space. Moreover, in many situations, it is useful
to have an entire system abstraction instead of a sheaf of
abstractions of system projections on topological subsets.

The main contribution of this paper is to propose
a method of checking consistency of different system
abstractions when the state space has been topologically
partitioned. Moreover, we construct the entire system
abstraction from its projections.

Further, we consider the case when a property of
interest spans over the partition of the state space (a cross-
cutting concern). For example, in stochastic reachability
analysis (SRA), it is necessary to provide an upper bound
for the probability of hitting a given state set starting
from an initial state. In [5], it is shown that this problem
characterizes the reachability analysis for performance
properties in the fluid models of computer networks. In
the verification process, a partition is created such that
all components share the point of interest at the border.

Also, in each component, there is a projection of the target
set. Now, suppose that the stochastic reachability problem
is solved in each local abstraction by a specific method.
The previously described construction gives a global
abstraction, but it does not give a global upper bound
for the probability of interest. We give a mathematical
result that relates the global probability with the local
abstraction probabilities via superposition gauges, solving
in this way the global SRA problem.

The paper is structured as follows. In the next sec-
tion we give a short background and we formulate the
problem treated in this work. In Section III, we present
the mathematical principles underpinning the definition of
local abstractions associated to a system. In Section IV,
we show how the integration process can be effectively
constructed and we prove that this is a common simulation
of the local abstraction processes. Then, we apply this
theory to stochastic hybrid systems in Section V. The
paper ends with some conclusions.

II. THE MATHEMATICAL FRAMEWORK

In this section, we briefly present the mathematical
environment for our approach. For the reader with less
background in stochastic analysis, we point out the fact
that we present a rather general concept of continuous
(time/ space) Markov process defined on a Hausdorff
topological space. This process might be thought of as
a natural extension of the concept of continuous time
Markov chain to the case when the state space is not
discrete and the trajectories are ‘continuous’ (not con-
tinuous functions as in mathematical analysis). To this
process, one can naturally associate a semigroup of linear
operators (formula (1) below) on the space of bounded
measurable functions defined on the process state space.

A. Background

Let S be a Polish or an analytic space. A Polish space
is a topological space, which is a homeomorphic image of
complete separable metric space. The continuous image
of a Polish space is called an analytic space. We consider
S equipped with its Borel σ-algebra B. Let B(S) be
the Banach space of all bounded measurable numerical
functions on S.

Formally, let X = (Ω,F ,Ft, xt, P, Px) be a strong
Markov process on S [10]. The sample probability space
is (Ω,F , P ). The trajectories of X are modelled by a
family of S-valued random variables (xt), which, as
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functions of time, can have some continuity proper-
ties (as the càdlàg property, i.e. right continuous with
left limits). The stochastic analysis identifies different
parameterizations (like infinitesimal generator, operator
semigroup/resolvent) that characterize in an abstract sense
the evolutions of a Markov process [10].

Let P = (Pt)t>0 denote the family of linear operators
associated to X , which maps B(S) into itself given by

Ptf(x) =
∫
f(y)pt(x, dy) = Exf(xt),∀x ∈ S (1)

where (pt) is the transition probability function and Ex
is the expectation w.r.t. Px.

To the semigroup P given by (1), one can associate its
infinitesimal generator L. The infinitesimal generator of
P is the possibly unbounded linear operator L

Lf =lim
t↘0

Ptf − f

t
(2)

The domain D(L) is the subspace of B(S) for which this
limit exists. L is the derivative of Pt at t = 0.

B. Problem Formulation

Suppose we have given n ∈ N (n ≥ 2) strong Markov
processes X̂i with the state spaces Ŝi, for i = 1, ..n. Each
space Ŝi is equipped with its Borel σ-algebra B(Ŝi). In
our terminology X̂i will be called abstraction processes.

Let us consider a strong Markov process X with the
state space (S,B(S)). We assume that the process X is
‘simulated’ by the abstraction processes locally. Then, the
research problem, which derives from here is to integrate
the local abstraction processes in order to obtain a global
process that simulates the whole process X .
Formally, assume there exist a partition of the state space
S with the closed sets

S = ∪ni=1Fi, int(Fi) ∩ int(Fj) = ∅ if i 6= j, (3)

and n surjective continuous maps ψi : S → Ŝi, i = 1, .., n
such that ψ−1

i (ψi(Fi)) = Fi.
The sets Fi can be thought of as the closures of the modes
of the SHS, H .

The natural hypothesis, which we impose, is that the
maps ψi satisfy the zigzag morphism condition in the
sense of [6], i.e. for each i = 1, .., n, the process X̂i

on the set ψi(Fi) simulates the process X on Fi.
The problem is how to construct an integration process

X̃ defined on S̃ = ∪ni=1ψi(Fi), which is still a Markov
process and behaves as X̂i on ψi(Fi), i = 1, .., n. This
process will represent a global abstraction of X .

III. REGION ABSTRACTIONS

In this section we define the mathematical properties
that a local abstraction of an SHS should have. Let us
denote by S the system state space and by Ŝ the state
space of its abstraction. For the most examples of SHS,
S is a Polish space. We assume the same about Ŝ.
Abstraction map. The abstraction map that relates S
and Ŝ is continuous surjective map ψ : S → Ŝ. The
nature of the abstraction is reflected by the mathematical
properties of this map. It is desirable that these properties

to capture the computational simulation of system into
its abstraction. Such mathematical characterizations are
given in terms of open maps and zigzag morphisms. The
last characterization will be used in this paper.
Superposition space. Consider now the following situ-
ation. The verifiers have identified a set of states that
the system may reach when it is performing a specific
task. The continuous features of the system give rise to
the necessity that this set to be considered topologically
closed. It will be denoted by F . Formally, let F ⊆ S
be a closed subset of the state space S. Naturally, the
topological space S is then decomposed in two com-
ponents: the closed set F and its complement S\F .
Using the abstraction map ψ, we define the superposition
topological space as S̃ := (S\F ) ∪ ψ(F ), this being a
disjoint union.

It is natural to assume that the F is ‘maximal’ w.r.t. ψ
(in the abstraction process no extra states are added), i.e.

ψ−1(ψ(F )) = F. (4)

Since ψ is an abstraction map, we are not assuming that
ψ is one to one. Condition (4) ensures that ψ can be
restricted as a surjective map from F to ψ(F ).
Local abstraction. Suppose that our system dynamics
is described by a stochastic process X with the state
space S. Mathematically, X is a strong Markov process
X = (xt, P x) (we use, here, a short notation for X)
on the probability space (Ω,F), with the state space S
and the transition semigroup (Pt). The local abstraction
of X on F will be given by another stochastic process
X̂ . Formally, X̂ is another strong Markov process X̂ =
(x̂t, P̂ x) defined on the probability space (Ω̂, F̂), with the
state space Ŝ and the transition semigroup (P̂t).

The goal of this section is to obtain a local abstraction
of X , which behaves like X̂ when it is in ψ(F ) and like
X in the rest of S̃.

Definition 1: A local abstraction of X on F is an
S̃-valued process X̃ such that: (i) its restriction to S\F
coincides with X; (ii) its restriction to ψ(F ) coincides
with X̂ .
In construction of a local abstraction of X , we have
been inspired by [9]. In the cited paper, it is presented a
construction of a Markov process X̃ on S̃ by pinching X
to ψ◦X when X is in F , but keeping the initial dynamics
of X when it evolves in S\F . The corner stone of this
construction is what happens when X̃ leaves S\F and
enters ψ(F ) or viceversa.
Superposition space as a quotient space. The projection
associated with an abstraction map is a function that
shows how the abstraction works on the state set of
interest, leaving invariant the other states. The projection
map associated to ψ is a function π : S → S̃ given by

π := I · 1S\F + ψ1F (5)

Here, by 1A we denote the indicator function of a
measurable set A and I is the identity function. Clearly,
the projection map is the restriction of ψ on F and leaves
unchanged the elements of S\F .
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The ‘pinching’ map π is injective on S\F , i.e. no pinch-
ing occurs on S\F , but is not generally injective on F .
The space S̃ is provided with the topology induced by π.
The projection map π induces an equivalence relation R

xRy ⇔ π(x) = π(y) (6)

The space S̃ can be thought of as the quotient topological
space S under the equivalence relation R. Denote by [x]
the equivalence of x ∈ S w.r.t. R defined by (6). [x] is a
measurable set of S.

We assume that S̃ with this topology is a Polish space.
The topology of S̃ is equivalent to the trace topology of
S on S\F and to the trace topology of Ŝ on ψ(F ). The
map π identifies the points on the boundary of S\F (in
the topology of S) with the points on the boundary of
ψ(F ) (in the topology of Ŝ) [9]. The Borel σ-algebra of
S̃ is composed by those measurable sets of B(S) closed
under the equivalence relation R.
From now on, we consider S, S̃ and Ŝ endowed with their
Borel σ-algebras B(S), B(S̃), and, respectively, B(Ŝ).
Dually, there exists a natural continuous map φ : S̃ → Ŝ

φ := ψ1S\F + I · 1ψ(F ) (7)

which leaves invariant the elements of ψ(F ) and further
‘applies ψ’ to the elements of ψ(F ).
From the formulas (5) and (7), we obtain obviously that

ψ = φ ◦ π. (8)

Let us consider the lattices B(S), B(S̃) and respec-
tively B(Ŝ) of bounded real-valued measurable defined
on S, S̃ and respectively Ŝ. The abstraction map ψ can
be lifted to map elements of these lattices by defining
the ∗-map as follows: ψ∗ : B(Ŝ) → B(S), ψ∗f = f ◦ ψ.
Similarly, for the projection π and its dual φ we can define
the ∗-maps. The ∗-operation acts as an adjoint operation,
i.e. π∗ ◦ φ∗ = ψ∗.

Lemma 1: ψ∗ can be restricted to B(ψ(F )) with val-
ues in B(F ).
Compatibility hypotheses. A general problem in compo-
nent composition (like architectural documents, software
artifacts, formal specifications, mathematical models) is
the compatibility of the communication infrastructure
(that could be interfaces, share variables, a topological
boundary, etc). In our case, this problem arises in the
construction of the local abstraction at the border of F .

First, we have to impose some compatibility conditions
of the abstraction map ψ and the dynamics of the pro-
cesses X and X̂ . The process X̂ must simulate the process
X on F . This means that the abstraction map has to
‘preserve’ the transition probabilities of the two processes.
Mathematically, ψ should be a zigzag morphism [6], i.e.

Ptψ
∗ = ψ∗P̂t. (9)

Remark 1: The zigzag morphism condition (9), known
as the Dynkin intertwining relation, appears for the first
time in the context of Markov chains in [8]. This implies
that the finite dimensional distributions of ψ◦X under P x

are the same as those of X̂ under P̂ψ(x) for any x ∈ S.

The condition (9) says that ψ is a Markov function [4],
i.e. ψ ◦X is still a Markov process [11].

Using Lemma 1, it can be easily shown that the zigzag
condition (9) is true locally on the set F .

Lemma 2: The zigzag morphism condition (9) remains
true for the semigroups of the restriction of X to F and
the restriction of X̂ to ψ(F ).
The main problem, in composing X and X̂ , is the compat-
ibility of the dynamics of the two processes at the border
of F . Concretely, it appears when the local abstraction
process X̃ , which should be soundly constructed, passes
the border of F or ψ(F ) (which are identified in the
topology of S̃). If X̃ would start in x̂ ∈ ∂

eS(S\F ) =
∂
eSψ(F ), since ψ−1{x̂} might contain more than one

point in S, it is unclear where to jump in S\F if it decides
to continue its evolution in S\F .

We address this problem by introducing the super-
position gauges that consider both topologies in the
abstraction state space and the stochastic dynamics. A
superposition gauge makes a ‘smooth’ common topo-
logical border realizing the sequential composition of
trajectories from different subspaces. In its mathematical
incarnation a superposition gauge is a probability kernel
k : Ŝ × B(S) → R.
In the construction of the desired process X̃ , this prob-
ability kernel should give the location where to jump
in S\F , if, for example, it starts on the boundary of
S\F and ψ(F ) and decides to make an excursion in
S\F . Therefore, some additional compatibility conditions
w.r.t. the abstraction map should characterise, as well,
a superposition gauge. The definition of a superposition
gauge has to encompass these conditions, as follows.

Definition 2: A superposition gauge is a probability
kernel k : Ŝ × B(S) → R, subject to the following
properties: (i) k(x̂, ψ−1(x̂)) = 1, for all x̂ ∈ Ŝ; (ii)
k(ψ(x), [x]) = 1, for all x ∈ S.
The superposition gauge k can be lifted to act between the
‘logic state formulas’ of the two processes. Concretely,
integrating w.r.t. the measure k(x̂, ·), one can define a
linear operator K : B(S) → B(Ŝ) by

(Kf)(x̂) :=
∫
f(y)k(x̂, dy). (10)

The relation (10) shows in a natural way how to pass from
the statements about the process X to statements about
the simulator process X̂ .

Remark 2: Definition 2 of the superposition gauge says
that, for each x̂ ∈ Ŝ the probability measure k(x̂, ·)
is supported by ψ−1(x̂). Therefore, we can restrict the
action of K to B(F ) having values in B(ψ(F )).

Until now, we have imposed only compatibility rela-
tions between the dynamics of the two processes and
the abstraction map. Naturally, it is required to impose
compatibility relations between the superposition gauge
and the process dynamics.

Assumption 1: Assume that the semigroups (Pt) and
(P̂t) commute with K, i.e.

KPt = P̂tK. (11)
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This assumption ensures that if X has the initial proba-
bility distribution k(x̂, ·), then ψ ◦X is a Markov process
with the initial state equal to x̂ [11]. Note that the right
hand side of (11), applied to an f ∈ B(S), is the integral
of Kf given by (10) w.r.t. the transition probability
function of X̂ (i.e. p̂t(x̂, Ê) = P̂t1 bE(x̂)).

Remark 3: [9] The definition of the superposition
gauge, the zigzag morphism condition and the compat-
ibility relation (11) together imply

Kψ∗ = I , (12)
P̂t = KPtψ

∗ (13)

The relations (11), (12), and (13) represent the Rogers-
Pitman intertwining relations [11].
Condition (12) is a natural compatibility condition be-
tween the abstraction map and the superposition gauge.

Remark 4: The zigzag morphism condition (9) and
Remark 2 imply that the equality (11) remains true if
it is restricted to B(F ).

Suppose now we have given all the mathematical ob-
jects discussed in this section: the process X and X̂ , state
space S and Ŝ, the closed set F ⊆ S, the abstraction map
ψ and the superposition gauge k. Then we can conclude
with the existence of a local abstraction as follows.

Theorem 3: If ψ satisfies the zigzag condition (9), the
superposition gauge k satisfies the compatibility condition
(11), then there exists a local abstraction X̃ of X on the
closed set F w.r.t. the gauge k.

At this point of the presentation, we need to investigate
the expression of the infinitesimal generator of a local
abstraction. The expression of the infinitesimal generator
of the local abstraction process will be used later for
the verification purposes, treated in this paper. Roughly
speaking, the infinitesimal generator of the local abstrac-
tion X̃ of X on the closed set F w.r.t. the gauge k is equal
with the infinitesimal generator of X on S\F and with the
infinitesimal generator of X̂ composed with K on ψ(F ).
These equalities take place via the ∗-map associated to the
projection map π. The formal result is a version of the
Proposition 4.1 from [9], for the case when the processes
involved are not necessarily Feller [10].

IV. SUPERPOSITION OF REGION ABSTRACTIONS

In the previous section we have defined a local ab-
straction and proved some existence result. Obviously, a
system that is verified only on a topological subset of
its state space can be partly trusted. Usually, the state
space is decomposed in a topological cover (in this case,
a partition with closed sets). Then, a natural problem that
arises is to ask how the abstraction process looks like
on the union of this partition, i.e. to construct a system
on the entire abstraction state space. This construction is
presented in the current section. The section ends with an
algorithm to construct the abstraction process from the
local abstraction processes.
Process Local Abstractions. Let us consider the strong
Markov processes X with the semigroup (Pt) and the
state space S partitioned with a finite cover of closed sets
(Fi)i=1,..,n as in (3).

For i = 1, .., n, let us consider: (i) X̂i some the strong
Markov processes with the semigroup (P̂ it ) and the state
spaces Ŝi, which give, respectively, the local abstraction
of X on Fi; (ii) the abstraction maps ψi, as in the
Subsection II-B, satisfying the zigzag morphism condition
(9) and the condition (4) w.r.t. Fi.
Since each ψi, i = 1, .., n is a zigzag morphism, and the
condition (4) w.r.t. Fi holds, we have that the restriction
of X̂i on ψi(Fi) simulates the restriction of X on Fi.
All the arguments from the Section III have shown that
the methodology to construct new Markov processes,
which exhibit a required behavior on a certain set, needs
only: 1. the local values of a zigzag morphism, and
2. a superposition gauge satisfying some compatibility
relations w.r.t. the process dynamics.
Now we have to iterate the superposition construction
developed in Section III. At each step i, we construct
a new local abstraction (a new Markov process), which
behaves like the initial process X on X\(F1∪F2∪...∪Fi)
and like the process X̂k on ψk(Fk), for k = 1, .., i. We
have to define recursively the quotient spaces and the
projection maps.
In the first step, we define S̃1 = (S\F1)∪ψ1(F1) and the
projection map associated to ψ1 as π1 : S → S̃1 given
by π1 := I ·1S\F1 +ψ1F1 , i.e. pointwisely, π1 is defined

as: π1(x) =
{

x if x ∈ S\F1

ψ1(x) if x ∈ F1.
Then, we define recursively, for i = 2, .., n, the spaces
S̃i = (S̃i−1\Fi) ∪ ψi(Fi) and the projection maps πi :
S̃i−1 → S̃i given by πi := I · 1

eSi−1\Fi
+ ψi1Fi

.
Let Πi the composition of the projection maps until the ith
step, i.e. Πi = πi◦πi−1◦ ...◦π1 : S → S̃i, for i = 1, .., n.
It is clear that Πi = I · 1S\(F1∪...∪Fi) +

∑i
k=1 ψk1Fk

.

The spaces S̃i will be endowed with the topologies
generated by the projection maps πi. We assume that S̃i
with these topologies are Polish spaces. It is clear that
S̃ = S̃n = ∪ni=1ψi(Fi), and the global projection map
Π = Πn : S → S̃,

Π =
n∑
k=1

ψk1Fk
(14)

does not depend on the composition order.
Our goal is to construct the global abstraction process

from the local abstractions, which should be a new
Markov process X̃ on S̃, which behaves like X̂i on
ψi(Fi), i = 1, .., n. To complete the construction of X̃,
we need to describe how the dynamics of X̃ ‘jump’ from
one component location to another one.
Taking into consideration the results of Section III, to
accomplish this construction, we need to give some su-
perposition gauges, i.e. some probabilistic kernels ki :
Ŝi × B(S) → R, i = 1, .., n; that describe the jumping
mechanism at the boundary of ψi(Fi). Similar to (11),
some compatibility conditions should be imposed:

Assumption 2: Assume that each ki, i = 1, .., n is a
superposition gauge satisfying the compatibility relation
of Assumption 1.

In order to be able to use the local abstraction con-
struction presented in the Section III, we need to define
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recursively the following auxiliary gauges (probability
kernels): 1. k̃1 = k1, 2. k̃i : Ŝi×B(S̃i−1) → R, k̃i(x̂, ·) =
ki(x̂,Π−1

i−1(·)), for i = 2, .., n and for all x̂ ∈ Ŝi.
Proposition 4: For each i = 2, .., n, the restriction

of the kernels k̃i to ψi(Fi) × B(S\(F1 ∪ ... ∪ Fi−1))
is a superposition gauge and satisfies the compatibility
condition of the Assumption 1.

The algorithm to construct the global abstraction pro-
cess X̃ consists in the iteration of the methodology
presented in Section III. The Remarks 2-4 allow us to
use at each step only the restrictions ψi : Fi → ψi(Fi)
because the necessary Assumption 1 remains true. To
construct the global abstraction process, one needs only
the restrictions ψi : Fi → ψi(Fi) and the appropriate
restrictions of the kernels k̃i, i = 1, .., n. Succinctly, the
construction of X̃ can be given as the following algorithm.

Algorithm
Set k = 0, Fk = ∅ and Yk = S\Fk.
Repeat
k = k + 1
Choose Fk ⊂ Yk−1 and the corresponding zigzag

morphism ψk restricted to Fk. {It can be any Fi, i =
1, .., n after re-indexing partition (3)}

Construct a process X̃k, which behaves as X on
Yk−1\Fk, and as X̂i on ψi(Fi), i = 1, ..k. {Use the
method presented in Section III.}

Then Yk = Yk−1\Fk.
Until
Yk = ∅.

The zigzag morphism condition and the above reasoning
allow us to write down the following result.

Proposition 5: The global abstraction process X̃ is
a strong Markov process with the state space S̃ =
∪ni=1ψi(Fi).
Infinitesimal Generator. One of the main mathematical
results of this paper is related to the generator of the
integration process X̃. This generator will be further used
to solve the reachability problem of the global abstraction
process. It will be used to give the expression of the
mean exit time associated to a target set in the space
of the global abstraction process. Moreover, it can help
to compute the transition probabilities of the integration
process using the Kolmogorov backward equation.

Lemma 6: For all i = 2, .., n we have: K̃i :
B(S̃i−1) → B(Ŝi); K̃if̃ = Ki(Π∗i−1f̃).
Notation. If f̃ ∈ B(S̃) then its restriction to ψi(Fi), i.e.
f̃ |ψi(Fi

) ∈ B(ψi(Fi)), is denoted by f̃i, for , i = 1, .., n.
Ki and ψi are appropriate restrictions, i.e. Ki : B(Fi) →
B(ψi(Fi)); ψi : Fi → ψi(Fi), and the restriction of
(Π∗f̃) to Fi is denoted by fi, where Π∗ is the adjoint
of the global projection defined by (14) and f̃ ∈ B(S̃).

Theorem 7: Let X̃ and X̂i have the respective genera-
tors L̃ and L̂i, that have domains, respectively, D(L̃) and
D(L̂i), i = 1, .., n. The expression of the generator L̃ is

L̃f̃ =
n∑
i=1

L̂iKifi1ψi(Fi) (15)

for all f̃ ∈ B(S̃), where and L̂i is understood as the

generator of the restriction of X̂i to ψi(Fi) (i.e. it is
applied to the extension of f̃i with value 0 on Ŝi\ψi(Fi)).

V. MODE ABSTRACTIONS OF STOCHASTIC HYBRID
SYSTEMS

A. Stochastic Hybrid System Definition

Let us consider a SHS, H [3]. Formally, a SHS is
defined as a tuple H = (Q,X ,F, R, λ):
• Q is a countable or a finite set of discrete states;
• X : Q → Rd(.) maps each q ∈ Q into a mode (an
open subset) Mq of Rd(q), where d(q) is the Euclidean
dimension of the corresponding mode;
• F : Q → F specifies the continuous evolution of
the automaton in terms of differential equations (ordi-
nary/stochastic differential equations whose set is denoted
by F) over the continuous state xq for each mode;
• R = (Rq)q∈Q is a family of probability kernels Rq :
M

q× ∪
j∈Q

B(M j) → [0, 1];

• λ : ∪
j∈Q

M
j → R+ is a transition rate function1.

The executions of an SHS can be described as follows:
start with an initial point y0 ∈ Mq, follow a continuous
trajectory described by the restriction of F to Mq, jump
when this trajectory hits the boundary or according with
the transition rate λ. The jumping time is the minimum
of the boundary hitting time and the time, which is
exponentially distributed with the transition rate λ. From
each mode q, the post-jump locations are given the
probability kernel Rq. Under standard assumptions, for
each initial condition y ∈ ∪

j∈Q
M j , the possible trajectories

starting from y, form a stochastic process. Moreover,
under standard assumptions [3], for all initial conditions
y, the executions of an SHS make up a Markov process.

B. Mode Abstraction Superposition

The simplest way to apply to an SHS the methodology
of composing local abstractions developed in the Section
IV, is to suppose that the continuous evolution of each
mode is simulated through an abstraction map by a
simpler stochastic process. Then, the problem becomes
how to construct the superposition gauges needed in the
construction of the global abstraction.
Let us consider a SHS H , as in the previous subsection,
with a finite set of discrete states Q (card(Q) = n). In
order to have the condition (3) satisfied, the elements of
each mode M i are labelled by i, i.e. M i = {(i, u)|u ∈
Di(open)⊂ Rd(i)}. Supose we have given, for each i ∈ Q,
an abstraction map ψi : Rd(i) → Ŝi such that it can be
restricted to ψi : M

i → ψi(M
i
). The space Ŝi represents

the state space of a Markov process X̂i, which simulates
the continuous evolution of H on the mode M i that
describes a dynamical system or a diffusion process Xi.
The process X̂i might be a continuous time Markov chain
or a step process, etc. The abstraction map should satisfy
the zigzag condition (9), i.e. it has to ‘commute’ with the
transition probabilities of the two processes. Moreover, ψi
has to be compatible with the transition rate λ restricted

1which gives the distributions of the jump times.
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to M
i
, ψi(i, u) = ψi(i, v) ⇒ λ(i, u) = λ(i, v), i.e. λ

is constant on the equivalence classes induced by ψi.
The abstraction map ψi should be compatible with the
transition kernel Ri, i.e.

ψi(i, u) = ψi(i, v) ⇒ Ri((i, u), ·) = Ri((i, v), ·) (16)

We assume, as well, that Ri((i, u), ·) is supported by
ψ−1
i [ψi(i, u)], i.e. the following condition holds:

Ri((i, u), ψ−1
i [ψi(i, u)]) = 1 (17)

Now, the superposition gauge ki is defined using Ri such
that ψi ‘commutes’ also with ki, i.e.

ki(ψi(i, u), A) = Ri((i, u), ψ−1
i (A)), A ∈ B(ψi(M

i
))

(18)
Conditions (16) and (17) ensure that ki is well defined and
is indeed a superposition gauge in the sense of Def.2.
The kernel ki must satisfy also the compatibility condition
(11) with the dynamics of the processes Xi and X̂i. This
condition can be written in terms of the infinitesimal
generators of these processes (which are known in the
most cases). Taking into consideration the expression of
ki given by (18), the main difficulty that derives from here
is how to choose the simulator process X̂i, which has to
behave nicely w.r.t. the continuous evolution of H in the
mode M i and the discrete transitions from M i described
by Ri. The choose of X̂i depends on the ability of the
developer to use possible methods to discretize diffusion
processes or dynamical systems. The main achievement
is that the theory developed in Section IV allows us to
work with local abstractions that can be integrated then
in a global abstraction of the entire system.

VI. MODULAR STOCHASTIC REACHABILITY

Probabilistic reachability analysis has known a rapid
development in the recent years [1]. Efficient algorithms
have been constructed for both discrete and continuous
time, but discrete state processes. The continuous time
continuous space case resisted to reachability analysis
mainly because of mathematical complexity and of the
radically different structure of the model.

In this section, we propose a stochastic version of the
probabilistic reachability analysis. In [1], the distinction
probabilistic/ stochastic is the distinction discrete/ contin-
uous w.r.t. time. We apply this distinction w.r.t. the nature
of the state space. In the verification of performability
properties [5], the elementary statements are the same as
in stochastic reachability analysis [7].

In the stochastic case, verification can take advantage
of the statistical tools. In our case, the statistical reasoning
involves the expectations of the first hitting times.
Suppose that X̃ is a global abstraction of an SHS,
constructed using the algorithm described in Section IV.
To address the stochastic reachability [7], assume that we
have given a set Ã ∈ B(S̃) and a (finite or infinite) time
horizon T ∈ [0,∞]. In our case, Ã = ∪ni=1ψi(Ai), Ai =
ψ−1
i (Ã ∩ ψi(Fi)) ⊂ Fi. Let us to define: ReachT (Ã) =

{ω ∈ Ω | ∃t ∈ T : xt(ω) ∈ Ã}, where T = [0, T ] or
[0,∞), depending on the time horizon T . The reachability

analysis problem consists of determining the probabilities
of such a set or, alternatively, computing the mean of the
first hitting time T

eA, given by

T
eA = inf{t > 0|xt ∈ Ã}. (19)

Theorem 8: The expectation of T
eA denoted by E

ex(T eA)
is related by the hitting time expectations of the local
abstractions by formula

E
ex(Tψi(Ai)) = Ki{[Eex(T eA)]i}, x̃ ∈ ψi(Fi) (20)

where Tψi(Ai) is the first hitting time of ψi(Ai) for
the process X̂i and [E

ex(T eA)]i is the restriction of
Π∗{E

ex(T eA)} to Fi.

VII. CONCLUSIONS

In this paper, we have considered a verification method-
ology for SHSs. The complex state space of an SHS,
which is usually a topological space, is decomposed into a
partition of closed subspaces. The system is projected on
each subspace and each projection is verified according to
a specific procedure (reachability analysis, Markov chain
discretisation). The output resulted from each verifica-
tion is called an abstraction. Until now, these different
abstractions were treated in an ad hoc manner. In this
work, we have proposed a consistency check method
of these abstractions and the sound mechanism of the
superimposing them.

We have also proved the result relating the expectation
of the hitting time of a target set in the global abstraction
to the corresponding ones in the local abstractions. Using,
the stochastic reachability analysis method from [5], this
result can be used for compositional stochastic reachabil-
ity analysis in diverse models including fluid Petri nets
and other fluid models of distributed systems.
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