
Structuring Problem Analysis for Embedded Systems
Modelling

Jelena Marincic
Dept. of Computer Science

University of Twente
Enschede, The Netherlands

j.marincic@ewi.utwente.nl

Angelika Mader
Dept. of Control Engineering

University of Twente
Enschede, The Netherlands
mader@ewi.utwente.nl

Roel Wieringa
Dept. of Computer Science

University of Twente
Enschede, The Netherlands
roelw@ewi.utwente.nl

Yan Lucas
Neopost Technologies

Drachten, The Netherlands
Y.Lucas@neopost.com

ABSTRACT
Our interest is embedded systems validation as part of

the model-driven approach. To design a model, the mod-
eller needs to obtain knowledge about the system and decide
what is relevant to model and how. A part of the modelling
activities is inherently informal - it cannot be formalised in
such a way to constitute a basis for automated model design.
This does not mean that modelling has to be chaotic. We
therefore propose an informal method that structures mod-
elling activities. In this paper we will focus on one of the
method ingredients - modelling guidelines. In the industrial
case study we performed, we captured modelling steps and
elements in a form of a modelling handbook. The goal was
to make modelling more efficient by preventing next mod-
ellers re-inventing things, but also to preserve a modelling
style recognized within company’s context. We show in de-
tail what these re-usable modelling elements are, and how
identifying them can be generalised for designing modelling
guidelines in general. Finally, we compare our work with
work of researchers that formalise problem analysis.

Keywords
model-driven validation; modelling steps; embedded systems;

1. INTRODUCTION
Modelling embedded systems as part of model-driven de-

sign is intended to increase our confidence that the system
will behave as required. During formal verification we design
a mathematical model of the system and formalize require-
ments for the system’s behaviour in terms of this model. It
is possible that the control software and the plant (the rest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWAAPO ’10 Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-981-7 ...$10.00.

of the system) already exist, or we verify the system while,
at the same time, designing its control.

There are many languages and tools for formal verifica-
tion, but one is left without a technique how to use them [7].
In other words, there is no technique that guides us while
designing a model. This results in having models of different
quality depending on modeller’s experience and talent.

Modelling itself cannot be formalised in such a way to con-
stitute a basis for automated model design. While designing
the model, the modeller has to obtain knowledge about the
system and about its requirements. Furthermore, she has
to identify what is relevant to describe with the model and
how to describe it. Also, we cannot formally prove that the
model is an accurate representation of the system (and vice
versa).

Our research is focused on designing an informal mod-
elling method that improves confidence in the model and
efficiency of modelling. Even though parts of modelling are
informal, they need not be chaotic. By making them ex-
plicit and providing guidelines we make them accessible and
controllable so that we can evaluate them. We identified
three informal modeling aspects important to address and
that usually stay implicit while modelling. They are: (1)
modelling assumptions that are not part of the model [11],
(2) steps that guide modelling and make it more uniform
and structured, in other words make it an engineering pro-
cess; (3) the argument that the model correctly represents
the system [13]. We are building techniques to explicitly
address these aspects.

In this paper we will focus on the second modelling aspect
- steps and guidelines that structure modelling process. Our
research question is: What can be generalised and extracted
from modelling steps in one particular case and later reused
in form of guidelines, checklists or useful techniques?

Through the description of one of our industrial case stud-
ies, we will show re-usable modelling steps and elements we
captured in a form of a modelling handbook. The com-
pany where we performed the case study designs inserters
- machines that automatically fold papers and insert them
into envelopes. We analysed an inserter emulator - a digital
circuit model of inserter’s mechanical part (or ”plant” as it
is called). The specification of the emulator is the plant’s

Physical,
controlled
part

Sensors
Control
hardware

Plant Controller

Actuators

(Embedded) system

Operating
system

Control
software

Figure 1: In embedded systems, controller enforces
plant desired behaviour, via actuators, based on sen-
sor readings.

model as well. It is designed by the modeller and then auto-
matically transformed to emulator execution. We designed
a handbook for specifying emulators of future generations of
inserters. The goal of the handbook was to make modelling
more efficient, but also to preserve modelling style recog-
nized among the model stakeholders. To be able to answer
our research question, we generalised the results from the
case study in form of classes of reusable modelling elements
and decisions.

The rest of the paper is organized as follows. Section 2.2
explains the terms and concepts we are using as well as prob-
lems we tackle and research questions we start from in our
research. Section 3 describes the method we propose. In
Sections 4 and 5 we describe the case study we performed.
Section 6 gives the relation with other researchers work in
the area of model design and conclude with Sect. 7.

2. PROBLEM DESCRIPTION

2.1 Basic Terms and Concepts

2.1.1 Embedded systems
As shown on Fig. 1, an embedded system consists of a

controller and the rest of the system, called the plant by
embedded systems designers. The controller consists of the
control software running on a special purpose hardware or a
PC computer. The controller observes its environment via
sensors, and enforces the plant’s required behaviour through
actuators. We will abstract away the controller hardware
and focus on the interaction of the control software with the
plant.

For embedded system modeling, it is important to deter-
mine where the boundary of the system we are analysing
is [19]. The environment of the controller, relevant for the
model and the requirement, usually goes beyond the plant.
There are users and operators that for example press but-
tons, products manipulated by the plant like paper in the
printer, bottles in a bottle filling machine or chemicals mixed
or extracted in a chemical plant. In wireless devices signals
are transmitted through air, so the signal’s frequencies and
intensity can be relevant to analyse when verifying these
systems. One of the problems our method deals with, is the
description of the controller environment in a verification
model.

2.1.2 Verification Argument
To verify the system means to give a correctness argument

that the plant (P) and the control (C) together satisfy the

requirement (R).

P ∧ C =⇒ R (1)

Using formal methods to build the correctness argument
increases our confidence in the system. If the control is not
designed yet, verification models can be used to help the
control specification design. In that case the modeller’s task
is to examine the problem, requirements, and the plant, and
then create the solution in form of control specification. If,
on the other hand, the control specification already exists,
then the modeller has to additionally learn about the con-
trol, too.

2.2 Making Modelling Systematic
To design a model, it is not enough to learn a modelling

language and get familiar with the tool that supports it. Be-
fore creating the solution (the model), the modeller has to
analyse the modelling problem. She has to obtain knowl-
edge about the system and the requirement, to decide what
is relevant to describe with the model with respect to the
requirement, and to decide how to model it.

The control software and the plant work together to sat-
isfy the system requirements, but the requirement refers to
the plant [8]. To decide what is relevant to model, the mod-
eller needs to obtain and integrate knowledge from different
domains, like for example electrical, mechanical etc.

Both analysis of the modelling problem and model con-
struction are informal activities. This is in contrast to for-
mal techniques that manipulate the model. Using them, we
get a mathematical proof that the model has (or not) a cer-
tain property. If it does, we conclude that the system has
it, too. But we do not have proof for this conclusion, we
can only be confident in this. Also, we cannot automate
the modelling process. This makes model quality and effi-
ciency of modelling dependent on the modeller’s talent and
experience. We want to improve this situation by making
modelling a stuctured, systematic activity.

Our goal is to make the modelling process less dependent
on the modeller, her experience, talent and creativity. We
also want to increase confidence in the model by having the
modelling process more structured. We are looking for steps
and principles that can be captured and reused to guide
modelling.

To build our method, we need to answer the following
research question: What are the elements of the modelling
process that can be generalized and (1) used to explain the
existing model and argue its correctness, (2) transformed
into guidelines that teach others how to model and (3) ex-
ploited when maintaining or redesigning the model? In our
research, we focus on the problem of the plant description
(modelling).

3. TAXONOMY OF MODELLING DECISIONS
In her earlier work, one of the authors proposed a taxon-

omy of modelling decisions [10]. Its purpose is to provide
understanding of modelling as informal activity that leads
to a formal verification model. Having better understanding
of modelling, being aware of its structure, already structures
the way we think and work while modelling. But, the ele-
ments of the taxonomy can be also articulated as questions
to answer while modelling, or as a checklist of activities to
perform. At the same time, it is the list of questions to ex-
plicitly address and further refine. The elements of the tax-

Modelling

Problem
analysis

Model
design

What is the model’s purpose?
What is the pragmatics of the model?
Structure (decompose) the problem
Identify the object of modelling
What are the model quality criteria?

Truthful
Understandable
Tracable
Small
SImple

Identify what is relevant to model

Structure (decompose) the solution (the
model)

Decide on languages and tools to use
Make abstractions and idealizations
Design additional model elements
needed for verification, but not
describing anything from the system

Figure 2: Modelling seen as problem analysis and
solution design.

onomy are shown on Fig. 2. The high level categorization
is to modelling problem analysis and model design. Each of
these is further categorized into types of modelling decisions
performed.

The purpose of the model is in our case to verify the re-
quirement, but verifying the requirement is, as we will show
later on the example of our case study, part of broader verifi-
cation process. Also, at a different level, there are a number
of requirements (quality criteria) for the model. For exam-
ple, we might require that the model is traceable in a sense
that it follows the existing decomposition of the system as
much as possible. Additional limitations and requirements
on how the system will be modelled are imposed by prag-
matical issues like time, money and resources present. This
is not addressed in the academical environment, but in prac-
tice it is not possible to neglect it.

Before identifying relevant parts, it is necessary to define
what the object of modelling is. Is it a specification of the
control, or the system requirement? Is it the algorithm that
we have to verify or the control that implements it? There
are differences between modelling these, and often they are
not clearly stated.

While analysing the problem, the modeller also decom-
poses and structures it, to better understand it. Further
decomposition is needed to find out what aspects of the sys-
tem are relevant for the model and what parts and their
properties should be represented in the model.

The modeller decides on tools and languages to use and
mathematical domain in which the system is described. Also,
the modeller structures (decomposes) the model which can
coincide with the system decomposition he identified. Rep-
resenting the system with the model means that different ab-
stractions, simplifications and idealizations are done. They,
of course, should be done in a way that the model still rep-

Figure 3: The inserter folds paper sheets and inserts
them in envelopes.

resents the system with respect to the requirement. For
example, if we do not need to prove a timing requirement,
we can model plant’s actions as the actions that do not take
any time.

The model does not contain only the elements that repre-
sent the system. Often, to prove the requirement, additional
elements are needed and they depend on the modelling solu-
tion, and languages and tools used. For example, in a model
of a printer we possibly need an extra variable to count num-
ber of papers printed, although there is no any counter in
the printer.

As we will show on the example of the work on our case
study, the taxonomy can be used while modelling, but it is
even more useful to apply it to the context and to refine the
modelling steps given.

Applying the steps from taxonomy is part of the method
we propose. As we will show on the example of our case
study, these elements are helpful, but it is even better if we
further refine these steps. Further refinement produces steps
that are depending on the actual problem.

4. DESIGNING A MODELLING HANDBOOK
- ACTION CASE

4.1 The System Description
We performed field research (action case) in a company [14][15]

that develops, produces and distributes different types of
mailroom equipment and document systems. The users of
document systems are companies that send a lot of paper
mail on a daily basis, like insurance companies, post offices,
banks etc. One such machine, called inserter, is shown on
Fig. 3. The inserter automatically folds paper sheets and
inserts them in envelopes.

The inserter works as follows. The operator places doc-
uments (paper sheets) and envelopes in appropriate feed-
ers. He also specifies recipes for manipulating documents,
through the user interface. A recipe defines how many doc-
uments will be inserted in each envelope, whether the paper
sheets will be folded and how (for example, a document can
be folded along the half or along the third of its length).
An example of a recipe is: ”Select three documents from the
first feeder, make a ”Z” fold and insert them into the enve-
lope.” Recipes form scenarios, e.g. one scenario would be to
repeat the previous recipe hundred times.

The diagram in Fig. 4 describes inserter modules where

Document
feeder

Document
transport

Envelope
transport

Collator

Folder Inserter

Catch
tray

Moistener

Envelope
feeder

Document
feeder

Envelope
transport

Figure 4: Diagram of the mechanical plant parts and
path of documents and envelopes

different processes take place. The arrows in the diagram
represent the flow of the documents and envelopes through
the system. In the feeder, rollers (small plastic wheels) ro-
tate along the surface of the document on the top, which
pulls it out of the feeder. The document is then moved to-
ward the collator, again with rotating wheels. The wheels
are placed in pairs on each side of the document path. In
the collator, the documents that form a batch to be inserted
in one envelope are collected and straighten out (collated).
The batch is then moved to the folding position. It is folded
with a stroke of a long, thin, sharp-edged arm. In the mean-
time, the top positioned envelope in the envelope feeder is
pulled out of the feeder, and brought to the flap moistener.
Its flap is first turned up and then moistened with a stroke
of a brush. The upper side of the envelope is lifted, so that
document batch can be inserted. Folded documents are then
inserted in the envelope, the flap is closed and the envelope
with documents is moved toward the exit of the machine.

Every process performed on documents and envelopes is
the result of controlled movements of mechatronic parts.
Rollers, folding arm, brush and many other system parts
are connected to actuators that move them. Along the sys-
tem, sensors are placed to signal the presence or absence of
material in front of them. Based on sensor readings, the
control software sends signals to actuators.

The high level system architecture is shown on the left side
of Fig. 5. The System Controller handles operator requests
and recipes and forwards them to the Embedded Controller.
Embedded Controller controls the plant.

4.1.1 Plant and Control Software Integration
When a new generation of inserters is designed, some me-

chanical parts, or even whole modules, are re-used from the
old inserter generation. Some parts, on the other hand, are
completely re-designed. Radical design results in significant
improvements of functionality or performance which is im-
portant for competitiveness on the market. At the same
time, it brings unanticipated problems and issues that did
not exist before [18]. Some of these problems are related
to the integration of the control software and the plant. If
the integration comes in a later stage of the project, solving
these problems might need rework of parts, whole modules
or concepts which causes delays.

ActuatorsSensors

Plant

Emulator

Embedded
controller

Embedded
controller

System
controller

System
controller

model

Figure 5: Inserter’s high level architecture and the
concept of the emulator.

The plant and the controller together deliver the inserter’s
desired behaviour. It is therefore important to enable their
concurrent development. When the control software and
plant are designed at the same time, mechanical and soft-
ware engineers communicate from early development stages,
and problems related to plant and control software integra-
tion arise early enough to be resolved on time.

The problem is that in the early development stages the
plant exists only in sketches and CAD drawings. The in-
teraction with the plant via sensors and actuators is in the
essence of the control software, therefore without the plant
control software testing is not possible.

4.2 The Plant Model
To enable concurrent engineering of the plant and the con-

trol software from early development phases, the company
designed and built the plant emulator for the purpose of
control software testing. Figure 5 shows the comparison of
the inserter architecture and the architecture of the testing
setup. The borders of the control hardware are the inter-
faces that exchange signals with sensors and actuators. The
emulator is connected to these interfaces. On the emulator
side, the interface connected to the controller mimics sensors
and actuators behaviour.

The emulator is a programmable hardware device, which
means that it consists of digital circuits that a user can con-
figure and combine. These digital elements are connected
and they together mimic the intended future plant behaviour
- the flow of documents and envelopes, rolling of rollers etc.
We can say that the emulator (M1) is a digital signal model
of the plant (P).

There are two more models that play a role here - the spec-
ification of the emulator (Φ) and the run-time visualisation
of emulator’s signals (M2).

The specification of the emulator’s digital signals behaviour
is at the same time the specification of the plant behaviour.
The specification is written in a graphical language, called
G-language, using the LabView tool. LabView diagrams de-
scribe the flow of material, the sensor reaction to the mate-
rial and movement of different physical parts. The LabView
compiles the diagram-based specification to the program for

the hardware. We consider this transformation correct, and
deal with the graphical model of the system.

For visualisation purposes, the diagram that shows the
states of emulator’s digital elements is designed (part of the
LabView package are also run-time diagrams for hardware
monitoring). To be more precise, only those digital elements
representing sensors are collected. Their order in the dia-
gram corresponds to the spatial order of the sensors in the
inserter. This is convenient for the testing engineer who
monitors signal flow in the emulator as if it were document
flow in the plant.

We can therefore argue that we have three models. One
is the physical, digital signal model of the plant. The other
is the graphical model, the diagram that is designed to rep-
resent the plant. The third is the run-time visualisation
model. We can say that: M1 |= Φ, P |= Φ and M2 |= Φ.

The model we analysed is the second one - the graphical
specification of the emulator (Φ). The reason for this is that
we are interested in designing the model that represents the
plant for the purpose of control software testing. Our ques-
tions are related to gathering knowledge about the plant,
and deciding how to describe it. In this case, the model de-
signed to represent the plant is the emulator’s specification
diagram. The programmable hardware (emulator) is just
the execution of the specification, in a way similar to the
computer hardware’s execution of a computer program. The
model could have been just as well implemented as a sim-
ulator, describing the plant with software; for our research
question this would not make any difference.

4.3 Design Task
As we already explained, the plant model already exists.

Designing it for the first time took significant time and effort.
The modeller spent a lot of time learning about the plant,
trying out different modelling solutions and finding the op-
timal one. He did not document his insights and knowledge
progression, due to time-pressure. The model-based testing
improved communication between departments and short-
ened the integration time, so it will be used in the future.

How the new, future generation of the system will look
like, when it will be developed, which parts will be incre-
mentally and which radically designed, is not known yet.
The modeller will most probably be another software archi-
tect as the original modeller has already left the company.
In fact, the modeller may be someone from outside the com-
pany. Finally, the tools and languages used now, may not
be the choice next time.

To make modelling efficient next time the model is de-
signed, and to preserve existing modelling style, we designed
a modelling handbook.

5. THE HANDBOOK DESIGN

5.1 Solution Approach
We designed the modelling handbook, or in other words,

we designed a modelling method suitable for the concrete
modelling problem. The left hand column in the table shown
in Fig. 6 shows the modelling steps we propose in the hand-
book. The right column in the same table shows our solution
approach for this case or how we designed this method.

For modelling handbook design, we had to find what ele-
ments of the model and modelling process can be extracted
and turned into clear, relatively short modelling guidelines.

Modelling method Steps to design
suited for the problem this method
Perform refined taxonomy
steps to understand the
problem

Apply the taxonomy on the
existing models

Apply re-usable modelling
solutions

Look for categories of mod-
elling solutions in the exist-
ing models

Re-use previous model parts Identify what parts of the
system will not change

Figure 6: Modelling method and steps to design it

• We applied the taxonomy of modelling decisions [10]
developed in our earlier work.

• We interviewed the modellers about their modelling
decisions. More precisely, we asked for the rationale of
their modelling choices and decisions.

• We interviewed model stakeholders about requirements
for the model and about the system.

• We analysed the model and asked model stakeholders
to estimate which parts will not change in the future.

Due to lack of space, we will show only a couple of ele-
ments of the handbook elements as illustration of our points.
The complete handbook (without the confidential parts) can
be found in the appendix of our case study report [12].

5.2 Applying the Taxonomy
We performed the analysis of the existing model using our

taxonomy. When applied to concrete case, we were able to

• refine modelling decisions listed in the taxonomy

• examine if and how these steps showed while designing
the model and

• examine if and how these steps could be seen in the
model.

Some of our findings are the things that are not chang-
ing, they are the part of the whole modelling context in the
company, and by context we mean the way the things are
viewed, designed, documented and organised. Most likely
they will stay the same next time the model is designed. So,
documenting them may be useful to start from next time
the modelling task for emulator is defined.

5.2.1 Identify the Purpose of the Model
The high-level purpose of the emulator is to facilitate test-

ing of the control. The initial idea was to use it until the
plant is made, but the emulator turned out to be useful for
continuing some of the tests even when the plant is already
there.

We classified verification (testing) purposes as shown in
table on Fig. 7. We also listed the faults and irregularities
that should be taken into account while modelling. They
are: broken sensor, paper sheet slipping (not moving) under
the roller, and lengths of paper sheets different then spec-
ified. The broken sensor can be always on or always off.
Finally, the last thing to address is: what kind of system
limitation do we want to test with the model.

Control testing Plant testing
Testing all possible recipes Testing limitations of the

specification
Regression testing Testing impact of changes in

the software behaviour
Endurance testing Testing how small changes

reflect in system behaviour
(e.g. moving sensor)

Fault and irregularities tol-
erance

Figure 7: Purpose of the model

Different purposes mean that model describe different plants
- one with a certain combination of faults, or one without
it. Or a plant with a sensors placed on different distances
between each other. Instead of having different, but very
similar models for each of these purposes, the model was
parametrised. Parameters reflect different faults, different
position of sensors and different irregularities in documents
length.

5.2.2 Identify the System Requirements to Verify/Test
The system requirement we are interested in is the correct

system behaviour - inserting of documents into envelopes,
according to the recipes that operator defines. What was
verified was that the emulator and control software were
correct wrt to the requirement.

There are different modes of work (one recipe and op-
timisation of many recipes) and for these two, the control
behaves differently. For this, the simulator of the system
controller is designed to provide the control with different
recipes and scenarios.

5.2.3 Identify Quality Criteria for the Model
We explored if the quality criteria we identified were rel-

evant when designing the model and if there were other cri-
teria we did not mention before.

Our basic criterion is that the model should be truthful.
It means that it has to represent the system correctly with
respect to the requirement verified or tested. In the emula-
tor design, the modeller was aware that the model was not
truthful, and that there are some things that will show up
once the plant is produced. The emulator does not elimi-
nate the need to test and refine the system in the integration
phase, it just makes it shorter. It would be good to know
if the model is ’truthful enough’ to prevent discovering ma-
jor design errors in the later development phase, but this
cannot be guaranteed. Another source of deviating from
truthfulness is more benign. Some parts of the model are
oversimplified because of lack of hardware resources. This
causes some of the tests giving wrong results about the sys-
tem. However, these modelling decisions were chosen in such
a way that further analysis of testing results leads to valid
results.

If we want the model to be understandable we also have to
specify for whom it has to be understandable. For example,
the model might be completely clear to another modeller
and unclear to a software engineer. The main users of the
emulator are testing engineers. They used not the emulator
directly, but the LabView model. As we explained earlier,
the LabView model is at the same time specification of the
emulator hardware and the representation of the emulator

during run-time. The model consists of a number of di-
agrams, each representing one part or one process of the
system (emulator). The modeller designed a visualisation
model that shows only the main signals in the emulator.
This model is at the same time a simulation model. Test-
ing engineers use this model, and in case of problems they
examine further a diagram where the source of the problem
is. The modeller was always present and available to assist
analysis and changes of the model. This may not be the case
in the future. The role of the modeller and testing engineer
might be separated. So, the more of the modelling style is
used in the next model, the less time testing engineers have
to spend analysing what is what in the model.

A model is traceable if the structure of the system can be
found in the structure of the model. It is traceable in the
other direction if the fault in the model can be traced to the
specific part of the system. The emulator specification fol-
lowed the decomposition of the system into modules. This
way, it was also possible to design a visualisation model,
to be able to understand the testing results. Everything
we said about testing, when talking about understandabil-
ity holds here, too. The traceability was in conflict with
the model simplicity in the part of the model describing
document merging together after they left different feeders.
When looking at the model, we may think of different lay-
out of feeders. At the same time, the document flow still
describes the flow in the existing plant.

When specifying that the model has to be small in case
of model-checking, this usually means, simple enough to be
manipulated with computer-aided tools and avoiding state
explosion. In the emulator case, it was not processing time
that had to be considered, but the number of integrated cir-
cuits that constitute the emulator. They are placed on inte-
grated circuits boards, and they are expensive. Unnecessary
complexity increases modelling time, maintenance time and
also makes the model less understandable. For example, the
calculation that involve multiplications need a lot of digital
elements. That was one of the reason why the motor in the
system was not modelled, but kept as part of the system. It
was cheaper to have it there then to model it.

Having the model simple is closely related to its under-
standability. Simplicity was not quantified here in form of
number of maximal elements in a diagram or maximal num-
ber of states. It was the subjective decision of the modeller
to dismiss modelling solutions that might have a smaller
model, but it would make the diagram difficult to read.

Finally, the new criteria we found while analysing the
model was the degree of software independence. Even though
the plant model should be as much as possible independent
from the software specification, this in practice would mean
that the model would be too complex, too big and incompre-
hensible. Certain mechanical parts were designed knowing
that, for example, that the control will not make the full
rotation of the folding arms, which would cause it crashing
into another part. The software dependence might be seen
as another source of model’s untruthfulness. But, where the
modules are reused, and where also the control is reused, it
makes sense to have this dependence. For example, if the
same feeders are used and the same control that takes two
documents from the feeders is used, and if the control and
feeders behave in such a way that documents either overlap
at least on one third of their length, or do not overlap at
all - if this was already tested in previous systems, and if it

would be too complicated to model all possible overlaps, it
is reasonable to make the assumption that the control will
behave in the way we explained.

5.2.4 Find Out Pragmatic Aspects of the Model
The most obvious pragmatic aspect is that the model has

to be as cheap as possible, and be designed in the shortest
possible time. This was reflected in the previous criteria
we talked about, like not modelling the motor but having
it as part of the testing setup, oversimplifying some model
elements etc.

Other pragmatic aspects were the knowledge and experi-
ence of software engineers. This influenced the choice of the
modelling technique and tool. The software engineers were
not experienced in using hardware programming language
like VHDL, but had experience in LabView programming.
This was one of the reasons to choose the second tool.

Another reason to choose LabView was that it was a dia-
gram based. The goal was to avoid a language that looked
like programming, because software engineers would start
to think of events in the model as the events in the control
execution, rather then events in the plant.

5.2.5 Decide What the Object of Modelling Is
The object of modelling are physical parts of the plant,

processes performed on documents and envelopes, and the
flow of documents. At the first glance, it may look like the
emulator is the model of sensors and actuators behaviour
only. However, the emulator is more than that. Its signals
represent the flow of documents and envelopes, movement
of different physical parts and faults in them.

Where do we stop decomposing elements, what is the
granularity of the model? In the emulator model, the ac-
tuators and physical parts performing functions on the pa-
per sheet were described. Where no faults of physical parts
were reflected, the model stopped decomposing on a previ-
ously defined functional decomposition.

Another object of modelling that we do not analyse here
are user recipes and scenarios.

5.2.6 Decompose the System to Model it
One of the model purposes, besides representing the plant

for control testing, is the communication between domain
experts. The purpose of the testing is to integrate control
and mechanical plant, and modelling is the way to give feed-
back to plant and control designers.

While modelling, it is sometimes necessary for the mod-
eller to check with different domain experts if the model is
correct. If the model follows commonly accepted decompo-
sition of the system, this makes the task easier.

One of the wide-spread decompositions is the one to phys-
ical modules and the processes they perform on documents.
This decomposition is reflected in how the design, devel-
opment and testing tasks and responsibilities are assigned,
how the teams are organized and how communicate with
each other. This decomposition is also reflected in project
documentation available to everyone.

The model follows this decomposition whenever possible.
The fact that the system is highly modularised helps here.
The model is decomposed to diagrams that describe these
modules. There are parts that perform different functions
and belong to two modules, in this case it was up to the
modeller to place them in one of the model components.

Path Description
element
Papers Length, thickness and deviation of the defined

length are relevant
Segment The path of the paper sheets in the inserter is di-

vided in segments. The segment begins at the
sensor position. The segment ends before the
next sensor. There are one or more rollers on
each segment.

Merging
point

This is the place where documents coming from
different feeders cross each other and merge.

Selector From this point, two different paths are possible.
Sensor A sensor is on when there is a material in front

of it. It is off when there is nothing in front of it.

Figure 8: Paper sheet path elements described in
the model

5.2.7 Decide on Mathematical Domain, Language
and Tools

We addressed this issue when talking about the model’s
pragmatical aspects. We only did not mention that the plant
behaviour is described with hierarchical state machines. This
is a common way of describing reactive, embedded systems
and is natural way of looking at systems and describing
them.

5.3 Re-usable Model Components
As we shown in Sect. 5.2, we identified context dependent

elements relevant when analysing the problem and that are
less likely to change in the future.

We analysed the model to find re-usable modelling com-
ponents. We did not document them in form of a pattern in
LabView, because it is not sure that LabView will be used
next time. Instead, we used state charts that both mechan-
ical and software engineers understand.

The model has two very different components, one de-
scribes the flow of documents and envelopes through the
inserter. It may happen that something change in the fu-
ture, maybe different sensors will be used, or rollers that
have to be described in more details. But certain aspects
of the material movement will not change. Due to space
limitation we only list some of these elements in the table
on Fig. 9; all of them can found in the Appendix of our
technical report [12]. We documented them in a form of
short explanation, diagram that helps understanding their
position in the real system (for this we used the diagrams
that the modeller used) and as state machines. The state
machines are accompanied with the vocabulary explaining
what events and states mean in the system. As these things
were written informally, they are not the absolute source of
information. For sure, the modeller will have to talk about
them with domain experts in the future. They are there to
structure issues and elements that the modeller will have to
address and as an instruction how to model them, rather
then a ready modelling solution, or a pattern to initialise.

Besides these elements we documented possible faults. For
example, it is assumed that the broken sensor will either be
always on or off (it will not for example be off when it should
be on and vice versa.)

The other model components describe the rest of the plant
- mechanical modules performing different processes on pa-

Questions to answer when modelling the rest of
the plant
For a given function, is there more than one physical
element that performs it?
Does examined physical element perform more than one
function?
Does the physical component work in synchronisation
with another physical component?
Is the duration of performing the function relevant?
What is the interface of a component with other compo-
nents?
Is the material brought to a component by another part
of the system or the component takes it?
Is the initial position of a component relevant?
Is the ending position of a component relevant?

Figure 9: Purpose of the model

per sheets and envelopes, which are: folding and inserting
documents, opening and sealing envelopes and wetting enve-
lope flaps. Here, radical changes are possible, so we cannot
assume for any of the design solution that it will stay the
same. This is the part of the system where new design ideas
are allowed and welcomed, because they make the system
performing much better and give the inserter advantage on
the market.

However, the processes performed on paper sheets will not
change. They will stay the same, as well as their order. If we
look at the rest of the model, not as the description of phys-
ical parts, but the processes they perform, we can extract
model parts that do not depend on the physical character-
istics and the position of mechanical parts.

One such thing is the algorithm of folding, which is al-
ready documented It specifies the order of actions to perform
on the paper sheet and the positions of folding movement
across the paper sheet. To decide further if there are relevant
physical characteristics to put in the model or to take into
account, the modeller will have to know more about the con-
crete solution for folding module and the parts surrounding
it.

Analysing the existing model, we generalised from mod-
elling decisions and document questions that could steer
modelling in the future. These questions are the result of
the analysis what aspects of physical parts and their position
were relevant in the current model.

5.4 Rationale of Modelling Decisions
We interviewed the modeller about the rationale of his

modelling decisions. Some of them we already described
when talking about the modelling decisions in the light of
our taxonomy. It is more focused on problem analysis than
on designing the solution, although sometimes it is difficult
to draw the line between these two. For example, decompo-
sition of the system can be seen as investigation of possible
system decompositions or deciding about the model struc-
ture.

The taxonomy-based refinement of modelling elements,
discovered us the things that do not change. Some of the
modelling decisions that belong to the classes we list below
will probably change. But, those classes give some directions
how to model.

5.4.1 Following the System Decomposition

As we explained earlier, the model followed the existing
system decomposition, wherever that was possible. We ex-
plained this in more detail in Sect. 5.2.6.

5.4.2 Exemption from Following the System Struc-
ture

Some parts of the model did not follow the system struc-
ture. More precisely, the part that describes movement of
the material from the feeder is implemented differently. The
feeders will not change in the future, so we documented this
solution as relevant for the future, too.

5.4.3 Model Elements That Do not Exist in the Sys-
tem

A models does not consist only of the elements that de-
scribe parts of the system. There are additional elements
that are, for example, needed for initialisation of the model
or they are tool-related modelling tricks needed to draw con-
clusions about the model. Some of these elements may look
like the description of the system part. In the model we
analysed, we observed that there were ’sensors’ in the model
where they do not exist in the plant. The control software
extrapolates position of the paper without a sensor in this
particular case, but here the modeller needed the plant to
be independent of the control software. The non-existing
sensor shows the testing engineer the position of the paper,
even though the control only calculates it.

5.4.4 Alternative Modelling Decisions
Some of the alternative modelling decisions were useful to

document, because thinking of them does not reveal mod-
elling difficulties. Only when trying these ideas out, it turns
out that that model component becomes too complex , or
not easy to maintain or not easy to follow the signals in the
run-time. To prevent re-invention of modelling solutions,
we sketched these alternative solutions and explained the
difficulties with them. These were all decisions about the
material path, namely they were about the length of the
model segment and of the positions of sensors and rollers on
them.

5.4.5 Knowledge and Insights of the Modeller
Finding out what plant properties are relevant for the

model is a process of discovery taking place while the model
is designed. We documented some of the modeller’s insights.
We also documented the properties that were not relevant
for the current model, but were recognized by the mod-
eller as subtle details that might be important in the future.
For example, the rollers that move the paper flatten on the
places that touch a paper, and this influences the peripheral
speed of the roller, and therefore the paper.

5.4.6 Assumption on the control
Ideally, the emulator would describe all the possible plant

behaviours. However, this would lead to a model that is
too complex to understand, maintain and that will require
a lot of hardware sources and modelling time. So, the task
of the modeller was to find out those control solutions that
will never change. For example, the folding knife will never
rotate if the paper is not ready for folding. This is quite a
strong assumption on the control, but it was good enough
for the modelling purposes. We collected these assumptions,

even though some of them might be different in the future.

5.5 Solution Validation

5.5.1 Internal Validation
We designed the handbook in close collaboration with the

modeller. We adopted industry as laboratory’ approach [16]
which means that we do not invent a method and then look
for the problems solved by our method. Instead, we perform
action research and adopt our method to the problems we
face. Therefore, we were performing shorter, iterative cycles
of problem investigation, solution design, design validation,
design implementation and implementation evaluation [20].

After the modelling handbook was designed we presented
it to model stakeholders - heads of software and system de-
partments, testing engineers and software architects. We
interviewed them and asked them to validate the handbook.
Software architects found it useful, the head of software de-
partment said they would use it for the future emulator. The
testing engineer who was using the existing emulator said
that for understanding the current model using the actual
emulator was much more useful than reading the handbook.
This is related to another approach of guiding the modelling,
which would be using the existing model and maintaining it.
This was possible at the moment, but in the future it might
not be.

5.5.2 External Validation
How is our handbook useful for modelling in general? It

showed that the taxonomy we developed earlier was a good
starting point to analyse an existing model. The classifica-
tion of concrete modelling decisions is classification of solu-
tions that possibly can be applied in practice.

With this example we argue that it is possible to extract
guidelines from the existing plant model of mechatronic sys-
tems. To give an answer to the question of how much the
guidelines would be useful when starting modelling from
scratch - this requires further research.

Another threat to validity is that the emulator is not a
formal verification model in a sense we define a formal ver-
ification model. But, to build it, it was necessary to be
precise and accurate the same way we need to be when de-
signing, for example, an automata based model for model
checking.

6. RELATED WORK

6.1 Techniques To Reuse Design Decisions
Our work has common elements with the idea of software

product lines and software design patterns.
Software product lines are a technique to reuse one model

for a product that evolves or changes. Except that this is
the technique to design the software and not the model of
the plant or control, it also pays a great deal to maintenance
and evolvability. For us this was not an issue, although it
can be seen as a quality criteria for the model.

Software design patterns [3] [17] capture the solutions to
common software design problems. A pattern is not a so-
lution, it is a template, a rough-structure that has to be
shaped to the concrete design problem. Software design pat-
terns are invented by object-oriented community. A pattern
consists of the problem description, context of a problem,

specification of the behaviour (software requirement), solu-
tion description, resulting context and behaviour and what
it does not do, and the rationale of the design. The re-
usable model elements we identified have a lot in common
with modelling patterns, but we did not design a LabView
pattern that has to be initialised with parameters that de-
scribe a future problem.

6.2 Problem Orientation
As we already mentioned earlier, our work has a lot in

common with problem frames technique [8]. Starting from
its views and principles we continued further in designing
an informal modelling method. Other authors combined
problem frames and UML to design control [2], combined
patterns and problem frames technique for architectural de-
cisions [1], or developed guidelines for designing a formal
control model [6].

Another group of researches, including Jackson himself
worked on formalisation of the technique [4] or on formalisa-
tion of recomposition of the sub-problems found after prob-
lem decimposition [9]. A community of researchers are work-
ing on formalising problem analysis and combining problem
frames technique with formal techniques [5]. Formalising
modelling steps give valuable insights on modelling and re-
lationships between different modelling elements. Our in-
terest is more on identifying these steps before formalising
them. These steps are an engineer’s own way of finding a so-
lution, but they usually stay implicit. They are usually not
recognised by academia, because they are not (or cannot be)
formalised. Our goal is to find these engineering steps and
bring them up in order to cope with them in adequate way.

7. CONCLUSION
To summarise, we are developing a modelling method in

order to improve efficiency of modelling and the quality of
models. Our method is informal, it structures modelling ac-
tivity and makes implicit modelling decisions explicit. In
fact, in this paper we described modelling method on two
levels. This is illustrated in table on Fig. 6. One is the mod-
elling method for designing a model, suited for the problem
in hand (shown in the left column of the table). In the case
study we performed, we designed guidelines to model future
inserters, by reflecting from the existing model.

On another level, we identified steps to design the first
modelling method. They are

• Apply the taxonomy to analyse the existing model

• Identify re-usable model components

• For the system parts that will change, write down ques-
tions to which current modelling decisions were the
answer

• Find out what model components do not follow the
system structure

• Identify model elements that do not exist in the system

• Document alternative modelling decisions that might
be relevant in the future

• Write down insights that were not relevent for to model,
but are hidden in the domain expertise, and might be-
come relevant

• Write down the assumptions on the control

It is not possible to separate these two, as they together
form our approach for dealing with modelling decisions.

In comparison to the techniques to formalise problem anal-
ysis, we might be not precise as they are, or we might be
missing a relationship between elements of our taxonomy,
but this does not make our informal method wrong. For fu-
ture work, we plan to compare the results of formalisation of
problem analysis and if the two can complement each other.

7.1 Acknowledgements
We would like to thank Dusko Jovanovic from Neopost

for useful comments on this paper and Peter Tjerdsma for
insights about modelling the inserter plant.

8. REFERENCES
[1] C. Choppy, D. Hatebur, and M. Heisel. Architectural

patterns for problem frames. IEE Proceedings -
Software, Special Issue on Relating Software
Requirements and Architectures, 152(4):198–208, 2005.

[2] C. Choppy and G. Reggio. A uml-based approach for
problem frame oriented software development. Inf.
Softw. Technol., 47(14):929–954, 2005.

[3] E. Gamma, R. Helm, R. E. Johnson, and J. M.
Vlissides. Design patterns: Abstraction and reuse of
object-oriented design. In ECOOP ’93: Proceedings of
the 7th European Conference on Object-Oriented
Programming, pages 406–431, London, UK, 1993.
Springer-Verlag.

[4] C. Gunter, E. Gunter, M. Jackson, and P. Zave. A
reference model for requirements and specifications.
IEEE Software, 17(3):37–43, May/June 2000.

[5] J. G. Hall, L. Rapanotti, and M. Jackson. Problem
oriented software engineering: A design-theoretic
framework for software engineering. sefm, 0:15–24,
2007.

[6] M. Heisel. Agendas – a concept to guide software
development activites. In R. N. Horspool, editor, Proc.
Systems Implementation 2000, pages 19–32. Chapman
& Hall London, 1998.

[7] M. Heisel and J. Souquières. A method for
requirements elicitation and formal specification. In
J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and
E. Métais, editors, Proc. of the 18th International
Conference on Conceptual Modeling, volume 1728 of
Lecture Notes in Computer Science, pages 309–324.
Springer, 1999.

[8] M. Jackson. Problem Frames: Analysing and
Structuring Software Development Problems.
Addison-Wesley, 2000.

[9] Z. Li, J. G. Hall, and L. Rapanotti. Reasoning about
decomposing and recomposing problem frames: a case
study. In Proceedings of 1st International Workshop on
Applications and Advances of Problem Frames, pages
49–53. The Institution of Electrical Engineers, 2004.

[10] A. H. Mader, H. Wupper, M. Boon, and J. Marincic.
A taxonomy of modelling decisions for embedded
systems verification. Technical Report
TR-CTIT-08-37, Enschede, May 2008.

[11] J. Marincic, A. H. Mader, and R. J. Wieringa.
Classifying assumptions made during requirements

verification of embedded systems. In Requirements
Engineering: Foundation for Software Quality, 14th
International Working Conference, REFSQ 2008,
Montpellier, France, volume 5025, pages 141–146,
London, 2008. Springer Verlag.

[12] J. Marincic, A. H. Mader, and R. J. Wieringa. A
handbook supporting model-driven software
development - a case study. Technical Report
TR-CTIT-09-11, Enschede, January 2009.

[13] J. Marincic, A. H. Mader, H. Wupper, and R. J.
Wieringa. Non-monotonic modelling from initial
requirements: a proposal and comparison with
monotonic modelling methods. In IWAAPF ’08:
Proceedings of the 3rd international workshop on
Applications and advances of problem frames, Leipzig,
Germany, pages 67–73, New York, NY, USA, 2008.
ACM.

[14] Neopost. http://www.neopost.com.

[15] NeopostTechnologies.
http://www.neopost-technologies.nl.

[16] C. Potts. Software-engineering research revisited.
IEEE Softw., 10(5):19–28, 1993.

[17] W. F. Tichy. A catalogue of general-purpose software
design patterns. In TOOLS (23), pages 330–339, 1997.

[18] W. G. Vincenti. What engineers know and how they
know it: Analytical studies from aeronautical history.
Johns Hopkins University Press, Baltimore, 1990.

[19] R. Wieringa. Design Methods for Reactive Systems:
Yourdon, Statemate and the UML. Morgan Kaufmann,
2003.

[20] R. J. Wieringa. Design science as nested problem
solving. In Proceedings of the 4th International
Conference on Design Science Research in
Information Systems and Technology, Philadelphia,
pages 1–12, New York, 2009. ACM.

