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Abstract

In this paper we present a new approach to calibrate
sensors in sensor networks in an uncontrolled environ-
ment. The proposed algorithm makes a model of the distri-
bution of the measured quantity. This model can be used to
estimate and correct the bias of the sensor. The proposed,
centralized calibration algorithm is a macro-calibration
algorithm which tries to improve the system response as a
whole, instead of optimizing the response of an individual
sensor. The algorithm decides, based on measurements
to apply the calculated corrections or not. Testing shows
that the algorithm can be applied on e.g. temperature sen-
sors. Systematic measurement errors can be reduced. A
combination of a few accurate (expensive) sensors, and
a large amount of less accurate (cheap) sensors, can be
used together with the algorithm in real life applications
to improve the quality of the measurements.

1 Introduction

Consider a scenario where vegetables are stored in a
cold storage. In such a scenario, it is crucial to keep the
temperature constant. In order to extend the shelf-life of
the vegetables, it is necessary to ensure that the cooling
system is able to respond accurately to external events,
¢.2. opening of doors, which might result in a sudden rise
of temperature. The cooling system monitors the temper-
ature using wireless sensor nodes that are equipped with
temperature sensors. When a temperature sensor is biased,
the output of the sensor is always e degrees too high or too
low (where € is constant). Temperature sensors generating
biased readings could result in the cooling system switch-
ing on or off prematurely, or later than it should be, which
may affect the freshness of the vegetables. In order to
have an accurately functioning system it is imperative to
ensure that the sensors are properly calibrated. Since our
temperature sensors operate within normal environmental
temperatures, in the middle of the range of the sensors,
we do not deal with errors that are caused due to non-
linearity. When measuring at the borders of the range of
the sensors, these non-linearity errors must be taken into
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account. Random errors, ¢.g. noise or transient events, are
suppressed by averaging multiple samples. By applying
the proposed calibration algorithm, systematic (bias) er-
rors can be reduced, resulting in extended shelf-life of the
vegetables in the example scenario. This paper will dis-
cuss related calibration algorithms with their drawbacks,
section 3 and 4. We provide a new algorithm, describe its
characteristics in section 5. Simulations and real life re-
sults are stated in sections 6 and 7. Section 8 lists some
future work to be carried out, a conclusion is stated in sec-
tion 9.

2 Calibration

In [6] a formal definition of calibration is stated. Each
device has a set of parameters, 5 € RF. The purpose of
calibration is to choose the correct parameters for each
device such that they, in conjunction with a calibration
function, will translate any actual device output 7" into the
corresponding desired output T'x. The calibration func-
tion must therefore be of the form T« = f(3,7).For
a temperature sensor these set of parameters can be de-
duced by creating a controlled environment. In an ab-
solute controlled environment the desired output 7'+ is
known. Directly observing cach device and building a
mapping from 7" to T to directly optimize that device re-
sponse is called micro-calibration. This can be done man-
ually. In a Wireless Sensor Network (WSN) many temper-
ature sensors are available, calibration relationships be-
tween two or multiple sensors can be obtained. E.g. Rel-
ative calibration, calibration of individual sensors relative
to each other instead of some absolute reference. More
approaches exists. The opposite of micro-calibration is
macro-calibration. Macro-calibration does not optimize
the accuracy of one individual sensor, but optimizes the
accuracy of the whole system (the WSN). Macro calibra-
tion exploits the sensor redundancy in the WSN. Macro
calibration contains three steps [6]. The first step is to pa-
rameterize individual devices and model the system accu-
racy as a whole using these parameters. The second step
is to collect data from all the devices in the system. The
third step is to optimize the accuracy of the entire system,
by choosing parameters for the individual devices.
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3 Related work

LaMarca et al [4] suggest to use a service robot. This
service robot is equipped with calibrated sensors. The ro-
bot visits every node in the network and performs a pair-
wise calibration between the sensors of the service robot
and the sensors of the node. This service robot runs in
an office environment. Disadvantage of this approach is
the intrusive and disruptive behavior of the robot. Prob-
lems might arise when reaching the nodes physically be-
comes more complicated (e.g. rough terrain). In [1]
and [2] Bychovskiy et al proposes to use relative cali-
bration in the first phase of their algorithm. In the sec-
ond phase, the relative calibration relationships are op-
timized. Due to errors, calibration relationships are not
globally consistent. With a Localized Consistency Max-
imization algorithm, calibration relationships can be im-
proved on a local scale. Calibration relationships of short
paths (nodes placed closely to each other) are trusted more
than relationships of longer paths. Calibration relation-
ships can be stored in a graph. A calibration cycle in-
variant was introduced; a calibration graph is consistent if
and only if a convolution of calibration relationships over
any cycle in the graph is a null transformation. White-
house and Culler [6] are using among mean- and iterative-
calibration, macro-calibration in order to improve the sys-
tem accuracy. They are using the MICA sensor platform
connected with a mica sensor board. These boards con-
sist of a sounder and a microphone. A total of 32 nodes
are placed in 30cm x 30cm grid. When measuring the
Time of Flight (TOF), the distance between two nodes can
be calculated. In this scenario, two devices, the sounder
and the microphone, on each node, have to be calibrated.
With joint-calibration, a set of equations can be made,
d« = Br + Bgp + Gr - d + Ggr - d, where Br and
Br, represent startup times for oscillation (constants). G
and G represents transmitter volume and receiver sen-
sitivity, respectively and are proportional to the distance.
Joint-calibration performed better than mean- and itera-
tive calibration, due to the exploitation of the redundancy
of the sensors. Results can be optimized, using a pri-
ori information. The distance between two sensors must
be the same, d; ; = d, and the triangular inequality,
di j+dj, —di, >0.

4 Drawback of existing calibration algo-
rithms

There are some drawbacks of the calibration algo-
rithms mentioned in the previous section. This section
explains why they are not completely suitable for calibra-
tion in a sensor network. Manual calibration of sensors
in a sensor network is a time consuming task. Which
makes manual calibration of sensors in a WSN simply
too expensive. Relative and absolute calibration are based
on the assumption that two sensors measuring the same
physical process, should produce the same desired out-

put Tx. For nodes placed close to each other this is
an acceptable assumption. When the distance between
nodes increases, nodes are not measuring the same physi-
cal process. Therefore the desired output is not the same,
which makes relative and absolute calibration less appro-
priate in larger areas. Mean-calibration will not work ei-
ther. Assume that cooling-water (of e.g. a factory) has to
be measured. The temperature directly at the drain will
be higher than the temperature at a certain distance from
the drain. The mean temperature can of course be calcu-
lated, but what is the meaning of this value? The described
joint-calibration algorithm works for measuring the dis-
tance between two nodes, because a single measurement
is a function of two nodes. Measurements between two
nodes can be optimized due to known a priori informa-
tion, like the triangular inequality. A priori information
of this nature however is not available in the case of tem-
perature measurements. A temperature measurement is a
single and independent measurement.

5 Algorithm

A new calibration algorithm for temperature sensors
in WSNs has to be designed, keeping in mind some
properties of known calibration algorithms. As stated
carlier, the main idea of the algorithm is to make a
model of the distribution of the temperature. This idea is
based on fact that there must be some sort of correlation
between the measured temperatures by two or more nodes
placed close to each other. Due to this correlation, the
distribution of the temperature has a smooth shape. This
shape can be flat, with a slope, with a curve or some
sort of sine-shape. Sharp edges, like step-functions are
unlikely. Lets define the problem of biased temperatures
a little bit more. When measuring the temperature, one
wants to know the exact physical temperature (at the
position of sensor ¢), this temperature is called T*. Due
to an unknown bias error €; the measured temperature
T; is only known, but the physical temperature 77" is not
known. The goal is to estimate a temperature 7} such
that the difference between the physical temperature and
the estimated temperature is as small as possible and in
the ideal case equal to zero (1} — T;=0). Estimating the
temperature can be done by estimating the bias error ¢;
of the sensor. When subtracting the estimated bias error
A; from the measured temperature, an estimation of the
temperature is obtained, ﬁ =T, — \. ﬂ is estimated
with curve fitting.

TF  real physical temperature.

€;  bias error.

T, measured temp. T3 = T + ¢;.

T,  ecstimated temperature.

A;  diff. measured and estimated temp.

The assumption is made that in a set of sensors the
bias will be normal (Gaussian) distributed, N(z, 02) with
mean g and variance o2,
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The goal of macro-calibration is to improve the system
accuracy as a whole. Every temperature sensor, as stated
carlier, i has a bias error, ¢;. Let’s define the current sys-
tem accuracy, F,ys as the summation of those bias errors
¢;, where N is the total number of nodes.

N
Rsys - Z |6z| (1)
i=1

The accuracy of the system is improved if and only if the
following equation holds, where A; is the correction for
Sensor i.

N

D les = il < Ry 0))

i=1

Ideally the left side of the equation is zero, the error of
each sensor is than reduced to zero and therefore also
the accuracy of the system as a whole. Note that the
system has a list of triples (7, z,y). Where i is the node
number, x and y are the positions belonging to node i.
Both notations are used in this thesis. So ¢; is €(4, ;).

5.1 Phase one, parameterize individual devices

The first phase of the algorithm is to parameterize in-
dividual devices and the system as a whole. The sensor
nodes are placed in a grid or placed randomly, as stated
earlier. The positions of the nodes can be stored in a data-
base. Position information is needed to calculate the cor-
rections of the biases. This phase can also be used if a
priori calibration parameters are available. If these para-
meters are not available it can be skipped.

5.2 Phase two, data gathering

The second phase of the macro-calibration algorithm is
data gathering. Lets define an epoch. The duration of one
epoch is constant (e.g. one minute) and is the same for
all sensor nodes. An epoch is needed because temperature
measurements must be compared. It is possible to com-
pare temperature measurements of different sensors at the
same epoch. Per epoch, several samples are taken. These
samples are averaged and the averaged value of each tem-
perature sensor is sent to a central database. Averaging
is needed because two consecutive temperature measure-
ments (in a short period of time) are not the same due to
rounding errors of the Analog to Digital Converter (ADC)
of the temperature sensor, electrical disturbances etc. As-
sume the mean of these random errors is close to zero, so
an averaging algorithm will calculate a temperature which
is close to the real temperature plus or minus the bias of
the sensor. Please note that the averaging is done locally
for each node. An average of K samples, per epoch, will
be taken. From time stamp 7 — K + 1 up to and including
time stamp 7. Where 7 — K + 1 ... 7 are time stamps in
one epoch. This averaged value is sent to the database,
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this value is T; ), where ¢ is the time of the epoch.

1 K
Towy = 32 2 Tom) 3)
k=1

Which value of K to choose? The probability that mean
of the random error will be closer to zero if the value of
K increases is higher. The value of K is restricted due to
practical limitations, sampling of a sensor takes time and
energy, so K can not be set too high. More sophisticated
approaches exist, like a weighted average or a Kalman fil-
ter, but are undesirable due to their computational com-
plexity and constraints. Recall that these computations
have to be performed on the node itself. Sending all K
measurements (of one epoch) to a central place where it
can be processed, is not an option due to the relatively
high energy costs of data communication in sensor net-
works.

5.3 Phase three, optimize system response

The third and final step is to optimize the system accu-
racy. Notice that the third step of the algorithm is per-
formed centrally, using measurement data stored in the
database. When trying to make a simple model of the tem-
perature one can try to fit a line, a plane, or a higher order
curve, between measured temperatures of different nodes
at the same epoch, using least squares regression. The
temperature for node 4 can be estimated with the follow-
ing equation.

P+Q

faoqLZapx + Z aqu P C))

q=P+1

Where z; and y; are x and y position respectively of sen-
sor node ¢ and oy ... g coefficients to be determined.
The plane which fits the best, has has the lowest sum of
residuals .S,., equation 5.

2

N P+Q
S, — Z T, — | oo+ Zapx + Z aqu P
i=1 q=P+1

&)
Lowest sum of residuals means that S, has to be mini-
mized with respect to zero. Minimize S, means, differ-
entiate .S, to each coefficient «;, equation 6, and set the
equations to zero.

85):07 1=0,...,Q 6)
aai
The coefficients «q ... og can be calculated. In matrix
notation.
(Z]"1Z)|A = [Z]*T (7
A= [Z]"Z)| Y Z)]TT ®)

Where A is the vector of ag ... ag and T the vector of
measured temperatures 7;. Let [Z] be the following ma-
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5.3.1 Order of polynomial

The correction, of the bias, can be improved in two
ways. First, do not use measurement data from one
epoch, but calculate corrections for the biases for many
epochs and average the result. A bad correction for
a single sensor, ¢.2. due to noise in a single epoch is
than slightly suppressed. Note that more samples do
not necessary mean better results. When two estimated
distributions of the temperature are more or less the
same (e.g. measurements from consecutive epochs) the
calculated correction values will also be the same. So
averaging two more similar values makes no difference.
When the temperature changes, different distributions
of the temperature of the deployment scenario can be
made. Due to the differences in temperature, different
correction values will be calculated. A bad correction
for a single sensor of one distribution (one epoch) will
be out averaged by multiple good estimations. The more
different distributions of the temperature exist, the better
the result. This results in equation 10, where p is the
order of the polynomial, p = 1...4 and F is the number
of epochs, and ¢ is the number of the sensor.

B
1
Mi) = 5 D A (10)
e=1

The second way to improve the correction is to aver-
age the correction calculated by different order of polyno-
mials. In simulations it is noticed that, a bad correction
for one sensor for one specific order of polynomial will
be out averaged by averaging calculated corrections of all
polynomials (p = 1...4). In some cases due to this aver-
aging the correction is better than, a correction calculated
by a single p'" order polynomial. Sometimes a single p*"
order polynomial is better. The best choice can only be
determined afterwards, and only in simulations when real
values of the biases are available. Averaging the calcu-
lated corrections of different order polynomials will result
in most cases in good estimations of the corrections. This
is written out in equation 11, where P = 4.

1 P
Ni=5 > N (11)
p=1

5.3.2 Decision

The last step in the algorithm is to decide whether the cal-
culated corrections should be applied or not. If very accu-
rate sensors are used, the model of the distribution of the

temperature might be not good enough. When applying
the calculated corrections, the system accuracy might get
worse. On the other side, the model of the distribution of
the temperature might be good enough if very bad sensors
are used. In that case the system accuracy improves. Re-
call that one has to look at the accuracy of the system as a
whole. When the error (¢; — A;) for 9 sensors is increased
with 0.1 °C, and for one sensor the error is decreased with
1°C, it is still an improvement of the system as a whole.
So some sort of decision function must be made which de-
cides to apply the corrections or not. As stated earlier the
assumption has been made that the bias is Gaussian dis-
tributed, assume p = 0 and o = 1, note'. Some proper-
ties of the Gaussian distribution are going to be used. The
first question to be answered, what is the system accuracy
before applying the algorithm. Recall equation 1, the sys-
tem accuracy is the summation of the absolute value of
all bias errors. When having NV sensors (and N is large),
the average value of the absolute value of the bias can be
calculated with equation 12.

N
e= % D e |=079780 € is N(0,0%) — dist.

i=1 (12)
Lets call this value the average absolute value of the bias,
€. So when ¢ = 1 and having 50 sensors, the system ac-
curacy would be 50 x 0.7978 ~~ 39.9°C. Assume that the
sensors are bought in a store. The chance that a random
set of sensors have a better system accuracy is 50%. The
chance that a random set of sensors have a worse system
accuracy is also 50% (symmetric properties). When
deciding to apply the calculated corrections, based on a
function with € as parameter, the system accuracy might
get worse when using a good set of sensors. So € have
to be made a little bit lower to cope with a good set of
sensors. Lets call this lowered boundary, €,,,. The value
of €., depends on a certain percentage p and the number
of sensors V. Assume the boundary is lowered that much
that when buying a random set of senors, the chance that
the system accuracy of that set is above that boundary is
p,e.g. p=9%.

In order to calculate the lower boundary, two equations
from statistics. If the biases ¢; . ..ex are mutually inde-
pendent, and all N(u, 0?) distributed, than equation 13
and 14 can be used to calculated the sum and sample-mean
respectively.

N

SN:ZQ

i=1

N(Np, No?) — distributed  (13)

N
_ 1 o2 . .
EnN = ¥ E € N <M7 W) — distributed (14)

I'The value of o can be derived from e.g. the data sheet for real
Sensors.
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To calculate a boundary for e.g. p > 95%, the cumulative
table of a standard normal distribution has to be used. In
this table, one can find that, p > 95% = $(1.65). Equa-
tion 15 is used to show the calculation of the boundary,
where S is the standardized value of Sy .

GowN — N

P(Sy < @uuN)=P
VN

Sy <

(15)

This value, €, will be used in an equation to decide

to apply the calculated corrections or not. Note that, the

higher value of p, the lower the boundary. Note also, for a

large number of nodes, this boundary is not lowered that
much.

The last step is the real decision of the decision func-
tion. Please notice that the empirical decision function is
found during experiments. At this stage of the algorithm
the estimations of the biases, all A\; are known. In the
ideal case all \; are equal to ¢;. Unfortunately the curve
fitting does not fit every real physical temperature T3*. So
at every sensor ¢ a small difference between the estimated
and the real bias remains. Lets call this error at sensor 4,
7;. The next equation is related to the sum of residuals
(equation 5), but due to all the averaging which have been
carried out there is no single physical temperature and no
single estimated temperature anymore. When summating
the square of all A; more or less the same results is ob-
tained although. As stated before there is an error 7; at
every sensor 4, so the A;’s in the next equation can be re-
placed with ¢; and 7;, which are both unknown. Equation

16.
N

N
SN =D (e@+m) (16)
=1

i=1

When perfect sensors are used, all ¢; are zero, so the
only variable left is the amount of error at each sensor
squared, n?. This summation of 7? is the best system ac-
curacy which is possible. This value seemed to be impor-
tant in the decision function. Perfect sensors are impossi-
ble, all sensors have a bias error ¢, so the amount of error
(n?) at each sensor must be estimated. One knows that on
average of the absolute value of all ¢;’s, this value is € as
mentioned earlier. So the value of the summation of all 57
can be estimated, this is done in equation 17, note?. Recall
that € is a function of o.

N N
S Y N - NE (17)
i=1 i=1

The final, empirical found decision function becomes
equation 18. When the left side of the equation is larger
than the right side of the equation, the algorithm should

2Note that in theory this value can be negative due to this calculation,
this is no problem because it is used as a sort of threshold.

— B(1.65)

not be applied.
N
O N - Né&) - (N&),, = N, (18)
i=1

During simulations it is noticed that the left side of the
previous equation results in more or less a straight line
when simulating the proposed calibration algorithm for
different values of o. For small values of o the left side of
the equation is larger and therefore the accuracy of the sys-
tem as a whole decreases when applying the corrections.
When the value of ¢ increases, the line of the left side
of the equation intersects line of Né” at a certain point,
note®. For this and larger values of o the calculated cor-
rections of the biases could be applied. Note that €;,,, has
been introduced to raise the left side of equation 18 and to
lower the right side of this equation a little bit for a higher
value of percentage p. Recall that a higher percentage of
p, e.2. p = 95% results in a lower value of €,

6 Simulations

When performing a simulation run, figure 1 can be
made. The standard deviation of the bias is simulated
from O to 0.5 (depicted on the x axis). On the y axis
the average amount of error per sensor in °C (absolute
value) is depicted. In the graph itself several system
accuracies are depicted. The solid line is the original
system accuracy. System accuracies are depicted when
applying corrections by single order of polynomials (1%¢
... 4" order). The system accuracy is also depicted when
the corrections calculated by the several single p** order
polynomials are averaged, and finally the system accuracy
of these averaged corrections are depicted including the
decision function which decides to apply the algorithm or
not.

Many simulation runs have been carried out and many
could be placed in this paper. Two simulations (office en-
vironment) have been chosen to show the different results
of the ditferent order of polynomials. The different results
when averaging the calculated corrections and the deci-
sion function. The decision in one simulation is very ac-
curate, in the other simulation it is very conservative. The
results of the first simulation run are depicted in figure 1.
The performance of the algorithm and the correctness of
the decision function can be measured. This can be done
by calculating the amount of *improvement’, *'missed’ and
"degradation’ per node (per standard deviation) in degrees
Celsius. In the first simulation example, the decision func-
tion decides to apply the calculated corrections when o is
0.175. The system accuracy gets worse, although 6.4m°C
per node is not worth mentioning it. For values of o is 0.2
and higher the system accuracy improves (the summation
gets lower).

3Recall that € is a function of &
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Figure 1. Simulation 1 office environment,
20 nodes

When running the same scenario a second time, new
biases are generated and the nodes are placed randomly
again (thus the nodes are placed at other places), the
results of the algorithm will therefore also be different. In
the second simulation run, a relative bad set of sensors
have been simulated. A set of sensors have an absolute
average bias of 0.7978¢. In this set the absolute average
value of the bias is =~ 0.90. Due to this high value, the
algorithm decided to apply the calculated corrections
too late. It could apply the corrections for biases with
a standard deviation of 0.15, but it decided to apply the
corrections for a standard deviation of 0.425 and higher,
as can be seen in figure 2. The amount 'missed’ is not

0.5 T T T T T T T T
— orig. system response

corrections averaged

corrections averaged with decision
1st order 4
2nd arder
3rd arder
4th arder

0.45

0.4 1

x4+ 4 o0

0.35H

B+ =
Bt
)

error per node in deg C

] I I I ! I I I
1} oos 01 015 02 025 03 035 04 045 08

standard dewiation of sensaor

Figure 2. Simulation 2 office environment,
20 nodes

that much per node in the beginning, when ¢ = 0.15
...0.25, Improvements are getting noticeable for standard

deviations of the bias of 0.275 and higher, 0.1°C per node.

7 Results

Data was received from 24 distinct nodes. Temperature
readings of the LM92 temperature sensors [5] seemed
to be valid, all between 23.125°C and 26.125°C. To
calculate the correction of the biases of the sensors
the algorithm has been applied on a section of the
measurement data. Only epochs where more than N
(e.g. N = 8) nodes delivered temperature readings were
used. The tests were influenced with communication
problems, epochs were more than 20 nodes delivered
measurements were rare. Increasing N did not make
that much difference. In total 185 epochs were used.
Calculations for the corrections of the biases (for every
node) were made for 1%, 274, 37 and 4 order poly-
nomials. These calculated corrections were averaged as
described before. The algorithm decided not to apply the
corrections of the biases. Calculated corrections were
too high although close to the boundary (for different
values of p) were it could apply the corrections. The
average absolute value of the bias when having a large
amount of LM92 temperature sensors is 0.08776°C,
Note that the resolution of the sensor is 0.0625°C so the
algorithm should correct the measurements in the order
of 1 or 2 times the resolution which is almost impossible
in an uncontrolled environment. When looking at the
results of the algorithm the calculated corrections seemed
quite reasonable. From the 24 calculated corrections, 6
calculated corrections had a higher absolute value than
0.08776°C, but these higher values have probably too
much weight, so the algorithm decided not to apply
the corrections. The highest calculated correction was
0.36 °C. This value is a little bit more than the maximum
bias error (0.33°C) according to the data sheet of the
LM92.

According to the data sheet and assuming that the read-
ings of the I.M92 are correct, temperature readings of
the internal temperature sensor of the MSP430F 149 micro
processor [3] of the sensor node should be between 10 °C
and 40 °C. Looking at the results, temperatures between
17.87°C and 32.49°C were measured, so the measure-
ments seemed to be valid. Temperature readings of sensor
node 1 are depicted in figure 3. The internal temperature
reads always =~ 6.5°C higher than the L.M92 tempera-
ture sensor, the difference between both bias errors. The
temperature course is more or less equal. The same phe-
nomena is observed at all other nodes.

The calibration algorithm is also applied on measure-
ment data generated by the internal temperature sensor.
The algorithm decided to apply the corrections (for dif-
ferent values of p). In table 1 the calculated corrections
for the several order of polynomials are depicted, as well
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Figure 3. Temperature readings of node 1

as the average correction (of the several different orders
of polynomials). In the last column the pairwise (relative)
calibration relationships between the LM92 and the inter-
nal temperature sensor are depicted. The pairwise calibra-
tion relationships are calculated with equation 19, where
E is the number of epochs. If there is no temperature
measurement for an epoch available the difference for that
epoch is set to zero.

20 4.44 3.71 2.64 1.25 3.01 6.95
21 1.81 1.73 0.43 0.27 1.06 1.78
22 3.59 3.24 1.02 1.67 2.38 7.89
23 4.25 3.48 2.00 0.57 2.57 0.71
24 208 1.01 | 016 0.01 0.75 4.14
25 -0.85 | -1.09 | -0.43 | 0.03 -0.58 | -4.73

Table 1. results of int. temperature sensor

B

1

7 2 Tearer = Teint) (19)
e=1

During simulations and testing, the assumption was that
for both sensors the biases are Gaussian distributed,
with mean ¢ = 0. Due to the fact that no temperature
sensor is used which is calibrated to an absolute reference
temperature, the real value of p for both temperature
sensors can not be determined. The p of the biases of
L.M92 temperature sensor as well as the internal temper-
ature sensor will probably be close to zero, according
to measured temperatures and priori knowledge. But
if p = 40.2°C or —0.05°C, one can not say. When
averaging all temperature measurements of the TL.M92
temperature sensors, the average temperature is 24.28 °C,
The average temperature of all the measurements of all
internal temperature sensors of the MSP430 is 24.64 °C.

When the average temperatures are equal, one can
conclude that the value of i for both sensors is equal,
and probably close to zero. Although the difference in
average temperature is not that big, the values of p are
definitely not the same. Therefore one can not deduce the
real value of . for the LM92 and the internal temperature
sensor. When assumed that the temperature readings of
the 1LM92 are correct a pairwise calibration relationship
between the .M92 and the internal temperature sensor
can be made. This pairwise calibration relationship is
an estimation of the bias of the internal temperature
sensor. When comparing these values with the averaged
calculated corrections, these values must be in the same
order. Looking at the results, the average correction of
node 8 and 11 are different in sign with respect to their
pairwise calibration. Tooking in table 1 and 2 one can

node | pos.X | pos.Y | node | pos.X | pos.Y
1 0.5 1 14 55 1.5
2 0.5 25 15 35 3
3 1.5 1 16 3.5 Z
4 3 0.5 17 4 3
3 1.5 0.5 18 4.5 2
6 55 1 19 6 1
7 2 0.5 20 3 2
8 3.5 25 21 1 3
9 0.5 3 22 6 1:5
10 0.5 0.5 23 1 0.5
11 4 2 24 2.5 2
12 1 1 25 4.5 3
13 2 1

Table 2. Position of the nodes

see that node 8 and node 11 are placed close to node
14, 15 and 16. These nodes have relative high (absolute
value) bias errors. Due to the fact that a curve has to
be fit through the measured temperatures, the algorithm
calculates corrections for node 8 and 11, which are
affected by biased measurements of nodes 14, 15 and
16. Therefore the calculated corrections for node 8 and
11 are not correct. Looking at the pairwise calibration
relationships, and assuming these relationships are more
or less correct, node 1, 5, 12, 14, 20 and 22 have relative
large bias errors. Using only a 1%¢ order of polynomial (a
plane) to calculate the corrections would produce better
results. The problem is that this conclusion is based on
measurements of a temperature sensor which measures at
the same position and time the temperature. In an applica-
tion where no reference temperature sensor is placed this
conclusion can not be drawn. Again, assume the tempera-
ture readings of the .M92 temperature sensors are correct.

8 Future work

During the experiments to test the calibration algo-
rithm, sensor nodes were placed on or close to the ground.
This means that the algorithm is tested in a 2 dimensional
scenario. In a real life scenario it is likely that sensor
nodes are placed on different heights (meters difference).
The calibration algorithm should be adapted so that it can
be used in a 3 dimensional environment. This should be
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simulated and tested. The calibration algorithm has been
tested in a relative small room. Temperature differences
were therefore relative small. When a sensor network is
applied in a larger area, it is likely that the difference in
temperature increase and that there is less correlation in
temperature between groups of nodes that are physically
far away from each other. In this case the arca should be
separated into smaller areas, so the algorithm becomes a
more localized calibration algorithm. Separation can be
done by dividing the arca in smaller arcas on beforehand.
More sophisticated approaches can be thought of, like a
separation based on temperature readings. Temperature
sensors which are measuring the same temperature course
in time can be grouped together.

A final question should be answered. What to do with
sensor readings that are probably measurements errors.
Some measurement values can be filtered out very easily.
Due to errors, ¢.2. a communication error with the sensor
or a conversion error on the sensor, the sensor probably
reads the minimum or maximum sensor reading which is
possible. Assume measurements are not performed at the
boundaries of the sensor, so these extreme sensor readings
can be detected and removed quite easily. When one or
two sensors are measuring slightly different temperatures,
it is difficult to state if the measurements are correct or
not. The office scenario where the algorithm is tested
is taken as example. Assume all sensors are measuring
between 22 °C and 25 °C, one sensor measures between
29°C and 31°C. What to with these values, it is a little
bit high but not impossible in an office. Making a model
of the distribution of the temperature with or without
these high temperature readings makes a difference.
Therefore the algorithm might make a wrong decision
in order to apply the algorithm or not. How to filter
measured data in order to improve the results of the
calibration algorithm should be researched further. What
to do if the decision function decides that the calculated
corrections must be applied. Assume all corrections are
less then the maximum expected (absolute) bias error
except one. Should one apply the calculate correction
for this sensor, or the maximum expected (absolute) bias
error or should this calculated value (or all values) be ne-
glected. These questions can be researched in the future.
Some additional tests can be made to check the calculated
corrections. The calculated corrections should follow a
Gaussian distribution. If e.g. the p is not close to zero or
the shape does not look like a Gaussian distribution the
calculated corrections are unlikely. Additional tests can
be researched further.

A model of the distribution of the temperature can be
made to check for measurement errors. The model can
also be used to inter- or extrapolate measurement values.
Useful when measurement data is missing, or to check the
validity of measurement data. A small amount of accurate
sensors can be used to calibrate a large amount of less

accurate sensors. These possibilities should be explored.

9 Conclusion

In order to improve the accuracy of sensor measure-
ments, less accurate sensors must be calibrated. Without
any question the best way to do this is, is manually. How-
ever, the labor needed for manual calibration makes this
approach unusable. The proposed calibration algorithm
is suitable for calibration of sensors in sensor networks.
Simulations and practical tests have been carried out
with temperature sensors. These simulations and tests
showed that the accuracy of the temperature sensors
can be improved. The amount of improvement depends
on the environment, in a clean environment, where the
distribution of temperature is smooth, large improvements
of the accuracy are possible. Due to the conservative
behavior of the algorithm, the chance of a decrease of
accuracy (of the whole system) is small. Therefore the
proposed calibration algorithm can be used to improve
the accuracy of the measurements, without any harm. The
proposed algorithm is an off-line algorithm, so it requires
no additional hard- or software on the sensor nodes.
Besides the possibility to calibrate sensors, the model of
the distribution of the temperature can be used to check
measurement values for validity. It is possible to inter-
or extrapolate missing measurement data. This can be
exploited while estimating (calculating) a measurement
is more efficient in terms of energy than sampling a real
physical sensor. This is useful in a WSN.

References

[1] V. Bychkovskiy. Distributed in-place calibration in sensor
networks. Master’s thesis, University of California at Los
Angeles, June 2003.

[2] V. Byckovskiy, S. Megerian, D. Estrin, and M. Potkonjak.
A collaborative approach to in-place sensor calibration. In
Proceedings of the Second International Workshop on In-
formation Processing in Sensor Networks (IPSN), volume
2634 of Lecture Notes in Computer Science, pages 301—
316. Springer—Verlag Berlin Heidelberg, 2003.

[3] T. Instruments. MSP430F149  Data
http://focus.ti.com/lit/ds/symlink/msp430£149.pdf.

[4] A.LaMarca, W. Brunette, D. Koizumi, M. Lease, S. B. Sig-
urdsson, K. Sikorski, D. Fox, and G. Borriello. Making sen-
sor networks practical with robots. In Pervasive '02: Pro-
ceedings of the First International Conference on Pervasive
Computing, pages 152-166. Springer-Verlag, 2002

[5] N. Semiconductor. Temperature sensor
http://www.national.com/ds.cgi/LM/LM92.pdf.

[6] K. Whitehouse and D. Culler. Calibration as parameter es-
timation in sensor networks, 2002.

sheet,

LM92,

526 VOLUME 2



