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ABSTRACT 
Real-time electronic detection of pe

(PNA):DNA hybridization is demonstr
nanowire (Si-NW) biosensors. A stable 
is crucial for obtaining the Si-NW respo
applications. An integrated Si-NW 
demonstrated and used for kinetic m
measurements. The equilibrium associ
determined to be KA≈7×106 M-1 in 1 m
buffer. The surface density of hyb
determined to be ~1012 molecules/cm2 w
DNA-P32 assay. A 30× reduction in the m
in Si-NW sensor response is obtained f
0.04 nA/hr by using a differential measu
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INTRODUCTION 

The measurement of binding affinit
complexes is important for molecular
drug discovery, and label-free biosensor
high-throughput sample processing. Sili
NW) biosensors have the potenti
parallelization with low per-sample cost
challenges to estimate the binding affini
Si-NW measurements as the sensor surf
which limits the sample concentrations
analysis times on the order of 15 minu
molecular transport [1]. The Si-NW 
sensitive to sample flow rate changes du
streaming potential at the gate-oxide su
strength buffers during sample swi
introduce erroneous sensor responses [2]

We present an integrated Si-NW
automated sample injection into a micr
and simultaneous electronic measurem
stable sensor signals over the entire m
The sample flow rate in the microflu
compatible with reaction-limited hybr
and a conventional Langmuir model is 
PNA:DNA complex formation.  
 
EXPERIMENTAL 
Surface functionalization 

The p-type Si-NW sensors have bee
plane dependent etching of silico
previously by our group [3]. Uncharge
(Cys-TGT-ACA-TCA-CAA-CTA-NH2)
are attached to the gate-oxide of the Si-N
3-amino propyl triethoxy silane (APTE
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Microfluidic integrated bio
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with a pressurized flow system, and s
balanced fluidic resistance circuit 
transport in the reaction-limited reg
microfluidic assembly is mounted with 
auto-sampler flow system and simult
electrical measurement performed insid
as represented by the dotted border 
schematic diagram of the integrated Si
and electrical set up is shown in Figure 2
 
Electronic measurement 

The device operation is controlled 
sources Vfg and Vbg (2400 SMU, Keithl
wire reference electrode provides the 
solution. The Si-NW is driven with 
modulation voltage vds and the AC 
converted to a voltage with a transcond
(TA) of a lock-in amplifier (LIA) (S
Research Systems). 

Figure 3: Si-NW measurement scheme
with inset showing optical image of 2-w
used for measurement (b) Si-NW measu
PNA:DNA hybridization detection. 

 
For single sensor measurements th

the LIA is used (Figure 4a). 
measurements, two external TA (S
Research Systems) convert the currents
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differential mode (vA-vB) (Figure 4b).
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Differential measurement circuit. 

sample loops in a 
enabling analyte 

gime [1]. Si-NW 
the injector valve 

taneous fluid and 
de a Faraday cage 

in Figure 2. A 
-NW microfluidic 
2. 

with DC voltage 
ey). The platinum 
front-gate bias in 
an AC (30 Hz) 

device current is 
ductance amplifier 
SR 830, Stanford 

 
e. (a) Si-NW chip 
wire Si-NW device 
urement circuit for 

he internal TA of 
For differential 

SIM918, Stanford 
s into voltages vA 
rement is then in 
 All biasing and 
d using a custom-

 
onfigurations. (a) 

schematic. (b) 

 
Probe surface density 

The PNA probe surface co
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large probe surface density 
potential, however, a surface p
hinder the hybridization effici
characterized the PNA probe 
fluorescence and radioactive la
(5'-TAG-TTG-TGA-TGT-ACA
γ-ATP32 and poly-nucleotide
England Biolabs protocol. R
used to determine the hybridiz
of PNA in 1 mM, 23 mM, 13
buffers, respectively. Norma
TCA-CAA-CTA-NH2) immob
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Nanovolume sample injection valve,
internal dead volume, combined with
sample transport across balanced hyd
provides stable and rapid sample switch
experiments. 

Figure 6: Injector switching of 1 mM 
position c1 (ΔP=0.2 bar) to position c2 (
the auto-sampler integrated biosensor pl

 
PNA probe surface density 
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Figure 7: Complementary DNA 
complementary DNA (NC) hybridized to
PNA on SiO2 surface. Left (1-6): ve
hybridization. Right (7-12): horizon
hybridization. All experiments performed

 
Table 1: DNA-P32 hybridization density

No. Surface density   
×1012mol/cm2 No. Sur

×1
1 1 7 
2 11 8 
3 0.5 9 
4 0.02 10 
5 2 11 
6 0.05 12 

 
DNA hybridization detection 
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Figure 8: Si-NW front-gate b
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PNA:DNA duplexes formed on
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Table 1, we estimate an uppe
estimated using an oxide charg
a pH 7 buffer [8].  

 

Figure 9: PNA:DNA duplex hy
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to larger conductance changes compare
conductance changes. From separate rad
assays it was discovered that a consid
non-specifically adsorbed PNA on 
polyimide insulation layer was present. 
 
Differential measurement 

The differential measurement set
Figure 4b. It is well known that the outp
sensitive field-effect transistor sensors
predecessors to Si-NW sensors, suffer 
ion migration at the gate-oxide interfa
measured from a two-wire Si-NW devic
that from a single split-contact Si-NW
differential mode is 0.04 nA/hr and plo
The drift has been reduced by a factor 
differential mode. The quiescent output 
is nulled to zero and so higher sensitiv
signal is detected due to reduced detec
instrument.  

 

Figure 10: Differential Si-NW sensors a
drift measurements. 
 
CONCLUSION 

We have been able to demonstrate 
measurement set up for Si-NW biosensi
which eliminates erroneous noise du
strength buffers. The fluid delivery in 
NW platform is at a high flow speed for
to be in the reaction-limited regime. T
NW auto-sampler system has been used 
kinetic parameter estimation of elect
hybridization detection. The extrac
association constant KA≈7×106 M-1, wh
previously reported values and the 
attributed to analyte depletion effects, du
of non-specific binding of PNA prob
radiolabed DNA hybridization. An im
measurement of Si-NW response is mad
differential measurement method, w
cancels out the inherent drift in Si-NW
factor of 30×. Further improvements 
assay detection are being worked up
horizontally aligned PNA probes hybrid
with differential sensor-reference Si-NW
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