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In recent years, science drivers have emerged for radio astronomy in the frequency range between 0.3 and 30 

MHz. Due to strong man-made radio frequency interference (RFI) and opacity and scintillation in the ionosphere, 
this is not possible on Earth. For this reason the Orbiting Low-Frequency Antennas for Radio Astronomy (OLFAR) 
project aims to develop a space-based radio telescope, consisting of 50 or more nano-satellites in a location far away 
from Earth. These satellites will be flying in a swarm approximately 100 km in diameter to synthesize a large radio 
aperture. As with any radio telescope, OLFAR will need to be calibrated. However the satellite swarm concept 
brings along several unique challenges for the calibration, which are outlined in this paper. An approach is proposed 
for the calibration using known calibrator sources and an alternating least squares (ALS) approach which solves for 
the complex receiver gains, the array response matrix, direction dependent antenna gains towards the calibrator 
sources and the receiver noise power. This paper provides proof of concept of the proposed calibration approach by 
means of Monte Carlo simulations.  

 
 
 

I. INTRODUCTION 
The frequency range between 0.3 and 30 MHz is one 

of the last radio frequency bands that have not yet been 
properly explored by radio telescopes. However, it is 
expected that a lot of new scientific information can be 
discovered at those frequencies. The main science driver 
is cosmology. Specifically finding out what happened in 
the early universe, during the ‘Dark Ages’, which is 
between the moment of cosmic background radiation 
(0.38 million years after the Big Bang) and Epoch of 
Reionization (400 million years after the Big Bang). 
Other applications of such a radio telescope include 
Extragalactic and Galactic Surveys and to record 
Transients, such as pulsar signals, solar or planetary 
bursts, and low-frequency signals from (exo‐)planets1,2. 

The reason why this frequency range has never been 
explored before is that the ionosphere causes 
scintillation roughly between 10 and 30 MHz, and is 
becoming completely opaque below 10 MHz. Man-
made interference is also prohibitively severe at these 
frequencies, not only on the Earth’s surface, but even in 
high Earth orbit2. Hence OLFAR needs to be placed in a 
location far away from Earth. An example of one such 
location that is being considered is the Sun-Earth L2 
point3. 

OLFAR will be an interferometer consisting of 
approximately 50 satellites, spaced up to 100 km apart. 

To keep both production and launch costs low, the 
satellites need to be small. Therefore, an OLFAR 
satellite will be based on the three-unit CubeSat 
platform4, which means the body is only 10×10×30 cm. 
This small format places constraints on the solar panel 
surface, and hence on the available power, but also on 
the size of all the sensors, actuators and internal parts of 
the satellite. This goes for the astronomic observation 
antennas as well. The current design of these antennas is 
a set of three deployable perpendicular dipoles5,6. 

As with any radio telescope, the OLFAR telescope 
will need to be calibrated, because the received signals 
will be corrupted by several factors. Examples are  
variations in the gain and phase of the receivers, the 
(imperfect) antenna patterns, the error in the attitude 
determination (position and orientation of the satellites) 
and receiver noise. The effect that all these factors have 
on the received signals needs to be estimated and 
compensated for to be able to obtain an accurate picture 
of the celestial sphere. That is the goal of calibration.  

In this paper a calibration approach for the OLFAR 
radio telescope is proposed using an alternating least 
squares optimization (ALS) technique. The sky model is 
considered known and consisting of strong calibrators. 
Monte Carlo simulations are performed to provide proof 
of concept.  
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In the next section, the corrupting factors mentioned 
above and the challenges they pose specifically for 
OLFAR are looked into in more detail. In Section III, an 
approach to the calibration is proposed and studied in 
detail. The results of some preliminary simulations are 
presented in Section IV, and in Section V the 
conclusions will be presented.  
 

II. OLFAR-SPECIFIC CHALLENGES 
The two driving advantages of placing OLFAR in 

space, are the absence of the ionosphere and the 
distance from Earth-bound radio sources that cause 
radio frequency interference (RFI). Both these problems 
appear to be prohibitive for radio astronomy to be 
performed on Earth at frequencies below 30 MHz. By 
placing the radio telescope in space, the ionosphere is 
no longer a factor, and the RFI problem becomes much 
smaller2, enabling observations at those low 
frequencies. 

However, using a swarm of small satellites to 
implement a radio interferometer poses a host of new 
challenges for the calibration. The antennas are not 
fixed to the ground as in a traditional radio telescope, 
but they are floating in free space, where it cannot be 
assumed that the orientations of the satellites are 
identical. This means that the antenna gains towards one 
source are going to vary from satellite to satellite. There 
will be orientation sensors on the satellite, such as sun 
sensors or star trackers, but their accuracy might not be 
enough to support accurate imaging. This also poses a 
challenge for polarimetry, since the polarizations of the 
antennas on each satellite will be different.  

The OLFAR satellites will fly in a swarm, meaning 
that the positions of the satellites are random in three 
dimensions. While an algorithm has been developed to 
estimate satellite positions and motions within the 
swarm using the inter-satellite communication system7, 
it might still be needed to improve the knowledge of the 
formation through the calibration algorithms. 

The small size of the satellites also brings along a set 
of challenges. There is no room for large dishes, and 
during launch, the satellites need to fit within the 
ISIPOD deployer for the three-unit CubeSat4, so any 
antenna that is large enough to be sensitive to these low 
frequencies will  need to be deployable so that it can be 
stored inside the ISIPOD deployer. The current design 
of the astronomical antennas is therefore a set of six 4.8 
m long deployable wire antennas that extend from the 
satellite body, as is illustrated in Figure 1. Opposing 
pairs of these antennas are connected to the same 
receiver, forming three perpendicular dipoles. However, 
as can be seen from Figure 1, one set of monopoles is 
not perfectly aligned. This is because only one antenna 
can be deployed from each corner of the satellite body. 
This misalignment skews the antenna pattern5,6. Besides  
 

 

 
Fig. 1: Layout of the astronomical antennas on OLFAR. 

(Not to scale.) 
 

the misalignment, this same monopole pair will be 
connected to separate receiver front-ends, and will be 
combined digitally, instead of being connected to a 
single receiver, as with the other two dipoles. The 
reason for this is that finding a route for a coaxial cable 
through the length of the satellite body is difficult, and it 
would be very easy for the electrical hardware in the 
satellite body to induce crosstalk into the cable. This 
means there will be two separate receiver gains, which 
if they do not match, might influence the performance 
and antenna pattern of this dipole as well.  

OLFAR will have a view of the full celestial sphere 
at all times, and with the three dipoles, this means an 
omnidirectional field of view (FoV). With no means to 
focus the FoV, OLFAR will not be able to use a single 
calibrator source for calibration. OLFAR is not alone in 
this. For instance the Earth-based radio telescope 
LOFAR (Low-Frequency Array for Radio Astronomy) 
has the same property to a large extent, as it observes 
the half of the celestial sphere (a hemisphere) when 
performing snapshots with a single station8. However, 
calibrator sources are still useful in OLFAR, as they 
provide known parameters which can be used to fit the 
parameters to be calibrated to the observation.  

The small satellite body, the difficulties in 
dissipating heat in vacuum, and the limited available 
power all mean that the computational capacity in an 
OLFAR satellite will be limited. High-end processors 
cannot be used, and what can be used and fits inside the 
body might have to run with a lower clock speed than it 
normally would on Earth. This means that the 
calibration should happen as much as possible on Earth, 
preferably using the measured data that OLFAR sends 
to Earth after observation and data reduction 
(correlation of the signals).  

 
III. CALIBRATION APPROACH 

In an interferometer such as OLFAR, all correlations 
between the signals from all antenna elements are  
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estimated using the formula 

 

௣భ௣మݎ̂  ൌ
1
ܶ
න
்

଴
 (1) ݐሻ݀ݐଶሺݔሻݐଵሺݔ

 
where T is the snapshot integration time, x1(t) and x2(t) 
the complex envelope of the received signals from 
receivers p1 and p2, respectively, the over-bar denotes 
complex conjugation, and the circumflex denotes a 
measured quantity. The resulting data set is intuitively 
put into a P by P matrix ܀෡, (where P is the number of 
antennas), called the measured covariance matrix. This 
matrix contains all the correlation estimates between all 
antennas and is Hermitian.  

This measured covariance matrix, together with 
orientation sensor readouts and satellite positions 
calculated from the ranging algorithms7, is the only 
information available on Earth. The received signals 
 ሻ are not available on earth, because this is a muchݐ௣ሺݔ
larger data set than ܀෡, and the communication 
bandwidth to Earth is limited9. Furthermore, calibration 
can only be performed on earth because of the limited 
computational capacity in the satellites.   

The goal is therefore to estimate how the measured 
covariance matrix ܀෡ was affected by the various factors 
and parameters which we need to calibrate, based on the 
available information on Earth. These parameters 
include 

 
 complex amplitude gains of the receivers 

(which are direction independent) g;  
 direction dependent antenna amplitude gains 

(due to the antenna patterns and satellite 
orientations) G0; 

 satellite positions ૆; 
 satellite orientations ૆∠; 
 source powers σs; 
 source positions/direction of incidence eq; 
 receiver noise Σn. 
 
Fortunately this is possible since every element in ܀෡ 

is an observation of the sky as measured by a different 
pair of antennas. Comparing the elements of ܀෡ therefore 
holds information on the parameter values of those 
antennas and receivers. That is essentially what the 
calibration approach does.  

In order to estimate these parameters from the 
measured data, a model is needed in the form of an 
equation that starts with the source parameters, 
incorporates all the parameters to be calibrated in the 
system, and has the covariance matrix as a result. This is 
called the measurement equation (ME)  

 
Rሺࣂሻ ൌ MEሺࣂሻ ൌ ME൫g,G଴, ૆, ૆∠, ,௦࣌ e௤, ઱௡൯ 

 
where ࣂ represents the complete collection of para-
meters. 

Then the goal of the calibration is to find the system 
parameters that let the output of the ME, ܀, to as closely 
as possible resemble the measured covariance matrix, ܀෡. 
This can be done using a maximum likelihood (ML) 
formulation, an alternating least squares (ALS) 
approach or an extension thereof, weighted alternating 
least squares (WALS). These are presented in Section 
III.II.  

In this paper it is assumed that the sky is dominated 
by several strong calibrator sources, the position and 
strength of which are known, i.e. a known sky model is 
assumed. 
 
III.I Measurement Equation 

To present the ME, we start with a simplified 
version, and then add each symbol that will appear in 
the final ME one by one, explaining them in turn so that 
the ME will become intuitively appealing.  

The first symbol to be looked into represents the 
source powers. The sky model has Q sources, the 
powers of which are contained in the vector ࣌௦ ൌ
ሾߪଵ. . . .௤ߪ . .  ொሿ. Since the output of the ME is aߪ
covariance matrix, it is most convenient to represent the 
source signals in a covariance matrix as well. However  
we will assume that the source signals are all 
independent, resulting in a diagonal matrix ઱ with the 
source powers on the main diagonal, i.e. 

 
  ઱௦ ൌ diagሺ࣌௦ሻ. (2) 

 
A signal from a given source arrives at each satellite 

with a different delay because of the different satellite 
positions. This can be stored in the P by Q array 
response matrix A. Note that this matrix consists of sets 
of three identical elements since every satellite has three 
co-located dipole antennas. The ME works with a 
complex representation and narrowband signals, so that 
a delay can be represented by a phase shift, i.e. by a 
multiplication by exp	ሺ݆߶ሻ, where ߶ is the phase. This 
means that each element of A is given by 
 

  ܽ௣௤ ൌ exp൫݆߶௣௤൯ ൌ exp൫݆	2ߨ ௖݂	ܿ	૆௣ 	 ∙ ௤܍ ൯ (3)
 

where c is the speed of light, ௖݂ the observation 
frequency, ૆௣ is the position of satellite p and ܍௤ a unit 
vector pointing towards source q, both in three-
dimensional Cartesian coordinates. A is combined with 
(2) to get the ME of an idealized interferometer with 
isotropic antennas, 

 
ᇱ܀ ൌ  ுۯ઱௦ۯ
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where ܀′ is a P by P covariance matrix, the prime 
denoting that the ME is not yet complete, and the 
superscript H denoting the Hermitian inverse. Each 
element of ܀′ is given by 
 

௣భ௣మ′ݎ ൌ ෍ܽ௣భ௤	ߪ௤

ொ

௤ୀଵ

ܽ௣మ௤തതതതതത	. 

  
In this equation the signals from each source are 
correlated separately before being summed. This is 
allowed since the signals from distinct sources are 
additive at the antennas, so the covariances resulting 
from different sources are additive as well. This means 
that for each source, one can simply take the 
autocorrelation (power) ߪ௤ of a source and rotate it 
according to the delays ܽ௣ଵ,௤, and ܽ௣ଶ,௤തതതതതത, where the latter 
needs to be conjugated as per the operation of  
correlation in described in (1).  

Now we need to add the system parameters, starting 
with the direction dependent antenna amplitude gains. 
Due to the antenna patterns, every antenna has a 
different gain towards each source, so they are stored in 
the matrix G0 of size P by Q. This is the same size as A, 
and implementation in the ME is therefore 
straightforward:  

 
R′ ൌ ሺG଴ ⊙ Aሻ઱௦ሺG଴ ⊙ Aሻு 

 
where ⊙ denotes element-wise multiplication.  

Note that in OLFAR, the direction dependent gains 
are heavily dependent on the orientation of the satellites,  
૆∠. If the antenna patterns are known, this can be used 
together with  ૆∠ to calculate G0. However, this can 
only be used as an initial guess during calibration, as 
component spread in the antennas or errors in the 
antenna pattern models will cause errors in the 
calculated G0.   

The next parameter to be implemented is the 
complex amplitude gains of the receivers g, which is a 
vector of length P, with complex values, as the delay in 
the receiver chain is also a very important parameter in 
interferometry. The gains are put in a diagonal matrix, 
as G = diag(g), so we can add it to the ME. The off-
diagonal entries of G can be used to add mutual 
coupling (crosstalk) between signal paths, in which case 
G is assumed to be Hermitian. In OLFAR, crosstalk is 
only expected between the receiver paths within one 
satellite. However calibrating for crosstalk is beyond the 
scope of this paper. Adding G to the ME, we get 

 
R' ൌ GሺG଴ ⊙ Aሻ઱௦ሺG଴ ⊙ AሻுGு. 

 
The last parameter to add is receiver noise. This is 

modelled as additive Gaussian noise and can be 

represented by the P by P covariance matrix Σn. If all 
the noise in all receivers is independent, Σn will be a 
diagonal matrix. However if there is a noise source that 
couples into more than one signal path (possibly within 
one satellite) then Σn will have off-diagonal non-zero 
values. In this paper however, we will assume that all 
receivers have equal and uncorrelated noise, so that 
઱௡ ൌ   .P identity matrix	ൈ	௡۷௉, where ۷௉ is the Pߪ

Since the receiver noise is additive, ߪ௡۷௉ becomes a 
separate term in the ME, giving the completed ME as 

 
  R ൌ GሺG଴ ⊙ Aሻ઱௦ሺG଴ ⊙ AሻுGு ൅  ௡۷௉ (4)ߪ

 
where the constituents of A are given by (3). 

Note that in the ME, G and ሺG଴ ⊙ Aሻ can exchange 
a common magnitude factor and a common phase 
without influencing R. This becomes problematic when 
comparing parameters with the true values in 
simulations, or if multiple snapshot observations are 
combined to create a clear image of the sky. This means 
a constraint is needed on both the magnitude and phase 
to avoid these problems. The constraint chosen here for 
the magnitudes is that the average receiver gain 
magnitude is fixed, as it is known by its design. Another 
possibility would be to consider the maximum gain in 
the antenna patterns to be known and fixed, but the 
accuracy thereof would depend on the orientations of 
the satellites relative to the sources. The phase 
constraint is that the average receiver gain phase is 0 
rad, which is possible when the phases do not vary too 
much from receiver to receiver. Simply defining the 
phase of one receiver to be 0 and using that as a 
reference as is commonly done8,10 is not practical here 
because the relative antenna locations are not fixed in 
OLFAR. 

 
III.II Optimization techniques 

There are several ways in which the model 
parameters can be estimated. An asymptotically 
efficient method is the maximum likelihood (ML) 
formulation. However, it appears that the ML 
formulation for this problem cannot be solved in closed 
form8,11. A more tractable alternative is a least squares 
approach in which the total error squared is minimized, 
according to the cost function8 

 
ሻࣂሺߢ   ൌ ∥ ෡܀ െ ሻࣂሺ܀ ∥F

ଶ (5) 
 
where ࣂ represents the complete set of parameters to be 
estimated, ‖ሺ∙ሻ‖ி denotes the Frobenius norm and R(ࣂ) 
is given by (4). Because ࣂ consists of many different 
kinds of parameters, such as the different kinds of gains 
and phases, the cost function is minimized only for 
subsets of the parameters at a time, alternating between 
all subsets. This approach is known as the alternating 
least squares (ALS) method which will be studied in 



 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved. 

 
 

IAC-14-B4.7B.6          Page 5 of 7 

detail in the next subsection. An extension of ALS is 
weighted ALS (WALS). In WALS, weights are given to 
each data point (i.e. each element of R) that determines 
its influence on the parameter estimation, which can 
improve the estimation accuracy. However, the 
implementation of WALS for the calibration problem at 
hand is beyond the scope of this paper.  
 

Alternating Least Squares (ALS) Optimization 
An ALS approach has been developed for the 

calibration of OLFAR, based on (4). The complete set 
of parameters ࣂ is divided in five subsets:  

 
 the elements of the array response matrix 

ܽ௣௤ ൌ exp	ሺ݆߶௣௤ሻ; 
 the phases of the receiver gains arg	ሺ݃௣ሻ; 
 the magnitudes of the receiver gains	ห݃௣ห; 
 the direction dependent gains ݃଴,௣௤; 
 the receiver noise powers σn. 
 

Least squares solutions are found for each set of 
parameters in turn, while the rest of the parameters are 
fixed to their current estimate or initial guess. ALS 
alternates between these sets, iterating towards a global 
least-squares solution for all parameters, until a stopping 
criterion is reached.  

The parameters listed above can be divided in two 
categories: phases (arg൫݃௣൯ and	߶௣௤) and magnitudes 
(ห݃௣ห, ݃଴,௣௤	and	ߪ௡). For the magnitudes it can be 
observed that the ME in (4) is approximately linear. 
This is illustrated below by looking at the receiver gains 
G in the ME, but for all other magnitude parameters a 
similar argument can be made. If we ignore receiver 
noise for the moment, for a single entry in R we have 

 

௣భ,௣మݎ   ൌ ݃௣భ݃௣మ෍݃଴,௣భ௤ܽ௣భ௤	ߪ௤

ொ

௤ୀଵ

݃଴,௣మ௤ܽ௣మ௤തതതതതത . (6)

 
This equation is linear in ݃௣భ as long as ݌ଵ ്  ଶ, a݌

condition that holds everywhere in the ME, except on 
the diagonal. If the diagonal is ignored, finding a least 
squares solution for the magnitude parameters is a 
standard linear least squares problem, with a single 
minimum in the cost function.  

Since the diagonal is only a small part of R, when it 
is included in the minimization the nonlinearity is small 
enough so that it does not create local minima. The 
minimum can then be found within a few iterations of a 
linear least squares algorithm. However, the receiver 
noise is much stronger than the celestial sources. This 
makes the diagonal a very unreliable source of 
information for the estimation of any gain, because the 
noise term is dominant on the diagonal. Ignoring the 
diagonal could therefore improve the estimation of the 

direction independent gains as a result of this, which has 
been confirmed in simulation (see the next section). 
Ignoring the diagonal in this way could be seen as a 
primitive form of WALS, where the diagonal entries are 
given weight 0, and all other elements are given weight 
1.   

By similar arguments as for ห݃௣ห, it can be shown 
that (4) is mostly linear in ܽ௣௤ as well. However, in the 
case of the array response matrix we are interested in 
their phases ߶௣௤, for which the ME is harmonic rather 
than linear. This means that (6) can be rewritten as a 
function of ߶௣௤ as  

 
௣భ௣మ൫߶௣భ௤భ൯ݎ ൌ ܣ ൅ ܤ exp൫݆߶௣భ௤భ൯ 

 
where A and B are constants which are given  by 
 

ܣ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ
݃௣భ݃௣మ ෍ ݃଴,௣భ௤ܽ௣భ௤ߪ௤݃଴,௣మ௤ܽ௣మ௤തതതതതത

ொ

௤ୀଵ
௤ஷ௤భ

			for	݌ଵ ് ଶ݌

݃௣భ݃௣మ෍݃଴,௣భ௤ܽ௣భ௤ߪ௤݃଴,௣మ௤ܽ௣మ௤തതതതതത

ொ

௤ୀଵ

					for	݌ଵ ൌ ଶ݌

 

 
and 
  

ܤ ൌ ቐ

݈
݈
݃௣భ݃௣మ݃଴,௣భ௤భߪ௤భ݃଴,௣మ௤భܽ௣మ௤భതതതതതതത 				for	݌ଵ ് ଶ݌

݈
݈
		0 				for	݌ଵ ൌ ଶ݌

. 

 
Note that when ݌ଵ ൌ ݍ ଶ and݌ ൌ  ଵ, we get a term thatݍ
is independent of ߶௣భ௤భsince  ܽ௣భ௤భܽ௣భ௤భതതതതതതത ൌ 1, and 
hence it becomes part of the constant A for ݌ଵ ൌ  .ଶ݌
This means the function will only have a single 
minimum within the interval 0 ൏ ߶௣௤ ൏  When .ߨ2
inserted into (5), the single minimum will remain at the 
same value for ߶௣௤ as long as ߢሺࣂሻ ൐ 0 for all ߶௣௤, 
which in all practical scenarios will be true because of 
model inaccuracies and the finite integration time. It is 
then possible to locate that minimum very quickly. Take 
four samples of ߢሺࣂሻ at ߶௣௤ equals 0, ,ߨ0.5
 take the fast-Fourier transform (FFT) of the ,ߨ1.5	and	ߨ
resulting sequence and look at the phase of the second 
frequency sample, the one representing the ground 
harmonic.  

By similar arguments, this technique can be applied 
to the phases of the receiver gains as well.  

 
IV. SIMULATIONS 

To verify the proposed calibration technique, Monte 
Carlo (MC) simulations have been performed. For each 
MC run a new satellite swarm with a new sky model has 
been  generated.  With  each  iteration  the  number  of 
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Table 1: Parameters and assumptions for the Monte 
Carlo simulations.  

 
satellites has been the same, as well as the number of 
point sources in the sky model. All other parameters are 
randomly generated according to the assumptions and 
parameter values listed in Table 1. Since in the MC 
simulation we are interested in the accuracy of the 
calibration, the absolute value of the source powers are 
not relevant. However the ratio between the received 
source powers and the noise powers in the receiver is 
important, as this does influence the accuracy. For this 
reason the powers are expressed as unitless quantities in 
Table 1 and in the remainder of the paper. 

Because of the way the satellite positions and sky 
models are randomized in the simulations, there is no 
statistical difference between the accuracy of the 
calibration routine between parameters of different 
antennas or satellites. Therefore, when estimating the 
accuracy of for instance the receiver gains, all the errors 
can be averaged for all the gains to get an estimate for 
the accuracy within one MC run. Because of this, 
convergence in the MC simulations is a lot faster, 
except for the receiver noise ߪ௡, since it is only one 
parameter for each MC run. In this light, the outcome of  

Table 2: Results of the Monte Carlo simulations.  
 
the MC simulation is only five error variance values, 
one for each subset of parameters listed in Section III.II. 
 
IV.I Simulation results 

The results of three MC simulations are summarized 
in Table 2. In the final result, some MC runs have been 
removed from the data set. This seemed to be necessary 
as in those cases the runs in question produced error 
variance outliers of one to four orders of magnitude 
above the rest. These outliers are believed to be caused 
by the numerical approximations involved in the linear 
least squares solver, causing the optimization routine to 
become numerically unstable and diverge. The signal-
to-noise ratio (SNR) in the measured covariance matrix 
 ෡ also seems to have an influence on this. In the܀
simulation where the noise power was 104, with 1 
second integration time, about 3% of the MC runs were 
discarded. With the integration time increased to 4 
seconds, the amount of runs discarded was 1.5%, while 
when the noise power was 103, none of the MC runs 
were discarded.  

As mentioned in Section III.II, the diagonal entries 
were ignored for the gains, as this appears to give an 
improvement of up to 20% of the estimation error 
variance, as well as fewer problems with numerical 
instability.  

When looking at Table 2, it can be seen that the 
parameters are estimated with decent accuracy as long 
as the SNR is not too low. It shows that a large receiver 
noise power has a negative influence on the accuracy of 
the calibration, while choosing a longer integration time 
improves the situation. This is an intuitively appealing 
result, as both factors affect the SNR on the measured 
covariance matrix.  

 
V. CONCLUSIONS 

A calibration routine was developed for the OLFAR 
radio telescope that estimates the complex receiver 

Swarm   

Number of satellites 50 

Number of antennas/receivers per 
satellite 

3 

Total number of antennas/receivers, P 150 

Swarm distribution Gaussian  

Swarm diameter (95% inside)  0.3 km 

Satellite orientations Random 

Receiver gain (magnitude - mean) 1 

Receiver gain (magnitude - variance)  0.03  

Receiver gain (phase - variance)  0.03 rad2 

Receiver noise power (only different 
for each MC run) 

equal in all 
receivers  

Average receiver noise power       See: Table 2 

Variance of receiver noise power   5 

Integration time See: Table 2 

Bandwidth of correlated signal 1 kHz 

Sky Model   

Number of point sources, Q 3 

Source directions Random 

Source powers (received power) uniform 
within 
(0.5 ; 1) 

Simulation conditions    Unit 
Receiver noise 
power 

103 104 104 relative 

Integration time 1 1 4 seconds

Error variance of parameters    Unit
Receiver gains 
(magnitude) 

1.8·10-3 85·10-3 15·10-3 relative 

Receiver gains 
(phase) 

11·10-3 19·10-3 13·10-3 radian2 

Antenna gains 2.5·10-3 0.13 14·10-3 relative 
Array response 
matrix 

12·10-3 22·10-3 14·10-3 radian2 

Receiver noise 1.6·10-3 1.5·10-3 1.7·10-3 relative 
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gains, the array response matrix and the direction 
dependent antenna gains towards the calibrator sources, 
based on a sky model consisting of known strong 
calibrator sources. The calibration routine is based on 
alternating least squares (ALS) optimization, and was 
verified using Monte Carlo (MC) simulations. While 
some MC runs had to be discarded due to occasional 
numerical instability of the calibration routines, the 
routines do successfully show that calibration of a radio 
telescope consisting of a swarm of small satellites is 
possible with a least-squares approach. In future work, 

the problems with numerical instability do need to be 
solved or at least better understood, and the calibration 
should be refined and extended in the future to become 
more general. 
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