
SOA and EDA: A Comparative Study
Similarities, Differences and Conceptual Guidelines on their usage

Zaharah Allah Bukhsh, Marten van Sinderen, P. M. Singh
University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands

z.allahbukhsh@student.utwente.nl,{m.j.vansinderen,p.m.singh}@utwente.nl

Keywords:
Service oriented architecture, SOA, Event driven architecture, EDA, Event driven SOA, SOA 2.0, Learning
Management System, LMS

Abstract:
Changing business requirements and new technologies trigger the business stakeholders to shift their approach
from many small isolated systems to a single connected system. Integration of isolated systems is partially
supported by service oriented architecture (SOA) and event driven architecture (EDA), each of which provides
a set of system design guidelines. Since the purpose of both architectures is similar, the stakeholders have
to make a choice on which architecture to use. The objective of this paper is to investigate the differences
between SOA and EDA and provide conceptual guidelines on which architecture to consider for a given set of
requirements. Apart from literature, we have considered various online resources (blogs, forums) that argue
about differences and similarities between SOA and EDA. To clarify the design principles of both architectures,
we present a case study of a learning management system (LMS).

1 INTRODUCTION

Emergence of web services has brought the service
oriented architecture (SOA) into limelight (Natis,
2003). Features of loose coupling, flexibility, time
to market, distributed nature and reusability of legacy
applications gave the SOA a competitive advantage
over the object oriented paradigms (He, 2003). The
primary focus of SOA is to enable exploitation
of services by accessing to remote components’
interfaces through request and response methods (e.g.
RPC). The concept of SOA is similar to the traditional
client-server architecture of systems. But with
changing theway of doing business, an IT system is not
only required to be reactive but also proactive. Shortly
after SOA, another architecture, known as event driven
architecture (EDA), emerged which is able to sense
and respond to real-time events. EDA is able to detect
situations based on monitoring events and react to
these situations (i.e. be proactive). From the business
perspective, SOA mimics the business function (e.g.
stock management) and EDA accommodates the real
time business events (e.g. stock is low).

There have been discussions about the similarities
and differences between SOA and EDA (Cramon,
2013; Dubray, 2014; van Hoof, 2006b).Moreover,

there is an abundance of literature which emphasizes
the relationship between SOA and EDA such as
the combining of SOA and EDA features, and
the interaction of such features (Maréchaux, 2006;
Malekzadeh and Pessi, 2010; Zagarese et al., 2013).
With the on-going discussions, Oracle proposed the
combination of SOA and EDA under the title of SOA
2.0 (Krill, 2006).The terminology and idea of SOA
2.0 was highly criticized(McKendrick, 2006; Little,
2006), but, at the same time it suggest the event-driven
approach to business in order to capture the real-time
business events.

With many architecture patterns and varying
business requirements, business architects and IT
professionals need to make a decision on which
architecture to consider for the design of a specific
system. So, the motivation of this work is to facilitate
the business stakeholders in their architectural choices
while keeping the requirements of the system in mind.
The contribution of this work lies in its role to clarify
the major differences between SOA and EDA. It will
also provide the the conceptual guidelines to business
stakeholders for the choice of a particular architecture.
We have chosen a case study of a learningmanagement
system (LMS), for the discussion of design principles
of SOA and EDA. The reason for considering the

z.allahbukhsh@student.utwente.nl,{m.j.vansinderen,p.m.singh }@utwente.nl


LMS case study is twofold: on one hand, it is easy
to consider the LMS’s design problems even from an
academic setting and, on the other hand, a relatively
large audience (students and researchers) has a basic
understanding of e-learning environments.

This paper is structured as follows: section 2
presents the basic background knowledge of SOA and
EDA along with sample scenarios. Major differences
between SOA and EDA are discussed in section 3.
Section 4 outlines the design problems of a learning
management system and their solution using the SOA
and EDA architectural approach. Section 5 provides
the set of guidelines for stakeholders in making
architectural choices. Finally, section 6 present our
conclusion.

2 BACKGROUND

In this section, we present background of SOA and
EDA. The brief introduction of SOA and EDA is
provided in section 2.1 and 2.2 respectively. Section
2.3 presents sample scenarios on the use of SOA and
EDA.

2.1 Service Oriented Architecture

SOA is a way of designing software system where
independent software components provide services to
end-users or other software components(Papazoglou,
2003). A service can be defined as a unit of
functionality that is self-contained, discoverable and
can be dynamically invoked(Bianco et al., 2007).
SOA has three basic participants: service consumer,
services provider and service registry. The interaction
among these participants involve publish, find and
bind operations(Champion et al., 2002). Service
provider defines the service description and publishes
it to a service registry. Using the find operation,
service requester discovers the service description
on service registry. Finally, the service requester
invoke the service from service provider using the
bind operation.

2.2 Event Driven Architecture

EDA is an architecture design where services
of independent software components communicate
through event notifications(Woolf, 2006).Maréchaux
(2006) defines EDA as “a methodology for designing
and implementing applications and systems in
which events transmit between decoupled software
components and services”. EDA uses publish-
subscribe architecture to enable the communication

among services and to end-users. It has three main
components: event emitter, event broker and event
subscriber. An event emitter detects events and posts
an announcement to the event broker. The event broker
collects all the triggered events and forwards them
to interested subscribers. Finally, event subscribers
receive event notifications and respond accordingly.
Event subscribers are able to further trigger the event
to other services.

2.3 Sample Scenarios

To elaborate SOA and EDA, we are considering a
simple example of an ‘authentication process’. This
process verifies the login credentials of users in order
to ensure that right person get access to computer
system.

In Figure 1, we show the ‘authentication process’
scenario from the SOA respective, where a client,
which is a service consumer, requests a login service to
get access to the system through the service interface.
In response, the login service, which is a service
provider, can invoke other services through service
interfaces in order to send a random code to an
e-mail/mobile for further verification. The service
consumer is bounded to wait for and act on the
response/reply from the service provider before access
is possible. Thus, even though, the service consumer
and service provider do not have interdependencies
yet both are bounded during a communication.

Figure 2 presents the ‘authentication process’
from the EDA perspective. We have modified the
login scenario in order to demonstrate the event-
based communication among services. The client
request the login service by the providing login
credentials(1). In case of incorrect credentials,
the login service will trigger the event to security
service(2) through the enterprise service bus (ESB). In
addition to providing the connection among services,
ESB is also able to function as an event broker.
Event broker analyse the triggered event and forward

Figure 1: Service Oriented Architecture of ‘Authentication
Process’



Figure 2: Event driven Architecture of ‘Authentication
Process’

it to security service(3). In this scenario, login
service is event emitter while the security service is
event subscriber. On the other hand, the security
service (i.e. event subscriber) might take further
security action by temporary blocking the account.
In this scenario, the event emitter (login service)
is not bounded to listen to the event subscriber’s
action/response(security service). Moreover, the role
of event emitter and event subscriber are not mutually
exclusive. A service(e.g. login service) can be event
subscriber as well as event emitter at the same time.

From high level of abstraction, it can be said that
the pattern to invoke the services in SOA and EDA are
different as in SOA user command and other services
can invoke the service while in EDA the service can
be invoked with real-time event.

3 COMPARATIVE STUDY OF SOA
AND EDA

In literature, we found two divergent points of views
about SOA and EDA. According to one, SOA and
EDA complements each other, while according to
other, SOA and EDA are inverse of each other. In
section 3.1 and 3.2, we have highlighted some of
the basic commonalities and differences between SOA
and EDA.

3.1 SOA and EDA :View from
Literature

According to van Hoof (2008), EDA differs from
SOA in its focus. SOA has services at the
centre of its model while EDA has real-time events.
SOA and EDA also differ in their communication
style, where SOA approach is more focused on
synchronous communication while EDA is focused
on asynchronous communication. He summarise
this difference as “both styles focus on the same
architecture but from different viewpoints"(van Hoof,

2007a). According to him, request-and-reply pattern
and publish-and-subscribe pattern, are inverse of each
other(van Hoof, 2006b). However, he also agrees
that the fusion of EDA and SOA will enhance loose
coupling and bring agility to business. Debnath,
vice president of Oracle server technologies, names
the EDA as the known cousin of SOA (Rich, 2006).
Contrary to van Hoof, Debnath acknowledges that
SOA and EDA overlap at certain points but are
very different at some. According to him, both
architectures require an underlying infrastructure, a
bus to carry requests in applications network, and
some business processing rules. He notes that SOA
and EDA are different only from the perspective of
how a company wants to solve a problem. He refers
to an analogy of the human body, where eyes and ears
are similar to EDA as sensing the events and sending
it to brain, while hands and feet are similar to SOA as
providing movement on request of sense neurons.

Cramon (2013) considers the EDA as the solution
to problems caused by SOA. According to him, SOA
doesn’t solve the integration problem, it lacks agility
and the layered SOA is hard coupled. He proposes
EDA as the solution to enhanced agility of business
and solves the integration problems. According
to him, events can drive the business processes.
Dubray (2014) disagrees with Cramon on this point,
according to him the asynchronous communication
pattern doesn’t work in the business world.

The explanation by Candy bridges the gap between
two different points of views about SOA and EDA
(Chandy, 2009). According to him, SOA and EDA
are inverse of each other for those who approach them
based on their communication pattern. While, SOA
and EDA are complimentary for those who approach
it from the structural point of view where both
architecture enhance modularity and support tight-to-
loose and loose to very loose coupling respectively.

3.2 SOA and EDA :Similar or Different

SOAandEDAhasmany features in common. Table 1.
outlines the detailed differences between SOA, EDA
and SOA 2.0/event driven SOA. From Table 1, it is
worth noting that there doesn’t exist much difference
between EDA and SOA 2.0/event driven SOA. We
believe a statement (in Table 1) with greater number
of citations is more credible as compare to the one
with lesser citations.

In addition to a difference in communication style,
discussed in section 4.1, SOA and EDA are different
in management of data. SOA do not allow the data
replication at the functional levelwhilemultiple copies
of data can be maintained at technical level



Category SOA EDA SOA 2.0
Basic approach Reactive approach: takes action

on command (service pulling)
(Malekzadeh and Pessi, 2010;
Kong, 2013)

Proactive approach: detect
events (which is change in state)
and take action (events pushing)
(Malekzadeh and Pessi, 2010;
Kong, 2013)

SOA provide the design
approach and infrastructure
while EDA provide
communication approach
in SOA2.0. (Levina and
Stantchev, 2009; Zicari, 2011;
Rich, 2006)

Difference in SOA, EDA and SOA 2.0 features
Business support Services driven approach

orchestrate the business
functions and business
processes (Sriraman and
Radhakrishnan, 2005)

Event driven approach
orchestrate the business events
along with business processes
(Sriraman and Radhakrishnan,
2005)

Based on specific scenarios,
business events and business
processes are dealt with SOA
and/or EDA (Levina and
Stantchev, 2009; Rich, 2006)

Level of coupling Loosely coupled in technical
domain but not in functional
domain (Malekzadeh and Pessi,
2010; van Hoof, 2006a, 2007b;
Juric, 2010)

Provide functional level
decoupling (Malekzadeh and
Pessi, 2010; Maréchaux, 2006;
van Hoof, 2007b; Juric, 2010)

Provide loose coupling to
decoupling due to events driven
approach (Maréchaux, 2006;
Levina and Stantchev, 2009;
Hanson, 2005)

Data dependency Data inconsistency is avoided
through data isolation
concept but it introduces
data dependencies (van Hoof,
2007b; Dahan, 2009).

Data redundancy is employed
to avoid dependencies and
event provide the data
synchronization function
(van Hoof, 2007b; Dahan,
2009)

Violets the atomicity and
consistency property of data
(similar to EDA)(Dahan, 2009)

Business/IT alignment Services become responsible
for certain part of business
domain.(Dahan, 2009)

Business events doesn’t mimics
real-time tasks of certain
business domains and IT.
(Dahan, 2009)

(similar to EDA)

Reusability Loosely coupled services
provide the reusability (van
Hoof, 2006a)

Reusability is enhanced due
to decoupled ends and fine-
grinded services (Clark and
Barn, 2012)

(similar to EDA)

Fault
tolerance/availability

In case back-end system is
down, processing of whole
system is halted and user has
to wait for response.(Dahan,
2009)

If the back-end system is down,
user’s request will still be
accepted and responded due
to data redundancy. (Dahan,
2009)

(similar to EDA)

Difference in Communication approach between SOA, EDA and SOA 2.0
Communication style Synchronous service

invocation/remote procedural
calls (request and
response)(Woolf, 2006;
van Hoof, 2007b; Juric, 2010;
Luckham, 2007)

Asynchronous service
invocation (Publish and
subscribe) (Woolf, 2006; van
Hoof, 2007b; Juric, 2010;
Luckham, 2007)

Synchronous, Asynchro-nous
communication between users
and service is performed by
events (Levina and Stantchev,
2009; van Hoof, 2007b;
Luckham, 2007)

Interaction approach Service need to be available
when service consumer request
it (Woolf, 2006; van Hoof,
2007b)

Event’s subscriber doesn’t need
to be available when event is
triggered (Woolf, 2006; van
Hoof, 2007b)

Service doesn’t need to
be available (Similar to
EDA)(Hanson, 2005)

Invocation approach One service consumer can
initiate one service at a time
(Maréchaux, 2006; Yuan and
Lu, 2009)

Event can trigger
many subscribers at a
time.(Maréchaux, 2006;
Yuan and Lu, 2009)

An event can trigger many
services at a time (Maréchaux,
2006; Hanson, 2005) (similar to
EDA)

Interaction pattern
(from requester)

Service consumer request
specific service and wait for
response (Woolf, 2006; van
Hoof, 2007b; Luckham, 2007)

Event emitter triggers the
event and doesn’t wait for
response. Emitter doesn’t
have knowledge on who are its
subscribers(Woolf, 2006; van
Hoof, 2007b; Luckham, 2007)

(Similar to EDA)

Interaction pattern
(from provider)

Service provider response back
with services/notification(van
Hoof, 2007b; Luckham, 2007)

Event subscriber takes action
but event emitter is not
necessarily aware of it(van
Hoof, 2007b; Luckham, 2007)

(Similar to EDA)

Table 1: Difference between SOA, EDA and event-driven SOA/SOA 2.0



(van Hoof, 2006a). On the other hand, EDA
proposes to maintain certain level of data replication
and data inconsistency, at functional level, which
makes the adoption of this architecture a controversial
debate(Dahan, 2009). With the expense of
data inconsistency, data replication reduce the
dependencies among services, and ultimately bring
loose coupling in services network. Moreover, by
managing the multiple copies of data, the system
availability time and fault tolerance can also be
improved. However, in case of system failure, the
data cleaning is a challenging task as data can be
inconsistent at times.

Besides differences, there are many similarities
between SOA and EDA. The integral parts of both
architectures are services. Both architectures aim
to provide agility to business. The basic SOA
design principles (service level agreement, service
discoverability, service atomicity, service abstraction,
service composability and service statelessness) are
also similar for EDA. The connection between SOA
and EDA can be better understood as the EDA being
the upper layer of SOA, where the later invokes the
services through events instead of commands.

4 CASE STUDY

This section provides the discussion of SOA and EDA
design principles for a learning management system
(LMS). In section 4.1, the introduction to LMS and
its design problems are given. The discussion of the
solution to the design problems of LMS fromSOA and
EDA perspective is presented in section 4.2 and 4.3
respectively. Finally, section 4.4 provides our insights
on which architecture to choose over the other.

4.1 Learning Management System

LMS is a web-based application that provides
the platform for interaction between students and
instructors. These days, almost every educational
institute uses a LMS to facilitate the communication
among students and instructor. Most popular LMSs
are Edmodo, Moodle and Blackboard (Dunn, 2012).
However, sometimes the features provided by LMS are
not adequate which leads to underutilization of LMS
or not using it at all.

Major limitations of many LMSs include
unavailability of required features, limited
customization, and interoperability issues (Fathema
and Sutton, 2013; Bickford, 2013). The changing
requirements from instructors and students cause a
mismatch of provided features of LMS and required

features of the LMS. Similarly, few LMSs provide
very limited customization ability to end-users
e.g. browsers’ provided file viewer, inability to
add deadlines to calendar. To overcome such
limitations, an educational institute has to use number
of different systems for various purposes, e.g. along
with the LMS, a calendar management tool, result
report generation tools and other systems could be
required. However, it must be possible for these
system to be interoperable with LMS. We can define
interoperability as the ability of system to talk to
other systems. Most of the vendor’s LMSs provide
zero interoperability and integration for other systems
at the learner’s side(Forment et al., 2009).

Based on these design problems, the e-learning
consortium proposed certain standards(Masie, 2002)
for the development of LMSs. These standards
are interoperability, re-usability, manageability and
accessibility. According to these standards, a LMS
should be able to connect with relevant other systems,
its components should be reusable, the content and
activities of a learner should be tracked, and the system
should be accessible from anywhere, anytime and
from any device.

4.2 SOA guidelines to overcome LMS
design problems

In this section, we discuss on how SOA supports
the standards proposed by e-learning consortium
(Masie, 2002). Instead of single black box which
is providing all the functionalities to clients, SOA
proposes a layered approach which divides the whole
infrastructure into layers. Based on the SOA reference
architecture (Arsanjani et al., 2007), figure 3 shows
a partial LMS architecture. A simple request-reply
architecture between the presentation layer and the
services layer is presented.

Using SOA, other systems, independent of
platforms and languages, can connect to the LMS
by following the description of the service interfaces.
Figure 3 highlights the concept of provided interfaces
from services and required interfaces from the
presentation layer to enable communication. Any
service interface that complies to the standard (e.g.
WSDL) is discoverable by services and other systems.
A change in implementation of service doesn’t affect
the service interfaces, which makes communication
among clients, LMS and other systems transparent.
The problem of interoperability is reduced through
the services and standard service interfaces of SOA.
The independent nature of services enhances the
reusability of the system. Each service is responsible
to provide certain functionalities of the LMS to the



Figure 3: LMS model based on SOA reference architecture

users, e.g. a ‘Grades’ service is responsible to upload,
save, maintain and show the grades of registered users.
Services are supported by the underlying lower level
layer. Since, our discussion is limited to design issues
of services we have omitted lower level layers from
figure 3. Independent services and standard service
interfaces reduce the complexities of interoperability,
integration and collaboration posed by traditional
systems. However, interoperability aspect of SOA-
based systems is sometimes challenged, due to
coupled request-reply architecture(Taylor et al., 2009).

The functionality of the LMS is visible only
through the services. The activities of students
and instructors on LMS are easy to track with
services invocation calls, which makes the system
more transparent and manageable. Since the services
infrastructure is not tightly coupled, accessibility
of services are much enhanced as compared to
procedures based object oriented scenarios where
procedures are dependent on each other.

4.3 EDA guidelines to overcome LMS
design problems

In this section, we discuss how EDA support
the standards proposed by the e-learning
consortium(Masie, 2002). In Figure 4, we
have presented a partial LMS architecture based on
EDA reference architecture (Moxey et al., 2010).

EDA takes the SOA layered approach one
step further by introducing the publish-subscribe
architecture, which brings end-to-end decoupling
among services. The integral part of the system
is the service layer. However, EDA enables the
decoupling on the services ends(Yuan and Lu, 2009).
The decoupling of services improves the reusability
of the system. In EDA, the services are meant to
be fine-grained. We illustrate this (in Figure 4) by
showing the ‘Grades Upload’ and ‘Grades Show’ as
separate services compared to the ‘Grades’ service

Figure 4: LMS model based on EDA reference architecture

represented in Figure 3. The Grades Upload services
can trigger the Grade Show service by publishing
an event of ‘grades available’. Fine-grained services
enhance the reusability of system but on the other
hand it also increases the network load because a
client may need to trigger an event number of times
in order to get the complete data. The decoupled
services and asynchronous communication pattern of
EDA improves the interoperability of LMS.Moreover,
fine-grained services enable the LMS to deal with the
changing requirements of end-users. The event-driven
processing characteristic of EDA allows the system to
be easily manageable as all the triggered events by
users/services can be tracked and responded through
the event processor and event processing queue. Due
to the decoupled services, an EDA implementation
can improve the availability and accessibility of the
system. For instance, even if the back-end repository
of the LMS is down due to network load, the Grades
Upload service can still upload the grades and provide
the response message (Arsanjani et al., 2007).

4.4 Which architecture to choose?

Both architectures, SOA and EDA, are able to
solve the design problems of LMS. However, the
solutions provided by both architecture has some
limitations. Standard service interface of SOA bring
the interoperability aspect to LMS but has a tight
communication architecture. On the other hand,
EDA enhance the accessibility and reusebility by
decoupling but it is unable to respond to client’s
awaiting request efficiently.

The combinational approach of SOA and EDA,
can be called SOA 2.0, will enable a LMS to sense the
real-time events as well as deal with client’s awaiting
requests. SOA can provide the service infrastructure
with standard service interface while the EDA is able
to build a smart and self-aware LMS. The resulting
LMS will have enhanced system interoperability and
accessibility for clients while at the same time can
sense the real-time events. (e.g. LMS can sense



the system failure and can automatically initiates the
actions to resolve them).

5 DISCUSSION

The basic purpose of SOA and EDA is to bring
the agility to business systems in order to deal with
changing day-to-day scenarios. The infrastructure of
both architectures is based on services with difference
in service invocationmethod. Themain differentiation
point is request-reply architecture of SOA and the
events based publish-subscribe architecture of EDA.
Based on literature study, we can conclude that SOA
and EDA have different capabilities. In the following,
we will provide some conceptual guidelines, derived
from literature study, on which architecture approach
to adapt considering the system’s requirements.

SOA is a architectural solution if a (a) system is
of transactional nature, (b) high data integrity need to
be maintained, (c) client’s awaiting requests need to
be handled in timely manner, and (d) strong cohesion
is required in services implementation. By strong
cohesion of services, we mean a service should be
able to provide the functionality of certain business
domain. Example of SOA based system is banking
system where business operations are set of atomic
transactions (e.g. deposit, withdraw) which are
required to maintain data integrity all the time.

With different capabilities than SOA, EDA is
suitable for those (a) systems which is of analytical
nature, (b) automated execution of task is required
based on conditions, (c) client requests can be
entertained later in time, and (d) decoupling is required
in services implementation. Decoupling enhance
the system’s ability to sense and respond to events.
Example of EDA based system is inventory manager
where a business event must be sensed and responded
in case of stock is low, order accepted is greater than
available stock, etc.

Except their difference in service invocation
method, SOA and EDA complement each
other(Maréchaux, 2006; Dahan, 2009; Rich, 2006).
The varying design principles of both architectures
are able to provide a system that is enriched in
functionality. SOA provide the EDA with distributed
setting of services which makes the sensing and
responding of events possible. On the other hand,
EDA replace the hard-coupled remote procedural
calls with flexible sense-and-publish architecture.
This combinational approach of SOA and EDA is
collectively referred as event-driven SOA or SOA
2.0. Event-driven SOA is able to sense the analytical
events and can also deal with transactional requests.

6 CONCLUSION

SOA and EDA are architecture designs which
assist in system implementation. Both of these
architectures are different in their communication
pattern yet maintain similarities in basic service
infrastructure. Requirements of today’s business
demand a system that is smart and self-aware in
dealing with real-time situations and, at the same
time, can manage customers’ requests. With these
requirements, events and services are both needed.
SOA has to borrow the event-driven approach from
EDA, and EDA has to base on SOA services and
standard interfaces.

Our research contributes to the discussion on the
similarities and differences between SOA and EDA.
This discussion serves a higher purpose, namely to be
able to decide which (combination of) architectural
patterns is best to fulfil given requirements. We
provided guidelines to help making such decisions.
We have concluded that SOA and EDA are different
in their communication styles and in some service
design principles but these differences doesn’t make
these architecture mutually exclusive. As a future
direction, further comparative studies based on the
practical implementation of SOA, EDA and their
combination can bring more insights into their
capabilities, differences and benefits.

REFERENCES

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., and
Channabasavaiah, K. (2007). Design an SOA solution
using a reference architecture. IBM DeveloperWorks.

Bianco, P., Kotermanski, R., and Merson, P. F. (2007).
Evaluating a service-oriented architecture.

Bickford, A. (2013). 12 common complaints about learning
management systems (LMS). [Online] Available at:
http://bit.ly/N6C2k3 [Accessed: 10th Nov 2014].

Champion, M., Ferris, C., Newcomer, E., and Orchard, D.
(2002). Web services architecture. W3C working draft,
14.

Chandy, M. (2009). One day SOA and EDA will be used
in all aspects of daily life: Dr. K. Mani Chandy explains.
[Online] Available at: http://bit.ly/1Du2uay [Accessed:
23 Oct 2014].

Clark, T. and Barn, B. S. (2012). A common basis for
modelling service-oriented and event-driven architecture.
In Proceedings of the 5th India Software Engineering
Conference, ISEC’12, pages 23–32.

Cramon, J. (2013). SOA and event driven architecture (SOA
2.0). [Online] Available at: http://slidesha.re/1MrLNEf
[Accessed: 10 Oct 2014].



Dahan, U. (2009). EDA: SOA through the looking glass.
[Online] Available at: http://bit.ly/1vQqwiL [Accessed:
10 Nov 2014].

Dubray, J.-J. (2014). SOA vs EDA. [Online] Available at:
http://slidesha.re/1FjQU7u [Accessed: 15 Oct 2014].

Dunn, J. (2012). The 20 best learning management systems.
[Online] Available at: http://bit.ly/1vzRnd9 [Accessed:
28 Nov 2014].

Fathema, N. and Sutton, K. L. (2013). Factors influencing
faculty membersâĂŹ learning management systems
adoption behavior: An analysis using the technology
acceptance model. International Journal of Trends in
Economics, Management and Technology, USA.

Forment, M., Guerrero, M., GonzÃąlez, M., PeÃśalvo, F.,
and Severance, C. (2009). Interoperability for LMS: The
missing piece to become the common place for elearning
innovation. In Visioning and Engineering the Knowledge
Society. A Web Science Perspective, volume 5736, pages
286–295. Springer Berlin Heidelberg.

Hanson, J. (2005). Event-driven services in SOA.

He, H. (2003). What is service-oriented architecture.
PublicaÃğÃčo eletrÃťnica em, 30:50.

Juric, M. B. (2010). WSDL and BPEL extensions for
event driven architecture. Information and Software
Technology, 52(10):1023–1043.

Kong, X. (2013). A financial services case study of SOA
based on CEP. Journal of Theoretical and Applied
Information Technology, 48(1):595–599.

Krill, P. (2006). Make way for SOA 2.0. [Online] Available
at: http://bit.ly/1zIZCEb [Accessed: 5 Nov 2014].

Levina, O. and Stantchev, V. (2009). Realizing event-driven
SOA. ICIW, 9:37–42.

Little, M. (2006). SOA 2.0 ignorance. [Online] Available
at: http://bit.ly/1EFhDaH [Accessed: 7 Oct 2014].

Luckham, D. (2007). SOA, EDA, BPM and CEP
are all complementary. [Online] Available at:
http://bit.ly/1AKtTbi [Accessed: 7 Nov 2014].

Malekzadeh, B. and Pessi, K. (2010). Event-driven
architecture and SOA in collaboration-a study of how
event-driven architecture (EDA) interacts and functions
within service-oriented architecture (SOA). Master’s
thesis, University of Gothenburg.

Maréchaux, J.-L. (2006). Combining service-oriented
architecture and event-driven architecture using an
enterprise service bus. IBM Developer Works, pages
1269–1275.

Masie, E. (2002). Making sense of learning specifications &
standards: A decisionmakerâĂŹs guide to their adoption.
The Masie Center, evaluation.

McKendrick, J. (2006). Please, no SOA 2.0. [Online]
Available at: http://zd.net 17IJvAQ [Accessed: 7 Oct
2014].

Moxey, C., Edwards, M., Etzion, O., Ibrahim, M., Iyer,
S., Lalanne, H., Monze, M., Peters, M., Rabinovich, Y.,
and Sharon, G. (2010). A conceptual model for event
processing systems. IBM Redguide publication.

Natis, Y. V. (2003). Service-oriented architecture scenario.
Gartner Research, Stamford.

Papazoglou, M. P. (2003). Service-oriented computing:
concepts, characteristics and directions. In Web
Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on,
pages 3–12.

Rich, Seeley, N. W. (2006). Oracle’s debnath on
making an event-driven SOA. [Online] Available at:
http://bit.ly/1Ei4moL [Accessed: 23 Oct 2014].

Sriraman, B. and Radhakrishnan, R. (2005). Event driven
architecture augmenting service oriented architectures.
Report of Unisys and Sun Microsystems.

Taylor, H., Yochem, A., Phillips, L., andMartinez, F. (2009).
Event-driven architecture: how SOA enables the real-
time enterprise. Pearson Education.

van Hoof, J. (2006a). How EDA extends SOA and why it is
important. [Online] Available at: http://bit.ly/1L5UfY8
[Accessed: 15 Nov 2014].

van Hoof, J. (2006b). Why to distinguish between soa
and eda. [Online] Available at: http://bit.ly/1DiFpfU
[Accessed: 27 Oct 2014].

van Hoof, J. (2007a). The magical A of SOA and EDA.
[Online] Available at: http://bit.ly/1L5TWfZ [Accessed:
7 Oct 2014].

van Hoof, J. (2007b). SOA and EDA: Using events to bridge
decoupled service boundaries. The SOA Magazine,(4).

van Hoof, J. (2008). EDA versus CEP (and SOA). [Online]
Available at: http://bit.ly/1EFiOXH [Accessed: 16 Nov
2014].

Woolf, B. (2006). Event-Driven Architecture and
Service-Oriented Architecture. [Online] Available at:
http://ibm.co/1L5UdiQ [Accessed: 15 Nov 2014].

Yuan, S.-T. and Lu, M.-R. (2009). An value-centric event
driven model and architecture: A case study of adaptive
complement of SOA for distributed care service delivery.
Expert Systems with Applications, 36(2):3671–3694.

Zagarese, Q., Furno, A., Canfora, G., and Zimeo, E. (2013).
Towards effective event-driven soa in enterprise systems.
In Systems, Man, and Cybernetics (SMC), 2013 IEEE
International Conference on, pages 1419–1424. IEEE.

Zicari, R. (2011). Advancing SOA with an event-driven
architecture. [Online] Available at: http://bit.ly/17iGxSx
[Accessed: 15 Nov 2014].


