
Automatic Generation of a Neural Network Architecture Using
Evolutionary Computation

E. Vonk *, L.C. Jain **, L.P.J. Veelenturf *, and R. Johnson ***

*Control, Systems and Computer
Engineering Group (BSC),
Laboratory for Network Theory,
Deparment of Electrical
Engineering,
University of Twente, Postbus
217, 7500% Enschede,
The Netherlands.
Tel. : +61 8 302 3984
Fax : +61 8 302 3384
Email:
94002 la@lux.levels. unisa.edu.au

**Knowledge-based Engineering
Systems Group,
School of Electronic Engineering,
University of South Australia,
Adelaide, The Levels, 5095,
Australia.
Tel. : +61 8 302 3315
Fax : +61 8 302 3384
Email:
etlcj @Iv.levels.unisa.edu.au

Keywords - neural networks, evolutionary
computation, genetic algorithms, genetic
programming

Abstract

This paper reports the application of evolutionary
computation in the automatic generation of a neural
network architecture. It is a usual practice to use trial
and error to find a suitable neural network
architecture. This is not only time consuming but
may not generate an optimal solution for a given
problem. The use of evolutionary computation is a
step towards automation in neural network
architecture generation. In this paper a brief
introducuon to the field is given as well as an
implementation of automatic neural network
generation using genetic programming.

1. Introduction

The performance of a neural network depends on the
network architecture. Its performance, depending on
the given task, includes properties like learning speed
and generalization capability. For example, a certain
neural network topology used for a classification task
may have learned to classify the training set
correctl:y, but this says nothing of the network's
performance on data outside &e training set. This
depends to a great deal on the topology of the
network.
The automauc generation of a neural network
architecture i s a useful concept as in many
applicauons the optimal architecture is not a priori
known. Often trial and error is done before a
samfactory architecture is found. Consuuction-
deconstruction algorithms can be used as an approach

***Weapons System Division,
Defence Science and Technology
Organization,
PO Box 1500, Adelaide,
Salisbury, 5108,
Australia.
Tel. : +618 259 5127
Fax : +618 259 5688
Email: rpj @mogwah.dsto.gov.au

but they have several drawbacks. They are usually
restricted to a certain subset of network topologies
and as with all hill climbing methods they often get
stuck at local optima and therefore may not reach the
optimal solution. Using evolutionary computation as
an approach to the generation of neural network
architectures these limitations can be overcome.
Sometimes instead of evolutionary computation, the
term evolutionary algorithms is used but in this paper
this is reserved for a special kind of evolutionary
computation.

'The organization of this paper is as follows. Section 2
introduces briefly evolutionary computation
techniques used in neural network design. Section 3
describes the implementation of neural network
architecture design using genetic programming and in
section 4 the conclusions and future work is
presented.

2. Evolutionary Computation in Neural
Network Design

Evolutionary computation can be divided into three
different approaches:

genetic algorithms
genetic programming

0 evolutionary algorithms

Of these mostly genetic algorithms have been used in
neural network design: see [4] for an extensive
overview. Work within this field mainly differs in the
representations of the neural network topologies used.
Representations used can be roughly divided into
'strong representation' and 'weak representation'
schemes. When a strong representation is used, the

144
0-8186-7085-1/95 $04.00 0 1995 IEEE

chromosomes of the genetic algorithm directly
encode the neural network. In a weak representation
the chromosomes represent more abstract terms like
'the number of hidden neurons'.

Smng representations include the use of connectivity
matrices and graph grammars. Connectivity matrices
have proven to be unsuccessful1 when simple toy
problems were scaled up to more real world
problems. This is because of the enormous increase
in chromosome length and accordingly in the search
space when larger networks need to be represented.

Graph grammars have proven much more successfull
because they use much shorter chromosome lengths
and the networks generated are highly structured
[51, [61. V I .

Genetic programming [11 offers a third approach to a
strong representation scheme. This approach is
described in [l] and [2]. and consists of directly
encoding a neural network in the genetic tree
structure used by genetic programming. This
approach differs from the above methods in that the
neural network topology as well as the values of the
weights are encoded in the chromosomes and that
they are mined simultaneously.

3. Implementation of Neural Network
Design using Genetic Programming

The last approach described in the above section is
implemented here. It is founded mainly on [I] and
[2], where the genetic programming paradigm
showed good results when it was applied to the
generation of a neural network that could perform the
one-bit adder task.

A public domain genetic programming system called
GPC++, version 0.40. was used [3]. It is a software
package written in C++ by Adam P. Fraser,
University of Salford, UK. Several alterations were
made to use it for the application of neural network
design. The GPC++ system uses Steady State Genetic
Programming (SSGP) as discussed in $2.2. The
probability of crossover is 100%; the new population
is generated using the crossover operator only. Then
on a certain percentage of members mutation is
performed. The crossover operator swaps randomly-
picked branches between two parents, but creates
only one offspring. There is no notion of age in the
SSGP system, which means that after a new member
is created, it can be chosen immediately aftcr to
create a new offspring.

3.1. Setup

We have basically used the same setup as described
in [1],[2]. A neural network is represented by a
connected tree structure of functions and terminals.
Both the topology as well as the values of the weights
are defined within this structure. In this approach no
distinction is made between the learning of the
network-topology and its weights; it is done within
the same algorithm.

The terminal set is made up of the data inputs to the
network (D), and random floating point constant
atom (R). This atom is the source of all the numerical
constants in the nctwork and these constants are used
to represent the values of the weights. The neural
networks generatcd by this algorithm are of the feed-
forward kind. The terminal set for a two-input neural
network is for example (D,R), where D = {DO,Dl).

In [2] the function set is made up of six functions:
(P,W,+,-,*,%). P is the processing function of a
neuron; it performs a weighted sum of its inputs and
feeds this to a processing function (e.g. linear
threshold, sigmoid). The processing function takes
two arguments in the current version of the program;
i.e. every neuron has two inputs only. The weight
function, W, also has two arguments. One is a subtree
made up of arithmetic functions and random
constants that represents the numerical value of the
weights. The other is the point in the network it acts
upon which is either a processing unit (neuron) or a
data input. The four arithmetic functions, AR = {+,-
,*,%), are used to create and modify the weights of
the nctwork. AI1 take two arguments. The division
function is protected in that it returns zero in the case
of a division by zero.

After some experimentation it was found that for the
problems under investigation, the system actually
workcd much better if the arithmetic functions were
left out. The values of the weights are represented by
a single random constant atom and their values can
only be changcd by a one-point crossover or mutation
performed on this conslant atom.

The output of the genetic program is a LISP-like S-
expression, which can be translated into a neural
network structure made up of processing functions
(neurons), weights and data inputs. Initially no bias
units were implemenled.

The name givcn to this implementation of neural
network dcsign using genetic programming is GPNN.

145

3.2. Example of a Genetically Programmed
Neural Network

An example of a GPNN-output is the following
neural network which performs the XOR function.

(P (W (: P (W -0.6562s D1) (W 1 59375 DO j) 101562)
(W1.45312(1’(W 1.70312D1) (W-O.S28125DO))))

The graphical representation and the corresponding
neural network are illustrated in Figure 1 and Figure
2.

r‘.

4 /-m 125

Fig. 1: Emmple of a generic tree stmetiire
generated by GPNN

W’ D1 Do D1
Fig. 2: The neural nenvork corresponding to fhe

3.3. Creation and Crossover Rules for
GPNN

sfructure ofjig. I

In the sitandard GP paradigm, there are no restrictions
conceming the creation of the genetic tree and the
crossover operator, except a user-defined maximum
depth of the tree. For the use of neural network
design, several constrictions on the creation as well
as the crossover operator have to be made.

33.1. Creation rules

The creation rules are:

the root of the genetic trce must be a “list”
function (L) of all the outputs of the nctwork

e the function below a list function must bc the
Processing (P) function
the function below a P function must bc the
Weight (W) function
below a W function, one of the
funckionsherminals must be chosen from thc sct
{P,Dl), the other one must be { R)

These creation rules make sure the created tree
represents a correct neural network. The root of the
tree is a list function of all its outputs while the leafs
are either a data signal (D) or a numerical constant
(R). This tree can then be translated into a neural
network structure as in Figure 2.

3.3.2. Crossover rules

’I’he crossover operator has to preserve the genetic
tree so that i t still obeys the above rules. This is done
by structure-preserving crossover which has the
following rule: h e points of the two parent-genes
between which the crossover is performed (the
branches connected to these points are swapped) must
be of the same typc.

The types of points we:
-a P function or a I> terminal
-a W function
-a 13 terminal

In [21 P functions and D terminals are treated as
k ing of different types. which means a branch whose
root is a P function can never be replaced by a D
terminal and vice versa.

3.4. Implementation of the Fitness
Function

The fimess function is calculated as a constant value
minus the total performance error of the neural
nctwork. A training set consisting of input and target-
output patterns (facts) needs lo hc supplied. The error
is then calculated a$:

Since a lower error must correspond to a higher
lilness, the fitness function is then calculated as:

Fifnes.7 = Error - MadmiimError

’I’he maximum pcrfonnancc error is a constant value
equal to thc maximum error possible, so that a
rrctwork that has the worst performance possible on a
given training sct (maximum error) will have a
fitness equal to zero. When a linear threshold
function is used as the neurons’ processing function,
only output valucs of ‘0’ or ‘1 ’ are possible The
rsngc of fitness valucs is then very limited and it is
irnpossiblc to distinguish between many networks. In
order to increasc this range the output neuron could
he chosen to have a continuous sigmoid processing
frtnction.

146

In using a supervised learning scheme, there are
many other ways to implement the fitness function of
a neural network. Instead of the sum of the square
errors, for example, we could use the sum of the
absolute errors or the sum of the exponential absolute
errors. Another definition of the fitness could be the
number of ~ 0 r r e ~ t . l ~ classified facts in a training set.

The fitness function could also reflect the size (=
structural complexity) and/or the generalization
capabilities of the network. For example smaller
networks having the same performance on the
training set as bigger networks would be preferred, as
they have better generalization capabilities in
general. The generalization capability of a network
could be added to the fitness function by performing
a test on test data that lies outside the training data.

3.5. Experiments with GPNN

The GPNN algorithm has been implemented using
the code of GPC++ with several alterations /
additions. The neurons in the resulting neural
networks initially did not have bias units. The fitness
function used was the total performance error over
the training set multiplied by a factor to increase the
range. The fitness value was then made into an
integer value as this is required by the G K + +
software. The mutation operator was implemented so
that it only acted on terminals, not on functions. The
maximum depth of a genetic tree in the creation
phase was set to 6. During crossover, the genetic
trees were limited to a maximum depth of 17. These
values were used as a default value by Koa [l], to
make sure the trees stay within reasonable size.
Simulations have been done on automatically
generating a neural network architecture for the XOR
problem, the one-bit adder problem and the
intertwined-spirals problem.

33.1. The XOR problem

Our attempts were directed to find a neural network
that correctly performs the XOR problem. The
processing function used for the neurons was a simple
threshold function: thres(x) = 1 if x > 1.0 otherwise.
The following statistics for the genetic programming
algorithm were used :

Population Size: 500
Number of ADFs: 0
Max. depth at creation: 6
Max. depth at crossover: 17
Reproduction mechanism: tournament

(tournament size = 5)
Crossover: 100 %
Mutation: 10 %

After several runs were performed we found that a
neural network which performed the given task
occurred every time between generation 1 and
generation 5. Figure 3 shows a solution that was
found in a particular run in generation 5 . All
solutions found had a number of neurons ranging
from 3 to 5 . When the roulette wheel reproduction
mechanism was used instead of the tournament
mechanism, the convergence to a solution took on
average 2 generations longer. fi 1.90625

1.29688 -0.566875 -1.1406 1.92188

DO D1 DO D1
Fig. 3: a generared neural network that perfonns

flie XOR problem

The GPNN system was extended with a bias input to
every neuron by means of an extra random constant
(in the range [-4,4]) added to every P function. The
effect of this on the XOR problem was a somewhat
slower convergence. The reason might be that the
search space is increased, while for a solution to this
simple problcm bias-inputs are not needed.
For this problem no ADFs were used, as they did not
seem necessary for such a simple task.

3.5.2. The one-bit adder problem

It was then Iried, as in [2], to find a solution to the
slightly more difficult one-bit adder problem. The
network has to solve the following task:

input target output

0 0 0 0
0 1 0 1
I Q 0 1
1 1 1 0

In effect this means that the first output has to solve
b e AND function on the two inputs. and the second
output the XOR function.

The s m e characteristics as used in the XOR problem
were uscd. A solution to the problem was found on
all 10 runs between generation 3 and generation 8.
One of them is shown in Figure 4. The convergence
is much fastcr than in [2] , where a solution was only
found aftcr 35 generations also using a population of
500.

147

6, Do 01 DO 01

Fig. 4: a generated neural iterwork rhat performs ‘
the one-bit adder problem

As can be seen from the figure, the neural network
found is indeed made up of an AND and an XOR
function. On average the generated neural networks
had more neurons than just 5; the largest network
found had 20.

353. The intertwined-spirals problem

The intertwined-spral classification problcrn was
tried as well as it is often regarded as a benchmark
problem for neural network training. The training set
consists of two sets of 9’1 data points on a two-
dimensional grid, representing two spirals that arc
intertwined making three loops around the origin. A
2-input, 2-output neural network 1s needed.
The results were very poor. When the Same settings
as in the above experiments were used, not much
more than half of the training set was classified
correctly. Automatically Defined Functions (ADFs)
were introduced, but no improvements were
observed.

3.6. Discussion of GPNN

Restrictions that apply to the GPNN system are:

There are quite severe restnctions on the network
topologies generated: only tree structured
networks are possible.
The number of arguments of a function is always
fixed; e.g. a processing function (a neuron) can
and must only have two inputs.
Because of the way the terminal set is stored in
mrxnory, only 255 diffcrent random floating
point constants (R terminal\) can he used. ‘I’hesc
values are chosen from the interval [-2,2]
The learning of the topology and weights is done
sinnultarieously within the wme algorithm ‘This
has the drawback that a neural network wilh a
perfectly good topology might have a vcry poor
performance and therefore be thrown out of the
population just becau,e o f the value of its
weights.

Some other application-indepcnderit problems i n
using GI’ are:

How do you know what functions to include in
the function set ? For example in the GPNN
system only two functions are used : (P,W}. We
could easily extend this function set. In order to
decide on what functions are useful to the
problem some knowledge of the final solution is
needed.

So far very little research has been done on the
generalization capabilities of GP (and GA); i.e.
the testing of the solution on data outside the
training set. Problems similar to the ones in the
training of neural networks apply: when to stop
training. how to choose the training set and the
problem of overfilling on the training data. In
GP/GA a major obstacle is how to decide on
what fitness measure to use, since there are so
many varieties.

4. Conclusions and Future Work

Similar to the work in [2], i t has been shown that the
genetic programming paradigm can be used to
generate a neural network that works on the task of
die XOR problem and the one-bit adder. These very
simple ‘toy’-problems only show that the GPNN
system actually works and care should be taken to
draw any conclusions from them. It was found that
the GPNN system docs not scale up well to larger
real world applications. This is mainly due to the
restrictions of this approach described in 93.6. To
make sure that neural networks with good topologies
are not discarded, the learning of the topoloRy and
the learning of the weights should be seperated. The
restriction of network topologics to tree structures is
very severe. Many problems may be very hard or
even impossible to solve using a tree structured
neural network. Furthermore, the restriction on the
number of arguments for a P function (i e. the
number of inputs to a neuron) is another severe
drawback of GPNN

Future work will focus on finding a neural nctwork
representation that does not suffer from these
restrictions, for example graph grammars, and using
this in the genetic programming or the genetic
a1 sori t hm paradigm .

Acknowledgments

‘Thank% arc due to the Defence Science and
fechnology Organisation. Salisbury, Adelaide, South
Australia. for the financial support (contract number
740479). Edgar Vonk wishes to thank the Control,
System% and Computcr Engineenng Group (BSC),
IAaboratory for Nctwork Theory, Department of
Electrical Ihginccring, IJniverqity of Twente, for the

148

permission to undertake this project in Ule
Knowledge-based Engineering Systems Group,
University of South Australia.

References:

Koza, John R., Genetic Progra?nmrng, On the
Programming of Cornpitiers by Means of
Natural Selection, MIT Precs, C‘arnhridge,
1992.
K o a J. R. and Rice, J. P I “Gcnetic Generation
of both the Weights and Archilecture for a
Neural Network“, IEEE lnrernnrional Joinr
Conference on Neural NerrtorXs, 199 1 .
Fraser, Adam P., “Genetic I’rogrmiing in
C++, A Manual for GPC++”. Technical Repon
040, University of Salfortf, Cybernetics
Research Institute, 1994
Schaffer, J. D Whitley I). :uid Eshelman, L. J.,
“Combination\ of Genetic Algorithms and
Neural Networks: A Survey of the Slate of the
Art“. IEEE Internmonal Workshop on
Combinations rf Genetic Alporrihrns and Neural
Networks (COGAIVN-92), Baltimore, pp. 1-37,
1992.
Gruau, F., “Genetsc Synthesis of Boolean
Neural Networks with a Cell Rewiting
Developmental Process”, IEEE Inrernafronal
Workshop on C‘ombinafrons of Generic
Algortihms and Nmral Netbwij‘s (COGANN-
92). Baltimore pp. 55-74, 1902.
Boers, E.J.W and Kuiper, H., ”Biological
Metaphors and the Design of Modular Artificial
Neural Networks”, Technical Report,
Departments of Computer Science and
Experimental and Theoretical Psychology,
Leiden University, The Netherlands, 1992.
Kitano, H., “Designing Neural Networks IJsing
Genetic Algonlhms with Graph Generation
System”, Complex Systems, Vol. 4, pp. 461
476, 1990

149

