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Abstract 

This paper reports the application of evolutionary 
computation in the automatic generation of a neural 
network architecture. It is a usual practice to use trial 
and error to find a suitable neural network 
architecture. This is not only time consuming but 
may not generate an optimal solution for a given 
problem. The use of evolutionary computation is a 
step towards automation in neural network 
architecture generation. In this paper a brief 
introducuon to the field is given as well as an 
implementation of automatic neural network 
generation using genetic programming. 

1. Introduction 

The performance of a neural network depends on the 
network architecture. Its performance, depending on 
the given task, includes properties like learning speed 
and generalization capability. For example, a certain 
neural network topology used for a classification task 
may have learned to classify the training set 
correctl:y, but this says nothing of the network's 
performance on data outside &e training set. This 
depends to a great deal on the topology of the 
network. 
The automauc generation of a neural network 
architecture i s  a useful concept as in many 
applicauons the optimal architecture is not a priori 
known. Often trial and error is done before a 
samfactory architecture is found. Consuuction- 
deconstruction algorithms can be used as an approach 
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but they have several drawbacks. They are usually 
restricted to a certain subset of network topologies 
and as with all hill climbing methods they often get 
stuck at local optima and therefore may not reach the 
optimal solution. Using evolutionary computation as 
an approach to the generation of neural network 
architectures these limitations can be overcome. 
Sometimes instead of evolutionary computation, the 
term evolutionary algorithms is used but in this paper 
this is reserved for a special kind of evolutionary 
computation. 

'The organization of this paper is as follows. Section 2 
introduces briefly evolutionary computation 
techniques used in neural network design. Section 3 
describes the implementation of neural network 
architecture design using genetic programming and in 
section 4 the conclusions and future work is 
presented. 

2. Evolutionary Computation in Neural 
Network Design 

Evolutionary computation can be divided into three 
different approaches: 

genetic algorithms 
genetic programming 

0 evolutionary algorithms 

Of these mostly genetic algorithms have been used in 
neural network design: see [4] for an extensive 
overview. Work within this field mainly differs in the 
representations of the neural network topologies used. 
Representations used can be roughly divided into 
'strong representation' and 'weak representation' 
schemes. When a strong representation is used, the 
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chromosomes of the genetic algorithm directly 
encode the neural network. In a weak representation 
the chromosomes represent more abstract terms like 
'the number of hidden neurons'. 

Smng representations include the use of connectivity 
matrices and graph grammars. Connectivity matrices 
have proven to be unsuccessful1 when simple toy 
problems were scaled up to more real world 
problems. This is because of the enormous increase 
in chromosome length and accordingly in the search 
space when larger networks need to be represented. 

Graph grammars have proven much more successfull 
because they use much shorter chromosome lengths 
and the networks generated are highly structured 
[51, [61. V I .  

Genetic programming [ 11 offers a third approach to a 
strong representation scheme. This approach is 
described in [l] and [2]. and consists of directly 
encoding a neural network in the genetic tree 
structure used by genetic programming. This 
approach differs from the above methods in that the 
neural network topology as well as the values of the 
weights are encoded in the chromosomes and that 
they are mined simultaneously. 

3. Implementation of Neural Network 
Design using Genetic Programming 

The last approach described in the above section is 
implemented here. It is founded mainly on [I] and 
[2], where the genetic programming paradigm 
showed good results when it was applied to the 
generation of a neural network that could perform the 
one-bit adder task. 

A public domain genetic programming system called 
GPC++, version 0.40. was used [3]. It is a software 
package written in C++ by Adam P. Fraser, 
University of Salford, UK. Several alterations were 
made to use it for the application of neural network 
design. The GPC++ system uses Steady State Genetic 
Programming (SSGP) as discussed in $2.2. The 
probability of crossover is 100%; the new population 
is generated using the crossover operator only. Then 
on a certain percentage of members mutation is 
performed. The crossover operator swaps randomly- 
picked branches between two parents, but creates 
only one offspring. There is no notion of age in the 
SSGP system, which means that after a new member 
is created, it can be chosen immediately aftcr to 
create a new offspring. 

3.1. Setup 

We have basically used the same setup as described 
in [1],[2]. A neural network is represented by a 
connected tree structure of functions and terminals. 
Both the topology as well as the values of the weights 
are defined within this structure. In this approach no 
distinction is made between the learning of the 
network-topology and its weights; it is done within 
the same algorithm. 

The terminal set is made up of the data inputs to the 
network (D), and random floating point constant 
atom (R). This atom is the source of all the numerical 
constants in the nctwork and these constants are used 
to represent the values of the weights. The neural 
networks generatcd by this algorithm are of the feed- 
forward kind. The terminal set for a two-input neural 
network is for example (D,R), where D = {DO,Dl). 

In [2] the function set is made up of six functions: 
(P,W,+,-,*,%). P is the processing function of a 
neuron; it performs a weighted sum of its inputs and 
feeds this to a processing function (e.g. linear 
threshold, sigmoid). The processing function takes 
two arguments in the current version of the program; 
i.e. every neuron has two inputs only. The weight 
function, W, also has two arguments. One is a subtree 
made up of arithmetic functions and random 
constants that represents the numerical value of the 
weights. The other is the point in the network it acts 
upon which is either a processing unit (neuron) or a 
data input. The four arithmetic functions, AR = {+,- 
,*,%), are used to create and modify the weights of 
the nctwork. AI1 take two arguments. The division 
function is protected in that it returns zero in the case 
of a division by zero. 

After some experimentation it was found that for the 
problems under investigation, the system actually 
workcd much better if the arithmetic functions were 
left out. The values of the weights are represented by 
a single random constant atom and their values can 
only be changcd by a one-point crossover or mutation 
performed on this conslant atom. 

The output of the genetic program is a LISP-like S- 
expression, which can be translated into a neural 
network structure made up of processing functions 
(neurons), weights and data inputs. Initially no bias 
units were implemenled. 

The name givcn to this implementation of neural 
network dcsign using genetic programming is GPNN. 
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3.2. Example of a Genetically Programmed 
Neural Network 

An example of a GPNN-output is the following 
neural network which performs the XOR function. 

( P ( W ( : P (  W -0.6562s D1 ) ( W  1 59375 DO j )  101562)  
(W1.45312(1’(W 1.70312D1 ) (W-O.S28125DO)) ) )  

The graphical representation and the corresponding 
neural network are illustrated in Figure 1 and Figure 
2. 

r‘. 
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Fig. 1: Emmple of a generic tree stmetiire 
generated by GPNN 

W’ D1 Do D1 
Fig. 2: The neural nenvork corresponding to fhe 

3.3. Creation and Crossover Rules for 
GPNN 

sfructure ofjig. I 

In the sitandard GP paradigm, there are no restrictions 
conceming the creation of the genetic tree and the 
crossover operator, except a user-defined maximum 
depth of the tree. For the use of neural network 
design, several constrictions on the creation as well 
as the crossover operator have to be made. 

33.1. Creation rules 

The creation rules are: 

the root of the genetic trce must be a “list” 
function (L) of all the outputs of the nctwork 

e the function below a list function must bc the 
Processing (P) function 
the function below a P function must bc the 
Weight (W) function 
below a W function, one of the 
funckionsherminals must be chosen from thc sct 
{P,Dl), the other one must be { R )  

These creation rules make sure the created tree 
represents a correct neural network. The root of the 
tree is a list function of all its outputs while the leafs 
are either a data signal (D) or a numerical constant 
(R). This tree can then be translated into a neural 
network structure as in Figure 2. 

3.3.2. Crossover rules 

’I’he crossover operator has to preserve the genetic 
tree so that i t  still obeys the above rules. This is done 
by structure-preserving crossover which has the 
following rule: h e  points of the two parent-genes 
between which the crossover is performed (the 
branches connected to these points are swapped) must 
be of the same typc. 

The types of points we: 
-a P function or a I> terminal 
-a W function 
-a 13 terminal 

In [21 P functions and D terminals are treated as 
k ing  of different types. which means a branch whose 
root is a P function can never be replaced by a D 
terminal and vice versa. 

3.4. Implementation of the Fitness 
Function 

The fimess function is calculated as a constant value 
minus the total performance error of the neural 
nctwork. A training set consisting of input and target- 
output patterns (facts) needs lo hc supplied. The error 
is then calculated a$: 

Since a lower error must correspond to a higher 
lilness, the fitness function is then calculated as: 

Fifnes.7 = Error - MadmiimError 

’I’he maximum pcrfonnancc error is a constant value 
equal to thc maximum error possible, so that a 
rrctwork that has the worst performance possible on a 
given training sct (maximum error) will have a 
fitness equal to zero. When a linear threshold 
function is used as the neurons’ processing function, 
only output valucs of ‘0’ or ‘1 ’  are possible The 
rsngc of fitness valucs is then very limited and it is 
irnpossiblc to distinguish between many networks. In 
order to increasc this range the output neuron could 
he chosen to have a continuous sigmoid processing 
frtnction. 
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In using a supervised learning scheme, there are 
many other ways to implement the fitness function of 
a neural network. Instead of the sum of the square 
errors, for example, we could use the sum of the 
absolute errors or the sum of the exponential absolute 
errors. Another definition of the fitness could be the 
number of ~ 0 r r e ~ t . l ~  classified facts in a training set. 

The fitness function could also reflect the size (= 
structural complexity) and/or the generalization 
capabilities of the network. For example smaller 
networks having the same performance on the 
training set as bigger networks would be preferred, as 
they have better generalization capabilities in 
general. The generalization capability of a network 
could be added to the fitness function by performing 
a test on test data that lies outside the training data. 

3.5. Experiments with GPNN 

The GPNN algorithm has been implemented using 
the code of GPC++ with several alterations / 
additions. The neurons in the resulting neural 
networks initially did not have bias units. The fitness 
function used was the total performance error over 
the training set multiplied by a factor to increase the 
range. The fitness value was then made into an 
integer value as this is required by the G K + +  
software. The mutation operator was implemented so 
that it only acted on terminals, not on functions. The 
maximum depth of a genetic tree in the creation 
phase was set to 6. During crossover, the genetic 
trees were limited to a maximum depth of 17. These 
values were used as a default value by Koa [l], to 
make sure the trees stay within reasonable size. 
Simulations have been done on automatically 
generating a neural network architecture for the XOR 
problem, the one-bit adder problem and the 
intertwined-spirals problem. 

33.1. The XOR problem 

Our attempts were directed to find a neural network 
that correctly performs the XOR problem. The 
processing function used for the neurons was a simple 
threshold function: thres(x) = 1 if x > 1.0 otherwise. 
The following statistics for the genetic programming 
algorithm were used : 

Population Size: 500 
Number of ADFs: 0 
Max. depth at creation: 6 
Max. depth at crossover: 17 
Reproduction mechanism: tournament 

(tournament size = 5 )  
Crossover: 100 % 
Mutation: 10 % 

After several runs were performed we found that a 
neural network which performed the given task 
occurred every time between generation 1 and 
generation 5. Figure 3 shows a solution that was 
found in a particular run in generation 5 .  All 
solutions found had a number of neurons ranging 
from 3 to 5 .  When the roulette wheel reproduction 
mechanism was used instead of the tournament 
mechanism, the convergence to a solution took on 
average 2 generations longer. fi 1.90625 

1.29688 -0.566875 -1.1406 1.92188 

DO D1 DO D1 
Fig. 3: a generared neural network that perfonns 

flie XOR problem 

The GPNN system was extended with a bias input to 
every neuron by means of an extra random constant 
(in the range [-4,4]) added to every P function. The 
effect of this on the XOR problem was a somewhat 
slower convergence. The reason might be that the 
search space is increased, while for a solution to this 
simple problcm bias-inputs are not needed. 
For this problem no ADFs were used, as they did not 
seem necessary for such a simple task. 

3.5.2. The one-bit adder problem 

It  was then Iried, as in [2], to find a solution to the 
slightly more difficult one-bit adder problem. The 
network has to solve the following task: 

input target output 

0 0  0 0  
0 1  0 1  
I Q  0 1  
1 1  1 0  

In effect this means that the first output has to solve 
b e  AND function on the two inputs. and the second 
output the XOR function. 

The s m e  characteristics as used in the XOR problem 
were uscd. A solution to the problem was found on 
all 10 runs between generation 3 and generation 8. 
One of them is shown in Figure 4. The convergence 
is much fastcr than in [ 2 ] ,  where a solution was only 
found aftcr 35 generations also using a population of 
500. 
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6, Do 01 DO 01 

Fig. 4: a generated neural iterwork rhat performs ‘ 
the one-bit adder problem 

As can be seen from the figure, the neural network 
found is indeed made up of an AND and an XOR 
function. On average the generated neural networks 
had more neurons than just 5; the largest network 
found had 20. 

353. The intertwined-spirals problem 

The intertwined-spral classification problcrn was 
tried as well as it is often regarded as a benchmark 
problem for neural network training. The training set 
consists of two sets of 9’1 data points on a two- 
dimensional grid, representing two spirals that arc 
intertwined making three loops around the origin. A 
2-input, 2-output neural network 1s needed. 
The results were very poor. When the Same settings 
as in the above experiments were used, not much 
more than half of the training set was classified 
correctly. Automatically Defined Functions (ADFs) 
were introduced, but no improvements were 
observed. 

3.6. Discussion of GPNN 

Restrictions that apply to the GPNN system are: 

There are quite severe restnctions on the network 
topologies generated: only tree structured 
networks are possible. 
The number of arguments of a function is always 
fixed; e.g. a processing function (a neuron) can 
and must only have two inputs. 
Because of the way the terminal set is stored in 
mrxnory, only 255 diffcrent random floating 
point constants (R terminal\) can he used. ‘I’hesc 
values are chosen from the interval [-2,2] 
The learning of the topology and weights is done 
sinnultarieously within the wme algorithm ‘This 
has the drawback that a neural network wilh a 
perfectly good topology might have a vcry poor 
performance and therefore be thrown out of the 
population just becau,e o f  the value of its 
weights. 

Some other application-indepcnderit problems i n  
using GI’ are: 

How do you know what functions to include in 
the function set ? For example in the GPNN 
system only two functions are used : (P,W}. We 
could easily extend this function set. In order to 
decide on what functions are useful to the 
problem some knowledge of the final solution is 
needed. 

So far very little research has been done on the 
generalization capabilities of GP (and GA); i.e. 
the testing of the solution on data outside the 
training set. Problems similar to the ones in the 
training of neural networks apply: when to stop 
training. how to choose the training set and the 
problem of overfilling on the training data. In 
GP/GA a major obstacle is how to decide on 
what fitness measure to use, since there are so 
many varieties. 

4. Conclusions and Future Work 

Similar to the work in [2], i t  has been shown that the 
genetic programming paradigm can be used to 
generate a neural network that works on the task of 
die XOR problem and the one-bit adder. These very 
simple ‘toy’-problems only show that the GPNN 
system actually works and care should be taken to 
draw any conclusions from them. It was found that 
the GPNN system docs not scale up well to larger 
real world applications. This is mainly due to the 
restrictions of this approach described in 93.6. To 
make sure that neural networks with good topologies 
are not discarded, the learning of the topoloRy and 
the learning of the weights should be seperated. The 
restriction of network topologics to tree structures is 
very severe. Many problems may be very hard or 
even impossible to solve using a tree structured 
neural network. Furthermore, the restriction on the 
number of arguments for a P function (i e. the 
number of inputs to a neuron) is another severe 
drawback of GPNN 

Future work will focus on finding a neural nctwork 
representation that does not suffer from these 
restrictions, for example graph grammars, and using 
this in the genetic programming or the genetic 
a1 sori t hm paradigm . 
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