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Abstract

Analysis and design of distributed algorithms and pro-
tocols are difficult issues. An important cause for those
difficulties is the fact that the logical structure of the
solution is often invisible in the actual implementation.
We introduce a framework that allows for a formal treat-
ment of the design process, from an abstract initial de-
sign to an implementation tailored to specific architec-
tures. A combination of algebraic and axiomatic tech-
niques is used to verify correctness of the derivation
steps. This is shown by deriving an implement at ion of
a distributed minimum weight spanning tree algorithm
in the style of [GHS].

1 Introduction

Protocols for distributed systems can not only be com-
plicated to develop but even more complicated to un-
derstand by others than the designers. Such protocols
are often the result of a process of transforming, refining
and optimizing a basically simple algorithm. In order
to explain and clarify the final resulting protocol, as op-
posed to mere verification, the structure of a correctness
proof should reflect the structure of the original design.
A notorious example is the algorithm for determining
minimum weight spanning trees by Gallagher, Hum-
blett and Spira [GHS], There are several published cor-
rectness proofs of the [GHS] algorithm [WLL, CG, SR],
some of which rely on a protocol structure for the ver-
ification process that differs from the structure of the
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final algorithm. Yet we feel that these proofs fall short
of clarifying certain relevant aspects of the [GHS] algo-
rithm. In this paper we identify such aspects and we
show how each of them can be understood in a series
of relatively easy transformations where at each step
only a few new aspects are introduced. This leads to
a natural decomposition of our correctness proof that
has moreover the desirable property that it closely fol-
lows a (possible) design trajectory. Explanation in the
form of systematic design allows for a comparison of al-
gorithms by means of a “genealogy”; the earlier during
the design that a different design decision was taken,
the more different the finally result ing algorithms are.
This genealogy often suggests other algorithms and im-
provements. For the [GHS] algorithm we present a de-
sign trajectory that starts wit h an initial solution from
which algorithms can be obtained as divers as the Prim
and Dijkst ra algorithms [Pri, Dijk], Kruskal’s algorithm
[Kru], Boruvka’s algorithm ([Bor, Tar]) and, indeed, the
algorithm of [GHS]. Already at a very early stage in our
design trajectory most of these, except Boruvka’s, are
excluded. We thus obtain a variant where essentially
the time complexity claimed by [GHS] is achieved.

The transformational design that we propose goes
from a sequential program (essentially Boruvka’s algo-
rithm) via a sequentially phased parallel program to a
distributed program. A sequentially phased parallel pro-
gram [SR] can be described as a sequential composition
of a number of lagers [EF, KP], each of which is a (rel-
atively simple) parallel program. Many protocols for
distributed systems admit such a “layered” presenta-
tion which is much easier to analyze than the final dis-
tributed version. In [JPZ] a formulation of this principle
in the form of an algebraic transformation law has been
put for’ward.

In the present paper we apply this transformation law
and show that it can be applied to a situation as complex
as the GHS protocol. We do so by systematically deriv-
ing a GHS-lilce protocol in a number of steps, starting
with a simple sequential Boruvka-like algorithm, dis-
tributing it over nodes and introducing optimization.



This leads to a correctness proof in a number of rel-
atively simple steps, reflecting decisions in the design
process,

By several other authors it is also argued that the
s.

correctness proof should be able to represent the intu-
itiveexplanation given by the protocol designers. Chou
and Gafni [CG] group classes of actions and define a
sequential structure on such classes (so-called stratifica-

tion), In the actual verification however they use sin-
gleton classes and a total order on actions which does
not comply with the abstract protocol structure.
Stomp and de Roever on the other hand [SR] introduce
what they call a principle for sequentially phased reason-
ing which allows them to int reduce semantically defined

layers that should correspond to the intuitive ideas of
the designers. In [Sto] this principle is applied to the
derivation of a broadcast protocol. The main difference
to our approach that we use a formulation of this prin-
ciple in an algebraic setting.

Both approaches are closely related to the idea of
Communication Closed Layers by Elrad and Francez.

In order to get an idea of aspects of the GHS proto-
col that we can explain we provide some detail of the
protocol as described in [GHS]. The protocol deter-
mines the minimum weight spanning tree (MST) of a
given connected undirected graph with N nodes and E

edges. A connected subgraph of the MST is called a
fragment; virtually all algorithms for determining the
MST start with trivial fragments in the form of single
nodes and “grow” one or more fragments until the com-
plete MST has been obtained. The basic principle to
enlarge a fragment is to calculate its (uniquely deter-
mined) minimum-weight outgoing edge: this edge can
be shown to be part of the MST. Two fragments can
be combined by connecting them via edge e if e is the
minimum weight outgoing edge of at least one of those
fragments. In [GHS] each fragment finds its minimum-
weight outgoing edge concurrently and asynchronously
with regard to other fragments, and then tries to com-
bine with the fragment at the the other end of the edge
by sending a “connect” message. How and when this
combination takes place is quite intricate and must be
regarded as one of the typical characteristics of the GHS
protocol. It depends on so called levels attached to frag-
ments. Apart from single nodes which are defined to be
at level O, fragments F have a level L > 0 which, ac-
cording to [GHS], depends on previous combinations.
We quote [GHS]:

“Suppose a given fragment F is at level L ~ O

and the fragment Ft at the other end of F’s

minimum-weight outgoing edge is at level L’.

If L < L’, then fragment F is immediately
absorbed as part of fragment F!, and the ex-
panded fragment is at level L’. If L = L’ and
fragments F and F’ have the same minimum-

weight outgoing edge, then the fragments com-
bine immediately into a new fragment at level
L + 1. In all other cases, fragment F simply
waits until fragment F’ reaches a high enough
level for combination under the above rules.”

One important reason why it is difficult to get a clear
intuitive understanding of the protocol is that various
fragments with totally different levels are active at the
same time. Our analysis is based on a clear distinction
between causal order and temporal order of events. It
is shown that the apparent “chaos” from the temporal
point of view corresponds to a highly regular pattern
from a causal order point of view. Actually, in terms
of causal order the protocol is closely related to Boru-
vka’s algorithm, where there is a strict alternation be-
tween phases where the minimum weight outgoing edges
of all fragments are determined and phases where frag-
ments combine until no further combination is possible

anymore. Conceptually, i.e. from a causal order point
of view, all fragments of a given level L are created
together, in a single phase as sketched. From a tem-
poral point of view though, the creation of fragments,
by means of creating a ‘core’ and followed by ‘absorb-
ing’ other fragments, is spread out over time. Actu-
ally it is quite possible for a given fragment that it is
already becoming part of some higher level fragment
before the fragment itself is completed! Within this set-
ting it now becomes possible to clarify an aspect such
as the necessity of tagging messages with level numbers
in [GHS]: In the intermediate stages of our design tra-
jectory there are no such tags or any other (explicit)
references to level numbers within the program itself.
However, in order to apply our communication closed
layers law we introduce separate sets of communication
channels, one for each level so as to fulfill the side con-
ditions for the law. After applying the law we have ob-
tained a distributed algorithm with still the same sets of
channels. In one of the last transformation st eps we then
merge the channels for different levels between two given
nodes, by a straightforward multiplexing technique.

The framework we introduce in this paper allows to
formulate principles like communication closed layers in
a compositional and algebraic setting. The formulation
of such laws strongly depends upon a new type of com-
position operator called layer composition. It is resem-
bles sequential composition but allows more parallelism
between actions. The definition of this operator is given
in a partial order model, but does not depend on that.
It relies on a symmetric and irreflexive relation between
actions, called ‘the conflict relation, akin to conflicts in
distributed databases [BHG].

The introduction of such operators yield a language
that allows us to follow the whole trajectory starting
with an initial design that is free of architectural bias
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to the actual physical implementation where considera-
tions like the number of processors or nodes and the net-
work structure. The derivation steps in this trajectory
cannot be done by using algebraic laws only. At some
moments in the derivation process state-based and az-
iomatic reasoning is needed to show the correctness. By
combining both styles of reasoning only, we can bridge
the gap between abstract specification and low-level im-
plement at ion.

Before giving the derivation we first introduce the lan-
guage used and the underlying model.

2 The design language

properties

In this section we present the language

and its

used in the
derivation process and some of the properties needed.
In order to get some intuition for the validity of these
laws and properties we informally describe the underly-
ing model, based on runs consisting of a set of events and
a causal order and a temporal ordering relation. For a
more detailed treatment of the model and the algebraic
properties of our language we refer to [JPZ, Zwi].

The language that we use is intended to be appropri-
ate for the initial design stage – during which we prefer
to have no bias towards a certain network architecture
— as well as for the description of the final program
that should fitthe network structure. The reason for
having a single language rather than two separate lan-
guages, one for initial design and another for coding the
final program, is that we aim at a gradual transforma-
t ion from initial design towards final implementation,
which requires a single language that can represent all
stages, including intermediate ones. Since we introduce
some rather unconventional language operators, which
are difficult to appreciate without a basic knowledge of
the underlying model, we start with a sketch of the lat-
ter.

The model

Basically, we describe the execution of distributed sys-
tems by histories h that consist of a partially ordered set
of events. This model is related to the pomset model as
introduced in [Pratt]. Typical examples of events that
we actually use in this paper include send and receive
actions and read and write operations to local or shared
memory. The precise interpretation of an event e is de-
termined by its attributes a(e), some of which will be
mentioned below. For each system many different his-
tories are possible, due to different behavior of the con-
current environment of the system and other causes of
nondeterminism. Therefore a system semantically de-
notes a set of possible histories.

Events e and ~ that are unordered in some history
h, are said to be independent. Potentially such events
execute in parallel, i.e. at the same time or at overlap-
ping time intervals, Within our design formalism there
are two causes for ordering events which consequently
do not execute in parallel:

●

●

The first one is because e and f conflict in the sense
that they both access a common resource that does
not allow simultaneous access, The generic exam-
ple (and the terminology) stems from conflicts be-
tween concurrent database actions [BHG] due to
read and write operations to the same shared mem-
ory locations. When this happens e and f simply
cannot execute (fully) in parallel and so must logi-
cally be ordered, which we denote as either as e~f

or as f~e, depending on which is the case. Only
conflicting actions are ordered logically.

The second cause is that actions are temporally or-

dered as the result of the use of language operators
that explicitly require such ordering. Such opera-
tors are typically used in the last design stage where
actions are actually allocated on specific processors,
or to specific network nodes. Clearly, actions that
should run on a single processors have to be or-
dered temporally. Temporal precedence of e over f

is denoted by eaf.

Because of the sharp difference between logical and
temporal precedence, conceptually from the point of
view of a designer as well as from a more technical point
of view, we use a formal semantic model where histo-
ries are structures of the form (E, +=, +), and where
E is a set of events, with a dual ordering defined on it:
(E, +) is a directed acyclic graph (DAG), i.e., the tran-

sitive closure of + is a partial order on E. (E, ~) is
simply a partial order itself. The two ordering relations
are weakly related. Temporal order obviously does not
imply logical precedence. If two events e and f are log-
ically ordered, say e-+f, then they cannot be ordered
temporally in the reversed direction, i.e.

e+ f implies ~ + e
Also the following relation must hold

e~f-+g~h implies e~h

Informally one can think of e+ f as e influencing f

which cannot be the case if f completely precedes e in
time. Any stronger relationship cannot be assumed; for
instance from database serializability theory there are
well known examples of atomic transactions e, f and g
such that ejf~g, yet g+e!

Informal semantics and algebraic proper-

ties

The two main composition operators of the language,
parallel composition and conflict composition, are de-
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fined purely in terms of logical precedence, i.e. no tem-
poral order is enforced by these operators.

The histories for a parallel composed system S of the
form Q II R can be described as follows. The events exe-
cuted by S in some history h can be partitioned into sub-
histories hQ and hE that are possible histories for Q and
R, Moreover, the logical precedence relation between hR

and hQ is such that all conflicting events are logically
ordered, where the direction of the precedences are non-
deterministically chosen. This nondeterminism is con-
strained of course by the fact that logical precedence is
an order, so cycles of the form eo+el-+ . . . +eo are
not allowed.

Layer composition can be considered an asymmetric

form of parallel composition. For Q II R the logical
precedence between conflicting actions of Q and R is
nondeterministically determined. For layer composition
of Q and R, which is denoted by Q ● R, actions from
Q take logical precedence o+er actions from R in case
of conflicts. In the case of independent actions no or-
der is enforced however, just as is the case for parallel
composition. We also use iterated lager composition Sa,

analogously to iterated sequential composition S*.
Layer composition should be compared with sequen-

tial composition of the form Q ; R. This is somewhat
like layer composition except that we also enforce tem-

poral ordering between Q and R actions: all Q actions
temporally precede all R actions, regardless of conflicts.
So whereas conflict composition admits parallel execu-
tion of certain actions, sequential composition does not.
A sharp difference between the two forms of composition
shows up when we consider Elrad and Francez’ “com-
munication closed layers” [EF]. The essence of commu-
nication closed layers is that under certain conditions
a parallel system S I\ T where S and T are sequential
programs of the form So ; S1 and To ; T1, is “equiva-
lent” to a sequential composition of “layers” So II 2’0
and S1 II T1, thus:

(SO; S,) II (T.; T,) - (SO II To); (S1 [[ T,)(*)

The side condition is that there is no communication,
or in our parlance no conflict, between actions from So
and T1, nor should there be conflicts between action
from S1 and To. Generalized forms of this principle ap-
pear also in [SR]. The equivalence used in (*) is some-
times called IO-equivalence, referring to the fact that
although the histories of left hand and right hand sides
of (*) are not the same, the relation between initial and
final states of the system is the same nevertheless. A
problem with this equivalence is that it is not a con-
gruence, so we cannot simply interchange left and right
hand side of (*) within contexts! Within our framework
we can replace the sequential composition in (*) by con-
flict composition however, resulting in the following al-
gebraic law given for the case of two layers consisting of
two parallel components (with the same side conditions

as for (*)).
(SO●S,) [1 (T. ●TI) = (SO II TO)-(S1 II Tl) (CCL)
Note that we not only have a congruence, but even

semantic equality here, which is to be understood as
the fact that both sides of the equation admit exactly
the same partial order based histories. We also use a
number of derived laws, see [Zwi]. A special case is the
well-known independence law:
If P and Q are non-conflicting, then

PoQ=P]\Q

The process term io(F’) denotes execution of a sin-
gle action that captures the net effect of executing P

without admitting interference by other events. The
io(. ) operation is also called the contraction operation,
since it contracts complete P runs into single events.
Intuitively io(P) represents the input-output behavior
of a process P if we execute that process in isolation,
i.e. without interference from outside. This operation
induces an interesting process equivalence, called IO-
equivalence, and an associated IO-refinement relation.
Such equivalences play an important role in the book
by Apt and Olderog [AO].

P ~ Q iff io(P) = io(Q)

Specification of what is often called the functional be-

havior of a process P is really a specification of io(P),
i.e. of the IO-equivalence class of P. The io(. ) operation
does (obviously) not distribute though parallel compo-
sition. For the case of layer composition we have the
following law:

P. Q ~ io(P). iO(Q)
The intuition here is that although execution of

‘layer” P might overlap execution of “layer” Q tem-
porally, one can pretend that all of P, here represented
as an atomic action io(P), precedes all of Q as far as
IO-behavior is concerned.

IO-behavior of a system can also be specified by
means of classical pre- and postconditions. We inter-
pret a Hoare style formula of the form:

{pre} S {post }(**)

where pre and post are state formulae as usual, as fol-
lows. For each history h in io(S) let so(h) and s(h)

denote the initial and final state of the (unique) S event
in h. Then (**) requires that if the initial state so(h)
satisfies precondition pre the corresponding final state
s(h) satisfies the postcondition post. Hoare style pro-

gram verification for concurrent systems is more com-
plicated than verification of sequential programs due to
the possibility of interference. The classical proof sys-
tem for shared variables by Owicki and Gries [OG] for
instance includes extra interference freedom checks for
assertions used in proof outlines. It has been shown by
Apt and Olderog [AO] that for restricted cases it is pos-
sible to verify parallel programs relying on techniques
for sequential programs however. This work relies on
classical Hoare style verification in combination with
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program transformation based on IO-equivalence. We
use similar techniques in the derivation of the algorithm,
where we exploit the fact that conflict composition, al-
though it does admit parallelism, behaves just like se-
quential composition when we apply the ioo operation!
This follows from the fact that the contraction of some
history h can be determined without taking temporal
ordering into account; logical precedence as such is suf-
ficient to determine the cumulative state transformation
associated with h.

This implies that to verify a pre-post specification
for a program of the form S. T it suffices to verify the
associated sequential program S ; T.

In the derivation we use the combination of Hoare
style formulaa and program transformation to guarantee
the correct ness of some t ransformat ion steps. This can
be seen as proof outline transformation, in the style of
Reynolds ([Rey].) For example we have the following
rule for iterated layer composition.

Define layer 1 : P(l) until B as (P. l?)~. =B. If
P(l) is of the form

P(l) ~ for v E V dopar P(v)(l) rof ,
and B is of the form

B ~ vu E V(B(V)),
and if furthermore the following premis are satisfied.
For 1# 1’, v #v’:

P(v)(t) does not conflict with P(v’)(1’)
and

{B} P {B V (’d. ~ V(~B(v))}
then

layer 1
for v E V dopar P(v)(l) rof

until B

= { CCL- iteration }
for v c V dopar

layer 1: P(v)(l) until B

rof
Informally the last premisse states that all parallel com-
ponents must stop at the same number of iterations.

We conclude this section with a somewhat more de-
tailed description of the shared memory model and the
communication mechanism used in the description of
the algorithm.

Shared memory and communication

In our model the basic actions are guarded assignments

of the form
b&zl, z2, . . ..x~. =expl, expz}ezp~ezp~

Informally such an assignment is postponed until the
guard b holds, where after the values of the expres-
sions exp~ are assigned simultaneously to all Zt. So our
guarded assignments are really limited forms of the well
known await statement. If the guard is true it is
omitted.

We assume that there exists a given conjlict relation

between actions, for example two action conflict if one
writes into a variable the other action reads or writes.
We could also assume read-read conflict too, but will
not do so in this paper. At later stages we also use
communication via channels. We can model unidire-
ctional, asynchronous channels by shared variables. A
channel c can be defined aa a pair (c. flag, c.val) where
c.flag is a boolean that is true iff a value is available on
the channel, and c.val the value to be read, Send and
receive actions can now be modeled as guarded assign-
ments. The channel name c of send and receive actions
is a triple given by the node the emitting the message,
the node receiving it, and a name. Let c = (u, v, MsG):

send(u) (v)(h4sG(e)) ‘~f
Tc. flag& c. flag, c.val := true, e

receive(u) (v)(MsG(z)) ‘~f
c. flag& c. flag, x := false, c.val

We can take a more liberal view, where we have
buffered channels, which is needed in the final stages
of the derivation, We do not present a full syntax of the
language used in the derivation. The operators used
are straightforward abbreviations of expressions using
the operators given above.

3 Derivation of the algorithm

As we explained in the introduction, the derivation fol-
lows a number phases, starting of with a simple and
easy to prove sequential program and finally arriving at
a distributed and partially optimized set of processes.
In this section we give an outline of the total derivation
process and exemplify a number of crucial steps in the
development. The derivation is presented as a top-down
structured process. This does not comply with the true
derivation process as both the initial design and the fi-
nal implement at ion were known on beforehand, The
derivation given is the result’ of closing the gap from
both sides, eventually resulting a clear derivation show-
ing the correctness of the distributed implementation.
The final result of the derivation follows the GHS pro-
tocol closely, but has some improvements from the point
of view of top-down design of programs. Furthermore
not all optimizations are introduced. See [JZa] for a
derivation of the whole protocol.

In the derivation we can distinguish a number of dif-
ferent stages, each given by a number of relatively sim-
ple transformation steps:

1.

2.

3.

The initial (sequentially structured) design

Distributing data

Recursively computing the minimum weight outgo-
ing edge
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4.

5.

6.

7.

Synchronization and information diffusion by
means of message passing

Applying the Communication Closed Layers law to
get a distributed implementation

Multiplexing channels

Optimizing the algorithm

Of all these steps, the application of CCL is a purely
algebraic one, although it requires some non-algebraic
transformations in order to satisfy the premisses of
CCL. Other parts of the derivation are proven in an
axiomatic way or as a combination of both strategies.
We will emphasize the first few steps and the application
of the CCL laws.

The initial design closely follows the algorithm intro-
duced by Boruvka which can be found in [Tar]. As it
is a sequentially structured algorithm its correctness can
be shown using classical Hoare style techniques [Lam].
It is not purely sequential however as it is formulated
using layer composition instead of sequential compo-
sition. This to allow the program to be transformed
and distributed using the algebraic framework we intro-
duced. However, the overall behavior of this system can
be viewed as if it executes sequentially. According to
our viewpoint the use of sequential composition should
be restricted to those cases when one really means to
introduce a temporal relation instead of a causal rela-
tionship. In an initial design this is hardly ever the
case, as no architectural decisions have been taken into
account yet.

Before describing this algorithm we introduce some
notation and theorems on minimum weight spanning
trees.

3.1 Spanning trees and fragments

Assume we have a given connected and undirected graph
G = (V, E). We assume every edge i has a distinct
weight w(z). We assume all nodes have distinct names
and are totally ordered. In the following let u, v, x and
y denote vertices, and let i, j, k, . . . denote edges. Edges
are also denoted by two-element sets {u, v}. I?or a graph
G the following theorem holds
Theorem 3.1
If G is a connected graph where every edge has a distinct
weight, the minimum weight spanning tree MS~G) is
uniquely determined. ❑

The proof can be found in [GHS].
For any node v E V let inc(v) denote the set of edges

incident to v, i.e.

inc(v) ‘~f { {v, u} E E}

For an edge j = {u, v} let the destination of j with
respect to u, debt be v. We also use the source or
destination of an edge w.r.t. a fragment or set of nodes,

e.g. for fragment f and edge j = {u, v} such that v @f

and u c $ we have that src(~)(j) = u.
A fragment is a connected subgraph of MST(G). For

any fragment .f let p(~) be the minimum weight outgo-
ing edge of f.

The basic idea of the algorithm follows from the fol-
lowing lemma, which is proven in [GHS].
Lemma 3.2
Let G = (V, E) be a connected graph where every
edge has a distinct weight, and let f be a fragment of
MST(G). If k is the minimum weight outgoing edge of
j then joining k and its adjacent non fragment node to
f yields another fragment of MST(G). ❑

In the same way we can combine two fragments with
a connecting minimum weight outgoing edge into a new
fragment.

The algorithm we introduce in the next section is
based on Boruvka’s algorithm [Bor, Tar]. The rough
idea is as follows. We compute a set of fragments frag

by iteratively combining fragments and their minimum
weight outgoing edges. Initially frag is the set of all
fragments that consist of a single node and no edges
(which is a fragment by definition). Then every frag-
ment determines it minimum weight outgoing edge and
combines with the fragment on the other side of the
edge. If two fragments share the same minimum weight
outgoing edge j, then j is called the core of the newly
formed fragment. The node adjacent to the core with
the least name is called the core node. 1 If a fragment
is not combined via a core to another fragment it is said
to be absorbed,

The algorithm terminates when we only have a single
fragment left, MST(G).

Every fragment in this algorithm consists of a core
node that is the root of the tree consisting of all other
branches and other nodes in the fragment. This tree
structure is used to gather information in the tree or to
broadcast information.

In the derivation we also need the following lemma.
One of the characteristic features of the GHS protocol -
postponement of absorption – is partially based on this
lemma.
Lemma 3.3
Let ~ be a fragment and let j be an edge of ~. Removing
j (but not its endpoints) from ~ disconnects j’ in two
disjoint trees, at least one of which – say fl - does not

contain the core of f. (if j is the fragment core any
of the two subtrees can be taken. ) We then have that

Xfl) =j.
Proofi see [JZa] ❑

lThi~ is different from [GHS] where both nodes adjacent to a

core play equivalent roles. In the top-down design of the algorithm

the choice for a single core node is more straightforward and leads

to more elegant solutions, without essentially changing the ideas

of GHS. We therefore take this choice.
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In the rest of this paper we furthermore use the fol-
lowing operations on graphs and trees. Let G = (V, E)

and H = (Vf, E’) be graphs. We now define the union
of G and H as

GUH%f(VUV’, _EUE’)
For node v and edge k let

v~Gd~fv~Vandk~Gd~fk~ E,

and
GU {V} =f (V U {V}, ~),

GU {k} ~f (~ EU {k}).
Furthermore, for any fragment ~ let inc(.f) be the set

of edges leaving ~ (i.e. the set of all {u, v} such that
u E ~ and v @~). For a node u we define out(~)(u) as
the set of edges incident to u leaving f, i.e.

d(f)(v) ‘~f z71c(v) n inc(f)

If ~ is clear from the context it is omitted.
We define the minimum weight edge of a non-empty

set E, rein-edge(E) as

min.edge(E) ‘~f e ~ E such that
w(e) = MIN{w(e’) [ e’ E E}

and define min.edge(@) ‘~f nil. We take w(nil) ‘~f co.

Finally, for a graph G = (V, E), let concomp(G) be the
set of connected componenents in G, i.e. the set of
maximal and connected graphs in G.

3.2 The initial design

The first implementation is based on the construction
of a set of fragments frag which determine their min-
imum weight outgoing edges and combine connected
fragments. Initially the set ~rag consists of all trees con-
sist ing of a single node and no edges, which are by def-
inition fragments. Furthermore we compute the set of
edges B that are branches, i.e. that are part of the span-
ning tree. This is the basic idea of Boruvka’s algorithm.
It can be described as:

MSTO ~
B:=@m

frag := concomp((V, B)).

layer
M := {min-edge(znc(f)) I f c j%ug, inc(f) #0} ●

B:= BuMo

frag := concomp((V, B))

until M = O
The total correctness of this algorithm follows from loop
invariant 10, the definition of ,u(f ), and bound function
r, that are defined as:

10: [fragl >1 A
Yf c frag(f is a subtree of MST(G)) A
{V’ I (V’, E’) ● frog} is a partitioning of V

and
‘r ‘~f log( Ifmgl )

The invariance follows from the initialization and
lemma 3.2. The number of fragments \fmgl is at least

divided by two in each iteration and therefore Iog(jfrag/)

decreases. From the invariant and the termination con-
dition the postcondition

P. : frag = {MST(G)}

easily follows.
Although we take MSTO as the initial design in our

trajectory, it is also possible to give an even more gen-
eral algorithm that comprises the Prim-Dijkstra and
Kruskal algorithms, by not adding M to B, but only
adding a subset of M to B. In that case however we
loose the logarithmic complexity of the algorithm, as
the number of fragments decreases, but is not necessar-
ily divided by two.

As a second step we split the computation of M into
the layered computation of the minimum weight outgo-
ing edge for every fragment. The reason for doing so is
that we want to distribute data. Firstly per fragment,
eventually per node. We do so by introducing a vari-
able mo( f ) for every fragment f. This is an inst ante of
straightforward top-down design and Hoare style verifi-
cat ion for sequential programs. The following represen-
tation function for M will hold:

M(mo) ‘~f {me(f) I f G fmzg, inc(f) #0}

This leads to the following refined program:

MSTI ~

B:=@o

frag := concomp((V, B)).

layer
for f E frag layer

if inc(f) # 0 then
rno(f) := min-edge(inc(f)) c

B := B U no(f)

else mo(~) := nil

fi

rof ●

frag := conconzp((V, B))

until A{mo(~) = nil I f ~ frag}
The correctness of this transformation step can be
proven by means of the representation function M and
the structure of the conditional statement that implies
that

me(f) = nil iff inc(f) = 0
as znc(f) # 0 implies min-edge(inc(f)) # nil.

3.3 Distributing data

The transformation of MSTI to a program where all
data are distributed takes a number of steps. First we
will distribute B by introducing variables SE for ev-
ery edge. This allows for the introduction of parallelism
between the different fragments as conflicts due to the
acces to B are resolved.
Thereafter we introduce variables lrno(v) giving the lo-
cal minimum weight outgoing edges of every node of ev-
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ery fragment. Finally we introduce a core node for every
fragment, by giving defining boolean variables cm-e(v)
for every node W, such that for every fragment there is
a single node in the fragment with core(v).

We first introduce variables
SE(u)(v) e {brunch, basic}

for every {u, v} c E, The following representation func-
tion B(SE) will hold:

B(SE) ‘~f { {u, v} e E / SE(U)(V) = branch}

The transformation consists of adding initialization of
every SE(u) (v) and of replacing

~ := B U {7710(f)}

by
SE(src(f)(mo(f))) (dest(f)(mo(f))) := branch

The guard inc(~) # @can also be replaced by mo(~) #
nil after computing mo(~) as min.edge(0) = nil.
The correctness of this step can be proven by VDM
style data refinement with atomicity constraints. These
constraints are fulfilled as every layer is interference free,
because all actions are placed in the same layer and no
parallel interfering processes exist.

After this transformation we can replace the lay-
ered construct for f ~ frag layer by for f ~

f rag dopar , as all conflict are resolved. The correct-
ness of this transformation is guaranteed by the inde-
pendence law.
The code of the resulting program is omitted.

Now we introduce local minimum weight outgoing
edges for every node in every fragment, lrno(v). For
these variables the following invariant must hold.

11: me($) = min-edge({lrno(f) I f ~ frag})

This, plus the previous changes, leads to the following
algorithm:

MST2 4
Init ●

layer
for f ~ frag dopar

for v ~ f dopar
lmo(v) := min-edge(out(f) (v))

rof ●

me(f) := min-edge({lmo(v) I v ~ f}).

if me(f) # nil then
SE(src(f)(mo(f))) (o!est(f)(mo(f))) := lwanch

fi

rof ●

frag := concomp((V, B(SE)))

until A{rno(f) = nil I f ~ frag}

where
Init ~

for v E V dopar
for {u, v} E inc(v) dopar

SE(U)(V) := basic

rof
rof ●

f:= concomp((v, B(SE)))

The correctness of these transformation steps can
again be easily verified (see [JZa]).

In MST2 we still have the set of fragments frag as a
variable. This information must be localized too. We
do so by introducing boolean variables core(v) for ev-
ery node v, and defining a function firag(u) giving the
fragment u belongs to, i.e. the set of nodes and edges
connect ed to u by branches.

Fb(v) ~f {u E V I connected(v, u)}

T-rag(v) ~f

(F~(v), { {u, u’}= F~(v)2 \ SE(U)(U’) = branch})
where connected means that v and u are connected via
a path of branches. We leave its definition implicit.

We define the following representation function and
(data) invariants:

F’(core) ‘~f {Frag(u) I u ~ V, core(u)}

MO(Frag(u)) ‘~f me(v) such that v E Frag(u) A core(l
IZ : Vu ~ V (3!u ● ~~ag(v) (core(u)))

la : V{u, v} E E (SE(U)(V) = SE(V)(U))
Data invariant 13 is now needed to guarantee the cor-
rectness of the definition of connected. Furthermore we
will make use of this in later stages.
We define the set Core as

Core ~f {v E V I core(v)}

How can we now achieve 12, i.e. how do we choose
a unique core node for every fragment? Initially this is
no problem: every fragment consists of a single node.
After that we know that for every new fragment there
were two exactly subfragments that had the same mini-
mum weight out going edge, the core edge. As all nodes
are ordered we can take the first of the nodes adjacent
to the core. In order to determine which nodes are ad-
jacent to minimum weight outgoing edges we introduce
variables con-req(u)(v) stating that {u, v} was the min-
imum weight out going edge of firag(u). The following
invariant will therefore hold:

14: Vu E Core ( con-req(v)(v’) iff
{v, v’} = me(u) A v E Xrag(u))

Apart from some minor changes in MSTI we have
to establish 14 at the end of the loop, i.e. the final
stat ement in the layer . . . until will be Compute Core,
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defined as
ComputeCore ~

for u E Core dopar core(u) := false rof s
for v c V dopar

for {v, z} E inc(v) dopar
if con-req(v)(z) then

con.req(v)(z) := false ●

if SE(V)(Z) = branch then
if v < z then

core(v) := true

fi

else SE(V)(Z) := branch

fi

fi

rof
rof

The correctness of this transformed MST2, which we
will call MST3, can again be proven by proof outline
transformation and Owicki-Gries style verification with
trivialized interference freedom tests because of local
variables. In this proof lemma 3,2 and theorem 3.1 are
needed. The proof itself is omitted.

3.4 Recursively computing the mini-

mum weight outgoing edge

Now we have introduce core nodes we can make use of
the fact that we can view a fragment as a rooted tree
to compute me(u) for every core node u. To do so we
introduce variables up(v) denoting the edge toward the
root of node v in the fragment (for ~core(v)). Further-
more we int reduce a variable me(v) for every node v,
not only core nodes, denoting the minimum weight out-
going edge of the tree in the fragment of which v is the
root.

We also need to synchronize the nodes in a fragment:
a node v needs the values of all its successors in the tree
to compute me(v). For this purpose we define synchro-
nization flags mo-comp(u) that are set to true when the
value of me(u) has been computed. Synchronization is
also needed to inform edges that have to change their
root and upward edge, i.e. nodes that are on the path
from the core to the minimum weight outgoing edge,
as we do not want to implement this by core actions
only. For this purpose we introduce three-valued flags
change(u) E {true, false, 1}. In the algorithm below
these synchronization variables are indexed by the num-
ber of the layer. This in order to guarantee synchroniza-
tion w.r.t, to that layer, or, viewed differently, to make
the layers communication closed. We come back to that
later.

The following notation is used:

do?.on(v) ~f {j = {v, u} 6 inc(v) ]
SE(v)(u) = branch A j # up(v)},

tree(v) ‘~f {({v}, down(v))}U
U{tree(u) I {v, u} C down(v)},

and

root(v) ‘=f
{

iff core(v)
;;ot(dest(v)(up( v))), iff mcore(v)

We furthermore define the path between two (con-
nected) nodes u and v as the sequence of nodes on
the path. The full definition is omitted. For a path
p = [UVW. . .] we define the first edge of p, first(p), as
the pair {u, v}.

For the next algorithm MST4 the following invariants
will hold:

Is : mo-comp(v) +-
mo(v) = min-edge{rno(u) I u ~ tree(v)}

16: (mo-comp(v) A down(v) = @)+-me(v) = imo(v)
~~ : Vu, v E V((core(v) A connected(u, v))+

up(u) = first(path(u, v)) )

For sake of brevity we immediately introduce a second
addition in this algorithm. Let be(v) be the edge leading
to the minimum weight outgoing edge, i.e.

Is : Vu, v ~ V((u # VA
lmo(u) = me(v) A connected(v, u))+-

be(v) = first(path(v, u)) )
19: lmo(u) = mo(u)abe(u) = lmo(u)

All this leads to the following algorithm:

MST4 ~
Init ●

layer 1

ComputeLocal(l) ●

Compute Global(l) .

ChangeRootPath(l) .

ComputeCore(l)

until A{mo(v) = nil I v E V}
where

Init ~

for u c V dopar
core(u) := truellup(v) := nil[lbe(v) := nzlll

for {u, v} E znc(u) dopar
SE(u)(v) := basicll con_req(u)(v) := f Ae

rof
rof ,

ComputeLocal(l) ~

for u G Coz dopar
for v G Frag(u) dopar

lmo(v) := min.ectge(out(>~:(u) )(v))ll

mo-comp(v)(l) := false

rof ,
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Compute Global(l) ~

for u ~ Core dopar
for v G ~rag(u) dopar

no(v), be(v) := lmo(v), Zmo(v)

for {v, z} E down(v) dopar
await mo-comp(z)(l) do

if w(mo(z)) < zo(mo(v)) then
rno(v), be(v) := me(z), {v, z}

fi

od
rof ;
mo-comp(v)(l) := true

rof
rof

Note that we need the sequential composition at this
stage to enforce the right moment of synchronization.
Furthermore let

ChangeRootPath(l) ~

for u c Core dopar
change(u)(1) := (me(u) # nil).

for v E Frag(u) dopar
await change(v) # 1 ●

if change(v)(1) then
up(v) := be(v) ●

if SE(v) (dest(v)(be(v)) = branch then
change(dest(v)( be(v)))(l) := true

else
S13(v)(dest(v)( be(v)) := branch.

con-req(v)((dest( v)(be(v)) := true
fi

fio
for i G down(v) – {be(v)} dopar

change(dest(v)( z))(l) := false

rof
rof

rof
and Compute Core(l) analogously to MST3.

The correctness of the above solution is quite involved
as it includes proving deadlock freedom and correctness
of the recursive definition. 2 The proof however can be
restricted to a single layer within a single execution of
the loop which simplifies matters to a large extend. It
can be proven correct using Hoare logic [Lam] or tem-
poral logic [MP].

3.5 Introducing message passing

In MST4 we had to introduce variables to synchronize
act ions and we had to copy values computed. As we are
thriving for a distributed solution it is very well possi-
ble to introduce communication over channels to enforce
synchronization and to pass values. As send and receive

actions are defined as guarded assignments this trans-
formation is straightforward, and simplifies matters to
a large extend.

Furthermore we want to remove all shared accesses
from the algorithm, as these are not possible in dis-
tributed implementations. We therefore have to adapt
the computation of lrno, remove the shared accesses to
con.req, me(z), and references to Frag(u). This is done
by introducing message passing and variables fn(v) de-
not ing the fragment name of v.

Some further simplifications are possible: we hardly
ever refer to the edge me(v), but often to its weight. We
therefore use variables bw instead of mo. Also the vari-
ables lmo are oblivious as their function can be taken by
bw. Finally we can join the parallel executions over all
core nodes and all nodes in the corresponding fragment
to the parallel execution over every node in V.

The result of these transformations, MST5 has the
following structure. The full code is omitted because of
space limitations.

MST5 ~

for v G V dopar Init(v)’ rof .
layer 1

for v E V dopar ComputeLocal(v) (l)’ rof .
for v E V dopar ComputeGlobal(v) (l)’ rof .
for v 6 V dopar ChangeRootPath( v)(l)’ rof .
for v G V dopar Com,puteCore(v) (l)’ rof .
for v c V dopar ChangeName(v)(l)’ rof

until A{bw(v) = CMI v ~ V}

The processes ComputeLocal’ and Compute Core’ can
both be split into two processes by means of algebraic
transformations and proof outline transformations. The
former can be split into a kernel process concerned with
computing be(v) and a test handler TH(v) reacting
upon TEST messages sent by other processes, the lat-
ter into a process possibly trying to connect and a con-
nect handler Cl?(v) responding to CONNECTmessages
of other nodes.
In this process we use the rule that if there are only
a single send and a single receive action on a channel,
executing them in parallel is the same as first sending
and then receiving (see [JZ]).

We define basic(v) ‘~f {{v, z} c inc(v) I SE(V)(Z) =

basic}. The processes TH(v) and C17(v) have the fol-
lowing form:

Z’H(V) ~
for {v, z} ~ basic(v) dopar

recezve(v)(z)(TEsT( fn(z)(v))) .
if fn(z)(v) = fn(v) then Send(V) (Z)(REJECT)
eke send(v) (z)(AccEPT)
fi

rof
z The solution given above deviates from [GHS] in the fact that

we only change UP(V) on the path from the core to the new mini-

mum weight outgoing edge. In [GHS] every UP(V) variable is reset

in every iteration when an INITIATE is received.
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CH(V) 4

for {v, z} ~ basic(v) dopar
S6VUi(V)(Z)(NOcONNECT)ll
(Tf3C(X%e(V)(X)(NOcONNECT) or
(?WX?ZZM(V)(X)(CONNECT)● $~(V)(Z) := b?W?dl))

rof

3.6 Applying

Layers

What we eventually
implementation, i.e.

MSTf L

Communication Closed

want to arrive at is a distributed
an implement at ion of the form

fo; v E V dopar
lni-t(v) ●

layer ~(v) until l?(v)
rof

The algorithm MST5 however still is of a sequential
nature. We want to apply the Communication Closed
Layers Law to transform MST5 to a distributed struc-
ture. To be able to apply the CCL law or its iterated
version MST5 must be of the correct structure and fulfill
the premisses.

In order to arrive at the structure desired we first
have to transform the loop body. This consists of a
given number of layers that are all of the form

L; ~ for v c V dopar J5i(v) rof
This is the correct structure to apply CCL. Furthermore
all layers are communication closed as communication
takes place within a layer, and other conflicts only exists
wit hin the process of a single node. We can transform
the loop body L now as follows:

L

. { by definition }

( ComputeLocal’l\TH) .

Compute Global’ .

ChangeRootPath’ .

(ComputeCore’\lCH).

ChangeName’
—— { [1is commutative and associative }

rof
.— { by definition P(w) }

for v E V dopar ~(v) rof

= L’

We have now transformed L to a form suitable for the
application of CCL. The guard of the loop however do
not satisfy the premis of the iterated CCL rule:

{1?} P {1? v (Vv6 V(+?(v))}
The last layer of the loop however consists of a broadcast
of the name of the fragment. We change ChangeName

in such a way that the new fragment name is term. This
allows us to restate the termination condition as:

B’ ~ A{~n(v) = term [ v c V}

This co~d~tion does satisfy the premis, as
3v E V(fn(v) = temn)+Vv E V(bw(v) = co)

We can now transform MST5 as follows:

——

——

=

——

.—

.

MST5

{ by definition }

Init’. layer 2: L until B’

{L= L’}

Init’ . layer 1: L’ until B’

{ definition L’ }

Init’ ●

layer 1

for v G V dopar L(v)’ rof

until lil’

{ iterated CCL }

Init’ ●

for v ~ V dopar

layer 1: P(v) until fn(v) = term

rof

{ CCL }

for v E V dopar

Ind(v)’. layer 1: ~(v) until fn(v) = term

rof

{ by definition }

for v E V dopar N(v) rof

MSTG
for v E V dopar ComputeLocal(v)’ 11TH(v) rof .

for v G V dopar Compute Global(v)’ rof .
.

for v c V dopar ChangeRootPath(v)’ rof .
The result of these transformations MST6 has the de-

sired distributed structure.
for v c V dopar ComputeCore(v)’ llCH(v) rof ●

for v E V dopar ChangeName(v)’ rof 3.7 Multiplexing channels and optimiz-
—— { CCL } ing messages

for v E V dopar In MST6 we used different channels for different layers.
(ComputeLocal(v) ’l\ TH(v)) ● This assumption is not realistic but it is possible to

ComputeGlobal(v)’ ● ChangeRootPath(v)’ ● multiplex a number of channels on a single (buffered)

(Compute Core(v)’ llCH(v)) . channel. The buffer length must be at least the num-

ChangeName(v)’
ber of layers that are executed, which is limited by
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Iog( [VI ). A channel c is in this case not given by a
pair (~lag, val), but by a function c : [0..l]--+(~la9, vat).

We can now assume that the level number is tagged
to every message and we can implement a send action
send(v) (u)(MSG(e, Zn)) as

send(v) (u)(MsG(e, h) ~
(+ln).~lag)&c(ln).~ hzg, c(hz).val := true, e

By now we have transformed the algorithm in MST6
where N(v) has a structure as in fig. 1, where some
subroutines have been left implicit. In this algorithm a
number of opt imitations are possible. First of all we can
group statements for core and non-core nodes by using
proof outlines and transforming them. By introducing
the right invariants we can furthermore show that some
messages (e.g. NOCONNECTand NOCHANGE) are oblivi-
ous and can be removed.

There are also some other optimizations possible
W.r.t. to the number of messages: if we received a
REJECT message on some basic edge, we will always re-
ceive a REJECT message. Introducing a reject status
for edges will save double status requests. We can also
check basic edges one by one, instead of all in parallel.
In that case we have to check them in order of weight.
This optimization allows us to postpone the absorption
of fragments: if the edges allow which the fragment sent
a CONNECThas to large a weight, lemma 3.3 guarantees
that we can absorb it at a later stage.

The details of these optimizations can be found in the
full paper ([JZa]).

The final implementation step is now to replace layer
composition by sequential composition, and to replace
parallel composition by sequential iteration within a
component. This does not invalidate the correctness
(for non-interfering parallelism) and results in an im-
plementable, distributed algorithm.

4 Conclusion

The layering techniques used to derive the implemen-
tation of a distributed minimum weight spanning tree
algorithm have proven to be a powerful means in the
development of parallel systems. This also holds for a
posteriori verification where it can give insight in the
structure of the implementation and the intuitive ideas
of the designers.

These techniques are applicable to a large number
of problems, not only to this type of algorithms. Other
examples – varying from parsing algorithms to database
protocols - can be found in [JZ], [JPZ], and [PZ].

At this moment we are investigating the relation be-
tween the process based approach as used in this paper
and logic based approaches to layering like [KP], The
use of non-static dependency relations might be useful
in our context too.
Also algorithms relying on real-time synchronization

N(v) 2
up(v) := nilllcore(v) := truellfn(v) := vII
for {v, z} c znc(v) dopar

se(v)(z) := basic ● con-req(v)(%) := false

rof ●

layer 1

be(v), bw(v) := nil, @

( for {v, z} E basic(v) dopar
9end(V)(Z)(TEST( j%(v), 1)) ●

(receive(v) (z)(REJEcT(2)) or
(receive(v) (x)(AccEPT(l)).
(if w({v, z}) < be(v) then

bw(v), be(v) := w({v, z}), {v, z}

fi )))

rof /[ ~H(v)).
for {v, $} G down(v) dopar

(receive(v) (z)(REPorm(b(v), 1).

if b(v) < bw(v) then
be(v), bw(v) := {v, z}, b(v)

fi)

rof ●

if ~core(v) then
send(v) (dest(v)(up(v)) (REPoRT(bIO(v), t))

fio
if core(v) then ChangeRootPath

else

(TeCeZVe(V)(dr?St(V)(Up(V)) )(cHANGEROOT(z)) .
up(v) := be(v) ● ChangeRootPath) or
(Tc?Ci5ZVe(V)(dd(V)(Up(V)))(NOcHANGE(/)) ●

No ChangeRoot)

fie

core(v) := false ●

(if con.req(v)(dest(v) (be(v)) then
Se7Zd(V)(deSt(V)(be(V) )( CONNECT(z)) ●

con.req:= false ●

(receive(v) (dest(v)(be(v)) (NoComwcT(l)) or
(receive(v) (dest(v)(be(’v) )( CoNNECT(Z)) .

core(v) := v < dest(v)(be(v)) ))
fi II ClI(v)) ●

if core(v) then
if bw(v) = 00 then fn(v) := term
else frz(v) := v fi

else

?’eCeiVe(ZJ)(CkSt(V)(ZJ~(V))(lNITIATE( fn(V), /))
fio

BroadCastName(v)

until fn(v) = term

Figure 1:

226



like atomic broadcast protocols [CASD] are studied in
our framework.
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