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Abstract- This paper studies the problem of 
controlling the planar position and orientation 
of an autonomous surface vessel using two in- 
dependent thrusters. It is first shown that al- 
though the system is not asymptotically stabi- 
Iizable to a given equilibrium configuration us- 
ing a time-invariant continuous feedback, it is 
strongly accessible and small-time locally con- 
trollable at any equilibrium. Time-invariant dis- 
continuous feedback control laws are then con- 
structed to asymptotically stabilize the system 
to the desired configuration with exponential 
convergence rates. A simulation example is in- 
cluded to demonstrate the results. 

1. Introduction 

In the past few years, there has been a considerable 
amount of interest in the control of underactuated me- 
chanical systems, i.e. systems with fewer inputs than 
degrees of freedom. The possibility of controlling a sys- 
tem with fewer than the typical number of actuators is 
indeed appealing, for it allows to reduce cost, weight 
as well as the occurrence of component failures. How- 
ever, in general, underactuated systems present chal- 
lenges which are not found in systems with full control. 
Controllability, for instance, which is usually implied 
in systems with full control, is not easy to determine 
in an underactuated system. Control synthesis for an 
underactuated system is also more complex than it is 
for a system with full control. While many interesting 
techniques and results have been presented for under- 
actuated systems ([3], [6], [8], [ll], [13], [14], [IS]), the 
control of these systems still remains an open problem. 

This paper considers the problem of controlling the 
planar position and orientation of an autonomous sur- 
face vessel using two independent thrusters. The dy- 
namics of this underactuated system is complex enough 
to yield a rich source of control problems, yet simple 
enough to permit a complete mathematical analysis. It 
has been shown in [19] that underactuated vehicles do 
not satisfy Brockett’s necessary condition [5] if the un- 
actuated dynamics contain no gravitational field com- 
ponent and, hence, in this case, these vehicles are not 
asymptotically stabilizable to a given equilibrium con- 
figuration via time-invariant continuous feedback laws. 

In this paper, it is first shown that although the sys- 
tem is not asymptotically stabilizable to a desired equi- 
librium configuration using a time-invariant continuous 
feedback, it is strongly accessible and small-time locally 
controllable at  any equilibrium and, hence, the sys- 
tem is asymptotically stabilizable to a desired equilib- 
rium using time-invariant discontinuous feedback laws. 
Discontinuous feedback laws are then constructed to 
achieve asymptotic stabilization. The methodology fol- 
lowed in the construction of the discontinuous feedback 
laws is based on first transforming the system into a 
discontinuous one in which the design of feedback laws 
is easily carried out. Then, transforming back into the 
original coordinates yields discontinuous feedback laws 
which asymptotically stabilize the original system with 
exponential convergence rates. This construction pro- 
cedure is related to the approaches proposed in [2], [12] 
for the stabilization of nonholonomic systems. 

The organization of this paper is as follows. In Sec- 
tion 2, the mathematical model describing the dynam- 
ics of a surface vessel with two independent thrusters 
is introduced. Controllability and stabilizability results 
are presented in Section 3. Discontinuous feedback laws 
are derived in Section 4. In Section 5, a simulation ex- 
ample is included. Finally, Section 6 consists of a sum- 
mary of the main results. 

2. Mathematical Model 

Consider the problem of controlling the Cartesian 
position and orientation of a surface vessel with two 
independent propellers as shown in Figure 1. The kine- 
matic model which describes the geometrical relation- 
ship between the earth-fixed (I-frame) and the vehicle- 
fixed (B-frame) motion is given as 

x = vz cos $ - vy sin+ , (1) 

y=vzs in$+vycos$ ,  (2) 

where (x, y) denotes the I-frame position of the center 
of mass of the vehicle, $J denotes the orientation angle; 
(vz, vY) and wz are the linear and angular velocities of 
the vehicle in the B-frame. For simplicity, assume that 
the origin of the B-frame is located at the center of mass 
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of the vehicle. Also assume that the vehicle is neutrally 
buoyant. Then the dynamic equations of motion of the 
vehicle can be expressed in the B-frame as: 

Mli + C(v)v + D(v)v  = 7 , (4) 

where v = ( W , , W ~ , W , ) ~  denotes the velocity vector, 
T = (Fx,O,Tz)T denotes the vector of external force 
and torque generated by the two propellers. M E R3x3 
is the inertia matrix, including added mass; and C(v)  E 
R3x3 and D(v)  E R3x3 denote the Coriolis/centrifugal 
and the damping matrices, respectively. The reader 
is referred to [7] for the general formulation. Assum- 
ing that M is constant and diagonal, and neglecting 
the hydrodynamic damping terms of order higher than 
one, the dynamic equations of motion can be rewritten 
in component form as 

mllCx - m22wywz + dl1vx = Fx , 

mazC, + mllwxwz  + d22vy = 0 , 

m334 + ( m 2 2  - mll)v,vy + d33wz = T, , 

( 5 )  

(6) 

(7) 

where mii, dii, i = 1 , 2 , 3 ,  are positive constants. In 
earth-fixed coordinates equation (6) takes the form of 
a second-order nonholonomic constraint, i.e. a nonin- 
tegrable relation involving not only the generalized co- 
ordinates and velocities but also the generalized accel- 
erations. In contrast to first-order nonholonomic case 
(see e.g. [4] ) ,  a second-order nonholonomic constraint 
does not reduce the dimension of the state space. A set 
of three independent configuration variables and three 
kinematic variables is required to completely specify the 
state of the system. 

Define the state variables 

x 1 = $ ,  

5 2  = xcos$+ ysin$ , 

5 3  = -xsin$ + ycos$ , 

5 4  = v y  , 

5 5  = wz , 

where a = d22/m22, p = m 1 1 / m 2 2  and 

U 1  = ( T z  - d33Wz + (mll - m 2 2 ) v x v y ) / m 3 3  

~2 = (Fx + m 2 2 ~ y w z  - d l l v x ) / m l l  . 

(14) 

(15) 

In the next section, we will consider the system (8)-(13) 
and study its controllability and stabilizability proper- 
ties. 

3. Controllability and Stabilizability 
Equations (8)-(13) define a nonlinear control system 

of the form 
n 
L 

where x E M = S x R5 is the state; and f and g2, i = 
1 , 2 ,  are the drift and control vector fields. Note that 
the set of equilibrium solutions corresponding to U = 0 
is given by the equilibrium manifold 

Me = {X E M I Z4 = 5 5  = 5 6  = O }  . 
It is easily verified that the linearization of the equa- 

tions (8)-(13) about an equilibrium xe  has an uncon- 
trollable eigenvalue at  the origin. This implies that a 
nonlinear analysis is necessary in order to character- 
ize the controllability and stabilizability properties of 
the system. Note that since the linearization of the 
equations (8)-(13) is not stabilizable, the system can- 
not be exponentially stabilized at an equilibrium using 
smooth feedback [2O]. Moreover, it is easy to see that 
the system does not satisfy Brockett’s necessary condi- 
tion [5] and hence it is not asymptotically stabilizable 
to a desired equilibrium solution using time-invariant 
continuous feedback. 

We now consider the nonlinear control system (8)- 
(13) and employ certain results of nonlinear control the- 
ory. We refer the reader to [lo] and [17] for the relevant 
controllability definitions and results used in the subse- 
quent development. 

The following results characterize the controllability 
and stabilizability properties of the underactuated ve- 
hicle dynamics described by equations (8)-(13). 

Proposit ion 1: T h e  underactuated vehicle dynamics 
described by equations (8)-(13) i s  strongly accessible o n  
M. 

Proof: Consider the system (8)-(13). Since the vector 
fields 

91, Q 2 ,  [f,g11, [f,g21, [92, [f,9111, [ [ f , 9 2 1 ,  [f,9111 

span a six dimensional space at  any point x E M, the 
strong accessibility Lie algebra rank condition is satis- 
fied at  any point. Hence the system is strongly accessi- 
ble on M. 

Proposit ion 2: T h e  underactuated vehicle dynamics 
described by equations (8)-(13) i s  small t ime  locally con- 
trollable at any equilibrium xe  E Me. 
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Proof: Consider the system (8)-(13). Now, following 
Sussmann [17], let Br(X) denote the smallest Lie al- 
gebra of vector fields containing f, 9 1 ,  and g 2  and let 
B denote any bracket in Br(X). Let So(B), bl(B) and 
S2(B) denote the number of times f, g 1  and g 2 ,  re- 
spectively, occur in the bracket B. The degree of B is 
equal to the value of ELo @(B).  The Sussmann con- 
dition for small time local controllability is essentially 
that the so-called bad brackets, the brackets with So(B) 
odd and b'(B), S2(B) even, must be a linear combina- 
tion of good (i.e. not of the bad type) brackets of lower 
degree at the equilibrium. The degree of a bad bracket 
must necessarily be odd. The only bad bracket of de- 
gree one is f which vanishes at  any equilibrium. The 
bad brackets of degree three are brackets with 6' = 1 
and Si = 2, i = 1 or 2, and all are identically zero 
vector fields. It follows that the Sussman condition is 
satisfied at xe. Hence the system is small time locally 
controllable at  xe. 

Since the system is real analytic, the above controlla- 
bility results imply the existence of piecewise analytic 
feedback laws [18] which asymptotically stabilize the 
closed loop system to a given xe. In the next sec- 
tion, guided by these results, we will focus on designing 
asymptotically stabilizing discontinuous feedback laws 
for the system. 

4. Discontinuous Feedback Laws 

In this section, we will consider the problem of de- 
signing feedback control laws of the form U = U(.) 
for the system (8)-(13). As discussed in the previous 
section, the system cannot be asymptotically stabilized 
to an equilibrium using any time-invariant continuous 
feedback. Therefore, we restrict our consideration to 
designing time-invariant discontinuous feedback laws. 

Note that the problem of stabilizing the system to 
a given equilibrium xe E Me can be reduced to the 
problem of stabilizing the system to the origin via an 
appropriate state transformation. Hence, without loss 
of generality, we focus only on the problem of feedback 
stabilization to the origin, i.e. xe = 0. 

We will first study the problem of stabilizing the fol- 
lowing reduced order system, which is obtained by con- 
sidering the subsystem (8)-(11) and letting ( 2 5 , ~ ~ )  be 
the control variables (vi, v2): 

61 = 211 , (17) 

k2 = U2 + $301 (18) 

x 3  = 2 4  - x 2 v 1  , (19) 

x 4  = -ax4 - pv1v2 . (20) 

The idea that will be employed is based on first trans- 
forming the reduced system (17)-(20) into a discontin- 
uous one by applying a discontinuous coordinate trans- 
formation, e.g. by applying a a-process (see e.g. [l]). 

From the analytical point of view, the u-process, also 
termed as the process of resolution of singularities, con- 
sists of a rational coordinate transformation. 

Consider the reduced system (17)-(20). Restricting 
consideration to xi # 0, apply the u-process 

2 3  54 y =XI, z1 = 5 2  , 2.2 = -, z 3  = - 
51 XI 

z1 + 22 
U1 1 Z2 = z3 - - 

Y 

z 3  + P v 2  
23 = -az3 - - U1 . 

Y 

(23) 

(24) 

Clearly, the feedback control law 

VI = -ky , (25) 

U 2  = -1z , (26) 

where k > 0 and 1 = (11 12 13) are the gains, yields the 
reduced closed-loop system 

Y=-ky ,  (27) 

(28) 

(29) 

(30) 

2 
21 = -1121 - 1222 - 13Z3 - ky ~2 , 

5 2  = kzl + k.22 + ~3 , 

23 = -k,Bllzl - k/312.~2 + (k - a - kP/3)Z3 . 

The z-dynamics can be rewritten as 

i = (Ai + Az(t))z , (31) 

where 

) 1 (32) A I = (  k k 1 

0 0 O ) .  

-11 -12 -13 

-k/3ll -kPl2 k - a - kpl3 ( -ky:-'" 0 (33) 

It can be easily seen that if k # a, the spectrum of the 
matrix A1 can be assigned arbitrarily through the gain 
matrix 1.  Clearly, the y-dynamics is globally exponen- 
tially stable at  y = 0. Moreover, since the matrix Az(t) 
given by (33) goes to zero as t -+ 03 and 

A2(t) = 0 

1- IIA2(t)lldt < CO 7 

the z-dynamics can also be rendered globally exponen- 
tially stable at the origin t = 0 by selecting 1 = (11 12 13) 
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such that the matrix A1 given by (32) is a Hurwitz ma- 
trix (see [15], Section 4.2.2). 

Note that in the original coordinates the controls 
(25)-(26) take the form 

~ ( x i , x z , ~ , x 4 )  = -kxi , (34) 

(35) 

and the reduced closed-loop system is given by 

51 = -ICs1 , (36) 

(37) 

x3 = x4 + ~ X ~ X Z  , 

x4 = -ICPl2x3 - (k,B13 + a)x4 - kP11xlx2 . 
(38) 

(39) 

We now present the following result. 
Proposition 3: Consider the reduced closed-loop sys- 
tem (36)-(39) with k > 0 ,  k # a, and 1 = (11 12 13) 

selected such that the matrix A1 gzven by equation (32) 
zs a Hurwitz matrix. Let (ZlO,Z20,Z30,x40) denote an 
initial condition with 210 # 0. Then the following hold. 
(i) The trajectory (x l ( t ) , z2( t ) ,  xs( t ) ,z4( t ) )  is bounded 
for all t 2 0 and converges exponentially to zero. 
(ai) The control (v l ( t ) ,v2( t ) )  is bounded for all t 2 0 
and converges exponentially to zero. 
Proof: Consider the reduced closed-loop system (36)- 
(39) and denote by ( ~ 1 0 , 2 2 0 ,  ~ 3 0 ,  x40) an initial condi- 
tion with x10 # 0. 
(i) Clearly, we have q ( t )  = xlOe-kt. Since 2 1 0  # 0, 
q ( t )  # 0,  V t  E [0, CO). Under the stated assumptions, 
the reduced closed-loop system in the transformed co- 
ordinates is globally exponentially stable. Thus, the 
variables z1 ( t ) ,  x2(t), z s ( t ) / x l ( t ) ,  xq(t)/x1 ( t )  converge 
exponentially to zero. It follows that the trajectory 
(xl(t),x2(t),x3(t),x4(t)) is bounded for all t 2 0 and 
converges exponentially to zero. 
(ii) From the above discussion, each term in the control 
U given by (34)-(35) consists of bounded terms which 
converge exponentially to zero. Hence, the result fol- 
lows. 
Remark 1: The above result demonstrates that for ini- 
tial conditions satisfying x10 # 0, the feedback control 
law (34)-(35) is well-defined for all t 2 0. Moreover, it 
drives the system (36)-(39) to the origin, while avoiding 
the set 

N={(z l ,xZ ,x3 ,x4)  1 5 1 = 0 ,  ( X ~ , Z ~ I Z ~ , Z ~ ) # O ) ~  

Clearly, one can use a finite time feedback law [9] to 
move the system away from N .  

We now return to the problem of asymptotic stabi- 
lization of the system (8)-(13) with u1 and u2, instead 
of x5 and 2 6 ,  as control inputs. Note that since u1 = 55 
and 212 = x 6 ,  the problem corresponds to the classical 

situation where integrators are added at  the input level. 
Again restrict consideration to x1 # 0 and consider 

the following controller 

u1(x) =-K(x5  -vl(xl ,x2,x31Z4))  +Sl (x)  (40) 

.2(.) = -L(x6 - 212(511x2,x3, x4)) + s2(x)  (41) 

where w 1 ( ~ 1 , x 2 , ~ 3 , ~ 4 )  andv2(zl,x2,x3,z4) denote the 
feedback controls (34)-(35) for the reduced system; and 
s1(x) and s2(x) correspond to their time derivatives 
along the trajectories of the system (8)-(13): 

s ~ ( z )  = -kxg , 

53x5 54x5 
+12- 13- . 

x2 x2 

Now assume that the control parameters are selected 
such that I C ,  21, 12 and l3 satisfy the conditions of 
Proposition 3 and K > I C ,  L > 0. Consider the co- 
ordinate transformation 

It can be shown that in the above coordinates the closed- 
loop system can be written as 

j , = - k y + W l ,  (42) 

e-Kt - e-kt 

k - K  W O )  n ( t )  = (e-"yo + 

e--Kt - e-kt 

wlO)-le-Kt w10 , k - K  r2(t) = (ePktyo + 
h(t)  = ( 1 0 P(k  - r2(t)) ) ' e - L t ~ 2 ~  . 

Clearly, ( y ,  w1, wz)-dynamics is globally exponentially 
stable at (y1w1,w2) = ( O , O , O ) .  Moreover, it can be 
shown that if w10 = kyo (or, equivalently, X 5 0  = 0), 
then A2(t) and h(t)  go to zero as t 4 CO; and 
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It follows that, for any initial condition (yo,  ZO, W ~ O , W ~ ~ )  

satisfying yo # 0 and w10 = kyo, both the trajectory 
( y ( t ) ,  z ( t ) ,  w l ( t ) ,  w2(t)) and the control (ul( t ) ,  uz(t)) are 
bounded for all t L 0 and converge exponentially to 
zero. 

We now present the following result. 
Proposition 4: Consider the system (8)-(13) with the 
feedback controls (40)- ( d l ) ,  where the control parame- 
ters are selected such that k ,  11, 12 and 13 satisfy the 
conditions of Proposition 3 and K > k ,  L > 0. Let 
zo = (~10, x2o,z30, z 4 g , z 5 0 , 5 6 0 )  denote an  initial con- 
dition satisfying x10 # 0 and ~ 5 0  = 0.  Then  the follow- 
ing hold. 

is bounded for  all t 2 0 and converges exponentially to 
zero. 
(ii) The control (ul(t),uz(t)) is bounded for all t 2 0 
and converges exponentially to zero. 
Remark 2: Note that the above choice of the feedback 
control guarantees that the zl-dynamics satisfies the 
second-order linear dynamics 

(i) The trajectory (x l ( t ) ,  z2(t), Z 3 ( t ) ,  z4(t), z5(t), 2 6 ( t ) )  

21 + ( K  + k ) i i  + K k ~ 1  = 0 . 
It can be easily seen that if 510 # 0 and 550  = 0, then 
zl ( t )  # 0, V t  E [O,m). Thus, for all initial conditions 
satisfying z10 # 0 and 250  = 0, the feedback control 
law (40)-(41) is well-defined for all t 2 0. Moreover, it 
drives the system (8)-(13) to the origin, while avoiding 
the set 

N ‘ =  {X E R6 1x1 = 0 ,  z # 0 )  

Clearly, one can use a finite time feedback control law 
to move the system to a state satisfying the conditions 
of Proposition 4. For example, 

u1 = - 1 ~ 1 -  c las ign(z l  - E )  - Ix51bsign(x5) , 
u g = O ,  

where b E (0, l), a > b / ( 2  - b) and E # 0 are constants, 
can be used to transfer the system to a state statisfying 
the conditions of Proposition 4 in finite time [9]. 

5. Example 
We illustrate the results of the paper with a simula- 

tion example of a surface vessel with two independent 
propellers as shown in Figure 1. The system parameters 
are given by 

mil= 200 kg ,  m22 = 250 kg ,  m33 = 80 kg.m2 , 
dl i=70 kg.s-’, d22 = 100 kg.S-l, d33 =SO kg.m2.s-’. 

A computer implementation of the discontinuous feed- 
back control law specified in Proposition 4 was used to 
asymptotically stabilize the origin. The gains were cho- 
sen as 

k = 1, 1 = (3.0208,2.8125,0.0990), K = 2, L = 2 . 
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Figure 1: Model of a Surface Vessel. 

Note that the above choice of the gain matrix 1 locates 
the eigenvalues of the matrix A1 given by equation (32) 
at (-0.5, -0.5, -0.5). The results of the simulation for 
a sample initial condition given by (x1,z2,23,24,25,x6) 

= (0.57r, 1, - 1 , O ,  0,O) (or equivalently (z, y ,  $,vz, vy,uz) 
= (1 ,1 ,0 .5~ ,  O , O ,  0)) are shown in Figures 2-4. Figure 
2 shows the time responses of the configuration vari- 
ables x, y and $. The time responses for the velocities 
vz, vy and wz and the controls F, and T, are shown in 
Figures 3 and 4, respectively. Exponential convergence 
of the closed-loop state and control trajectories can be 
observed from the results of the simulation. 

6. Conclusions 

Following a controllability and stabilizability analy- 
sis, time-invariant discontinuous feedback control laws 
have been derived for the asymptotic stabilization of a 
surface vessel with two independent thrusters. Bound- 
edness and convergence of the closed-loop state and 
control trajectories have been demonstrated. The ef- 
fectiveness of the proposed feedback control laws has 
been illustrated through a simulation example. 
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