
Opportunistic Sensing in Wireless Sensor Networks

Hans Scholten and Pascal Bakker
Pervasive Systems

University of Twente
Enschede, the Netherlands

hans.scholten@utwente.nl, aboe@aboe.nl

Abstract—Opportunistic sensing systems consist of changing
constellations of wireless sensor nodes that, for a limited
amount of time, work together to achieve a common goal.
Such constellations are self-organizing and come into being
spontaneously. This paper presents an opportunistic sensing
system to select a subset of sensor nodes out of a larger set
based on a common context. We show that it is possible to
use a wireless sensor network to make a distinction between
carriages from different trains. The common context in this
case is acceleration, which is used to select a subset of
carriages that belong to the same train. Simulations based
on a realistic set of sensor data establish that the method is
valid, but that the algorithm is too complex for implementation.
Downscaling reduces the number of processor execution cycles
as well as memory usage, and makes the algorithm suitable for
implementation on a wireless sensor node with acceptable loss
of precision. Actual implementation on wireless sensor nodes
confirms the results obtained with the simulations.

Keywords-opportunistic sensing, wireless sensor network,
context awareness, activity recognition

I. INTRODUCTION

”Opportunistic sensing is seen as a way to gather infor-
mation about the physical world in the absence of a sta-
ble and permanent networking infrastructure.” (Opportunity
Workshop at Ubicomp 2010, Copenhagen, Denmark). The
absence of a stable and permanent networking infrastructure
dictates that collected information is either processed and
acted upon inside the network by opportunistic collections
or clusters of nodes [1], or the information is preproceesed
and stored inside the network untill there is an opportunity
to forward it outside the network, as is the case in delay
tolerant networks [2], [3], [4], [5].

Opportunistic sensing or networking is often associated
with human-centric ubiquitous systems, such as in crowd
sourcing and participatory sensing applications [6], [7], [8]
or are focusing on human activity recognition [9], [10], [11].

In this paper we show how context awareness based
on a common pattern of movement is used to select only
those carriages from a much larger population that belong
to the same train. Movement as a discriminating factor for
context awareness has been described earlier [12], [13], but
not for trains. The problem was first introduced in [14]
describing a communication protocol for wireless networks
in linear structures such as trains. The network is part of a

railway safety system to monitor the initial composition of
a train and to detect any change in composition once the
initial composition is established. In Europe many different
safety systems exist and trains crossing borders must be
equipped with all applicable safety systems. These systems
are infrastructure based and integrated in the tracks, whereas
the proposed system is entirely train based. Composing a
train not only takes place on switchyards, but also on the
way when carriages are added to the train or decoupled
from it. Although a simple beacon based detection system
seems appropriate, it would not suffice to check the train’s
composition. Because the ID of the beacons in sight are not
known a priori, nor the mapping of IDs to carriages, nor
carriages to trains, there is no way to discriminate carriages
in different trains in close proximity. Additional measures
must be present to select a train’s beacons from all beacons
that are in communication range. In this paper, motion is
used as the discriminating feature between trains.

In the remainder of this paper we will discuss the col-
lection and analysis of the data sets to be used in the
simulations, the simulation itself and the implementation on
wireless sensor nodes respectively, followed by a discussion
of the results.

II. DATA COLLECTION AND ANALYSIS

As explained in the introduction, movement is used as dis-
criminating feature. However, motion is multi-dimensional
and too complex to use in wireless sensor nodes. Not
only processing power and memory usage might be issues,
also running complex algorithms for longer periods of time
consumes large amount of energy, negatively influencing the
operational time of the system. Two measures are taken to
enable implementation on nodes:

• limit the time the algorithm executes, and
• simplify the input data for the algorithm.

Under normal conditions a train’s composition will not
change while underway and moving. If a change occurs un-
der these circumstances, it will be accidentaly. The algorithm
can be split into two phases:

• when the train starts moving, detect the initial set of
carriages that belong to the train, and

• once the train is moving, only check those carriages in
the initial set and ignore all others.

224Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

(a) Wireless sensor node (b) Railway track

Figure 1. Data collection

The latter phase is accomplished by periodically pinging
the initial set, which is a simple process that consumes less
energy than is needed for the first phase.

A. Collecting the Data

To simplify phase 1, a train’s movement is analysed to
reveal those characteristics that are essential and those that
can be safely ignored. Representative data sets are recorded
on a track featuring multiple stops and curves (see Figure
1b), resulting in a wide variety of data. Figure 1a shows
the wireless sensor node that is used to sample the data,
consisting of an Ambient muNode 2.0 provisioned with
an STMicroelectronics LIS3LV02DQ accelerometer. The
maximum sample rate of this sensor is 640 Hz, but the used
combination of hardware and software gives a maximum
sample rate of 160 Hz. The sensor nodes are aligned with
the horizontal x-axis in the driving direction, the y-axis in the
horizontal sideways direction and the z-axis in the vertical
direction.

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

80

60

40

20

0

20

40

60

80
Dataset 3: X and Y axes. Samplerate 155Hz

Sample moment

A
cc

e
le

ra
tio

n
(r

a
w

 d
a

ta
 +

 2
0

4
7

 ~
 +

 2
g

)

y axis
x axis

nearing Borne

standstill Borne

leaving Borne

nearing Hengelo

Figure 2. Accelerometer x- and y-axis

B. Analysing the Data

Figure 2 shows raw data with a sampling frequency
of 155 Hz of a journey between two stations with one

225Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

(a) Spectrum carriage 1, train 1, x-axis (b) Spectrum carriage 2, train 1, x-axis

Figure 3. Frequency spectrum of two carriages in the same train

station in between. The bottom graph shows the x-axis and
halfway the train is standing still (no acceleration). The top
graph depicts the sensor’s y-axis and just before reaching
the middle station the train is crossing a switch changing
tracks. The data from both x- and y-axis (and, though not
shown here, from the z-axis as well) contain a lot of noise
and must be filtered with a high-off filter before it can be
useful. Figure 3 shows the frequency spectrum for the x-
axis data of two carriages in the same train starting to move.
Only frequencies lower than the sampling frequency/2 are
considered. The spectra are similar in the low frequencies,
but quite different in the high frequencies. The spectra of
two carriages in two different trains on the same part of
the railway track (not shown) differ in all frequencies, but
show similar characteristics in the lower frequencies. Closer
inspection learns that a cut-off frequency of 2 Hz can be
applied without losing discriminating features.

Data from the y- and z-axis of two carriages are similar
irrespective whether they are in the same train or not and do
not contain enough discriminating features. In the remainder
of the paper only data from the x-axis of the accelerometer
are considered.

To filter the data, a second order Butterworth low pass
filter is used. This choice is made because this type of filter
will run on the wireless sensor nodes. Figure 4 shows the
result: the top and bottom graph are from carriages in the
same train, while the middle one is in a different train. The
graphs are synchronized, i.e., they are shifted in time so
they show trains starting at the same time. In practise it will
rarely happen that two trains in communication range will
accelerate at exactly the same time. The data sampling rate in
the original data set is 155 samples per second. Because the
data is filtered at 2 Hz, this high sampling rate is overkill and
could be reduced significantly in the final implementation.
A frequency of 35 samples per second gives the same results
as before. We did not test lower sampling rates.

C. Data Correlation

The last step in the algorithm is to check whether two
carriages share the same context by way of correlating the
data. The correlation process uses a sliding window over
which the data is compared. A wider window normally leads
to a more precise result, but also takes longer to produce
this result. A smaller window gives a better reaction time,
but the result is unreliable. So a trade-off has to be made.
Figure 5 gives correlation results at a window size varying
from 1 to 5 seconds for a time frame of 7000 samples or 45
seconds. Detection of the carriages is only active in phase
1 of the algorithm when the train starts moving, which is
approximately during the first 2000 samples (phase 2 only
pings known carriages). Therefore the results after 2000
samples will be ignored. For two carriages in the same train
a window size of 155 samples or 1 second would already
suffice. However for two carriages in different trains the
window size should be at least 465 (3 seconds), or even
better 620 samples or 4 seconds.

III. IMPLEMENTATION

In the following we discuss some implementation details.

A. Optimizations

Matlab calculations, based on realistic data, in the pre-
vious section showed that to select a set of carriages that
belong to the same train out of a larger population of car-
riages, movement, or more precise acceleration in the driving
direction, can be used as a discriminating factor. However,
the Matlab routines must be optimized or simplified before
they will run on the wireless sensor nodes.

The Matlab program is centralized and assumes that all
data is available when needed, which is not the case in
the real world. The program and the data are distributed
over the wireless nodes: each carriage must calculate its
correlation with its neighbors and to do so it needs the
movement information from its neighbors. This process is
optimized by dynamically forming master/slave pairs. The

226Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

(a) Unfiltered data (b) Filtered data

Figure 4. X-axis acceleration data from three carriages

0 1000 2000 3000 4000 5000 6000 7000
1

0

1
Correlation using varying window sizes. Wagons: 2 wagons achter dezelfde optrekkende trein. Axis: x. Low pass filtered at 2Hz

155

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

310

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

465

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

620

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

775

(a) two carriages in the same train

0 1000 2000 3000 4000 5000 6000 7000
1

0

1
ation using varying window sizes. Wagons: 1 wagon achter optrekkende trein, 1 wagon achter stilstaande trein. Axis: x. Low pass filt

155

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

310

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

465

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

620

0 1000 2000 3000 4000 5000 6000 7000
1

0

1

775

(b) two carriages in different trains

Figure 5. Correlation of two carriages with varying window sizes

slave sends its data to the master and after calculation the
master sends the correlation results back to the slave. For
every master/slave pair the movement data is communicated
once and the correlation calculations is performed once,
thus reducing both needed bandwidth and execution load.
To balance the energy consumption on pairs the master and
slave switch functionality after each correlation.

One more change in the original Matlab routines must be
made before they can be implemented. The filter and correla-
tion from the previous section are based on calculations that
use floating point numbers. This puts too much of a burden
on the sensor node and a fixed point calculation would be
better, though at the cost of possible loss of precision. Errors
in rounding results would accumulate and might lead to
significant deviations over time. In Figure 6 the difference
between floating point and fixed point correlation calculation
is shown. The deviation starts to show after 15 to 20 seconds.
Since the determination of the train composition takes place

in the first 5 to 10 seconds, replacing floating point by fixed
point calculations does not influence the end result.

B. Timing and Memory Usage

Figure 7. Execution times on a muNode with MSP430 microcontroller

In each master/slave pair, the correlation calculation is

227Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

Figure 6. Comparison of floating point and fixed point calculations

done by the master while both partners filter their own
data. In addition, the slave needs some time to assemble the
packets to be send to the master. In Figure 7 the execution
times for filtering and correlation for master and slave are
shown. Assuming a correlation window size of 5 seconds
(corresponding with 175 samples at 35 Hz), the time needed
for the calculations is 171.9 ms and 85.9 ms for master
and slave respectively. This leaves room for approximately
6 correlation calculations per second.

Figure 8. Memory consumption per master/slave pair

The memory consumption of our algorithm on each node
depends on the number of master/slave pairs each node
has formed with neighboring nodes. The minimum memory
consumption for the correlation calculation algorithm on a
node is (175+35)*2=420 bytes. Each node stores its own
data samples for the given window as well as 35 extra
samples, since the point at which master/slave pairs are
formed is not the same for each pair. The table in Figure 8
summarizes the memory consumption per master/slave pair.
The total amount of bytes is 460 per master/slave pair.

A standard muNode 2.0 has 10kB RAM available. For
the normal operation of the node 2kB has been reserved,
which leaves 8kB for the correlation algorithm. Given the
memory consumption of 460 bytes for a participating node
and the availability of 8192 bytes, a node can store up to 16
master/slave pairs in memory.

IV. CONCLUSION

In this paper we have presented an opportunistic sensor
system that makes a selection out of a much larger set based
on a common context. In this case, motion information is
used to distinguish carriages belonging to different trains.
The motion information consists of data obtained by 3-
dimensional accelerometers attached to individual train car-
riages. This data stream then was analyzed with Matlab on
a PC to extract the best possible features to discriminate
carriages. While sideways motion gives information on track
changes and vertical movement indicates the quality of a
track, the best information for our purpose is movement
in the direction of travelling (x-axis). A spectrum analysis
learns that not all frequency components in the sampling data
are equally useful: only those below a frequency of around
2 Hz are significant to separate carriages. After filtering,
the data from two different carriages are correlated with a
correlation window of 5 seconds. We found that a smaller
window of approximately 1 second suffices to find two
carriages in the same train, but also leads to false positives
for carriages in different trains. Extending the window to
5 seconds, no false positives were detected, but this needs
further analysis.

After this theoretical confirmation that motion information
can be used for context awareness, the algorithm is imple-
mented on wireless sensor nodes. However, the nodes used
have several limitations. One limitation is the absence of
floating point calculations. First of all the filter and correla-
tion routines are rewritten, so only fixed point calculations
are used. This might lead to errors due to accumulation of
rounding successive results, but we showed that in the time
frame the algorithms run this is not a problem.

The second limitation is power consumption. Filtering and
correlation are so computing intensive that they cannot run
over longer periods of time without exhausting the battery
quickly. A first step is the reduction of the sampling rate

228Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

from the original 160 Hz to 35 Hz. This is made possible
because only the lower frequencies in the sampling data
are significant. A lower sampling frequency would have
been possible, but this does not substancially contribute to
decreasing the processing load. Sampling data, filtering and
performing one correlation per second takes 171.9 ms (worst
case), which results in a duty cycle of around 17 percent.
This exhausts the battery in a couple of hours, at most
days, where 6 months is needed. The solution is found by
executing the algorithm only for a period of 10 seconds
when the train starts moving after each stop. This is enough
to establish which carriages belong to one and the same
train. During the ride, the initially detected carriages (but
not the sequence of the carriages) needs to be confirmed,
which can be accomplished by pinging all known carriages
at regular intervals.

The last limitation is memory capacity. In our algorithm
carriages are correlated in pairs. A carriage is part of as many
pairs as it has neighbors. Each pair consumes up to 460
bytes of memory in both partners. With the given memory
capacity, a node can accommodate up to 17 neighbors. With
a maximum of 6 correlations per second it takes a node 3
seconds to check all its neighbours.

The circumstances in which the data is collected and the
implementation is tested form a worst case scenario. The
trains that are used in the tests are of the same type with
similar characteristics. They all exhibit the same pattern in
acceleration and braking, making the data to correlate very
similar. We suspect this is the main reason it takes up to 5
seconds to check carriages from different trains (and only 1
second when they are in the same train). This needs further
investigation.

Another future research topic is the use of better ac-
celerometers. Those used now measure up to 2g and can
be used on trains that accelerate moderately. However,
heavy trains that accelerate and brake more slowly have
less distinctive movement patterns and need more sensitive
sensors.

ACKNOWLEDGMENT

This work is supported by the iLAND Project, ARTEMIS
Joint Undertaking Call for proposals ARTEMIS-2008-1,
Project contract no. 100026

REFERENCES

[1] H. Scholten, R. Westenberg, and M. Schoemaker, Sensing train
integrity, IEEE Sensors 2009 Conference, pages 669674, Los
Alamitos, October 2009. IEEE Computer Society Press.

[2] Schwartz, R.S. and van Eenennaam, E.M. and Karagiannis, G.
and Heijenk, G.J. and Klein Wolterink, W. and Scholten, J, Us-
ing V2V communication to create Over-the-horizon Awareness
in multiple-lane highway scenarios, IEEE Intelligent Vehicles
Symposium (IV) 2010, 21-24 June 2010, La Jolla, CA, USA.
pp. 998-1005. IEEE Computer Society Press. ISSN 1931-0587
ISBN 978-1-4244-7866-8

[3] M. Kumar, Distributed computing in opportunistic environ-
ments, UIC 09: Proceedings of the 6th International Conference
on Ubiquitous Intelligence and Computing, pages 11, Berlin,
Heidelberg, 2009. Springer-Verlag.

[4] L. Lilien, A. Gupta, and Z. Yang, Opportunistic networks
for emergency applications and their standard implementation
framework, Performance, Computing, and Communications
Conference, 2002. 21st IEEE International, 0:588593, 2007.

[5] L. Pelusi, A. Passarella, and M. Conti, Opportunistic network-
ing: data forwarding in disconnected mobile ad hoc networks,
Communications Magazine, IEEE, 44(11):134 141, november
2006.

[6] R. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain,
J. Bers, and M. Welsh, Citysense: A vision for an urban-
scale wireless networking testbed, Proceedings of the 2008
IEEE International Conference on Technologies for Homeland
Security, pages 583588. IEEE Press, 2008.

[7] M. Wirz, D. Roggen, and G. Troster, Decentralized detection
of group formations from wearable acceleration sensors, Pro-
ceedings of the 2009 IEEE International Conference on Social
Computing, page IEEE Press, Aug. 2009.

[8] M. Wirz, D. Roggen, and G. Troster, A methodology towards
the detection of collective behavior patterns by means of body-
worn sensors, Proc. of UbiLarge workshop at Pervasive, 2010.

[9] N. Davies, D. P. Siewiorek, and R. Sukthankar, Special is-
sue: Activity-based computing, IEEE Pervasive Computing,
7(2):2021, 2008.

[10] S. Mann, Humanistic computing: wearcom as a new frame-
work and application for intelligent signal processing, Pro-
ceedings of the IEEE, 86(11):21232151, 1998.

[11] B. Myers, J. Hollan, I. Cruz, S. Bryson, D. Bulterman,
T. Catarci, W. Citrin, E. Glinert, J. Grudin, and Y. Ioanni-
dis, Strategic directions in human-computer interaction, ACM
Computing Surveys, 28(4):794809, 1996.

[12] S. Bosch, M. Marin-Perianu, R.S. Marin-Perianu, J. Scholten
and P.J.M. Havinga, FollowMe! Mobile Team Coordination
in Wireless Sensor and Actuator Networks, Proceedings of the
IEEE International Conference on Pervasive Computing and
Communications 2009, 9-13 March 2009, Galveston, Texas,
USA. pp. 151-161. IEEE Computer Society Press. ISBN 978-
1-4244-3304-9

[13] R.S. Marin-Perianu, C. Lombriser, P.J.M. Havinga, J.
Scholten and G. Troster, Tandem: A Context-Aware Method
for Spontaneous Clustering of Dynamic Wireless Sensor Nodes,
Proceedings of the First International Conference on Internet
of Things (IOT2008), March 2008, Zurich, Switzerland. pp.
341-359. Lecture Notes in Computer Science (4952). Springer
Verlag. ISBN 978-3-540-78730-3.

[14] Scholten, J. and Westenberg, R. and Schoemaker, M. ,
Trainspotting, a WSN-based train integrity system, The Eighth
International Conference on Networks, ICN 2009, 1-6 March
2009, Gosier, France. pp. 226-231. IEEE Computer Society
Press. ISBN 978-0-7695-3552-4.

229Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

