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Abstract—Real-time applications such as software defined
radios have different reception modes and their real-time re-
quirements are a result of periodic sources and sinks in the
form of ADCs and DACs. Tools are under development that
automatically translate a sequential specification of a radio
application, that often includes nested while loops to describe the
modes, into a parallel task graph and map this task graph onto
an embedded multiprocessor system. However the specification of
strict periodic sources and sinks together with input and output
buffers that can respectively overflow or underrun is currently
not possible in a sequential programming language.

In this paper we will introduce a nested loop program (NLP)
language extension that enables the specification of periodic
sources and sinks and their buffers in a sequential program.
We show that parallelization of such a sequential program poses
challenges because the order in which different tasks access the
input and output buffers should be maintained in the parallel
program. Furthermore, the buffers at the sources and sinks allow
destructive writes and non-destructive reads, which causes non-
deterministic functional behavior in case the throughput and la-
tency constraint of the application are not met. The other buffers
in the task graph block in case no data or space is available.
Therefore, the system internals remain functionally deterministic
which significantly simplifies debugging and analysis.

Furthermore, to guarantee real-time requirements, we show
that it is possible to conservatively model an application with
nested while loops as a Cyclo-Static Dataflow (CSDF) model.
Using this model we can compute a mapping of the task graph,
which includes a task to processor assignment, suitable scheduler
settings and buffer capacities. By making use of this CSDF model,
we can guarantee that sources and sinks can run periodically
under the assumption that the used execution times of the tasks
are upper bounds.

I. INTRODUCTION

Today’s embedded systems often execute a number of
stream processing applications simultaneously. Each applica-
tions samples its input streams periodically and produces, after
processing, a periodic output stream. For example Software
Defined Radio (SDR) systems can execute simultaneously a
Digital Video Broadcasting (DVB) application and a Global
Positioning System (GPS) application. Furthermore, for per-
formance reasons, these applications are often executed on a
multi-core platform.

However, programming of a multi-core platform introduces
a number of issues. Communication is performed between
tasks on different processing cores, which introduces the need
for synchronization between the tasks. Streaming applications
often also have real-time requirements in terms of throughput
and latency constraints.

Communication between the environment and the applica-
tion is done via ports. We distinguish two port types, ports
which are only read and ports which are only written. Ports
which are read are called sources and ports which are written
are called sinks. These sources and sinks are often shared
between different tasks in the system. In a parallel approach,
the order in which they are read or written must be the same
as in the sequential specification. For example in Figure 3a
multiple functions read from the source A. If they read their
input data in a different order, systems behavior could clearly
be affected.

Ports can also be distinguished in terms of their timing
behavior. Ports such as an analogue-digital convertor (ADC)
operate periodically. Ports such as keyboards operate aperiod-
ically, often event based. This paper focuses on periodic ports
because these are the type of ports that are typically used in
real-time stream processing systems.

The equivalent for a port in a traditional sequential lan-
guage, such as C, is to declare the corresponding variable as
volatile. However, due to the communication with peripherals,
volatiles have side-effects and should therefore be executed
in the order as specified in the sequential program [11].
This requirement precludes pipeline parallelism over loop
iterations, which is illustrated with the example in Figure 1.
Before the in function in the loop in Figure 1a can be executed
a second time, the out function must be executed first. The
result is the schedule shown in Figure 1b, where the dotted
arrow between out and in shows the constraint imposed by the
sequential ordering. The schedule from Figure 1c shows the
desired pipelined execution which would result from a more
relaxed language requirement than volatiles.

Therefore, a language extension must be defined to our
nested loop programs (NLPs) language, which already allows
while loops to support modes, for interfacing with the environ-
ment. The language extension must allow for pipelining and
it should be possible to derive a corresponding analysis model
from an NLP.

This paper introduces a parallelization and analysis method
in which a sequentially described NLP that contains periodic
sources and sinks, is parallelized into a task graph for which
pipelined execution is possible. It is shown that this task graph
can be analyzed using a corresponding Cyclo-Static Dataflow
(CSDF) model [6]. The CSDF model allows for buffer capacity
calculations using a given throughput constraint, which is
imposed by the periodic sources and sinks. Also a given



v o l a t i l e i n t A;
v o l a t i l e i n t B ;

whi le ( 1 ){
x = i n (A) ;
y = f ( x ) ;
z = g ( y ) ;
B = o u t ( z ) ;

}
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Fig. 1. Pipelining is not allowed under the C semantics, while our approach
does allow for pipelining.

latency constraint between sources and sinks can be verified
using this method.

If execution times are optimistic, it cannot be guaranteed
that the throughput constraint will be met. Therefore, non-
determinism is allowed at the buffers connected to the sources
and sinks by letting them respectively overflow or underrun. A
specific Circular Buffer (CB) type is introduced that supports
this. This CB also support the sequential access ordering to
be preserved after parallelization.

The CBs can be first-in first-out (FIFO) buffers or CBs with
sliding windows [4] or overlapping windows [5]. To preserve
functional correctness, synchronization statements are inserted
into the generated parallel task graph using the method de-
scribed in [13]. Using the placement of these synchronization
statements, a corresponding CSDF model is generated. The
CSDF model is used to determine, for given throughput and
latency constraints, buffer capacities for the buffers between
the tasks in the task graph.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III provides a jus-
tification of our system design approach which uses either
time-triggered periodic or data-driven aperiodic sources and
sinks on the system boundary in combination with data-
driven execution of tasks. Section IV details the language
extension for the sources and sinks. Section IV-A describes
the parallelization of an application with sources and sinks
and Section IV-B describes the new buffer type. Section V
describes the derivation of the corresponding CSDF analysis
model. The applicability is illustrated using a WLANp receiver
in Section VI. The conclusion is stated in Section VII.

II. RELATED WORK

Existing languages that allow for the specification of peri-
odic ports are for example the synchronous languages, such as
Esterel [1] and Lustre [10]. Both languages contain constructs
that allow for a periodic execution of statements. These
synchronous languages are based on an abstraction in which
all events occur simultaneously. An important difference with
our approach is that the input specification of synchronous
programs is a concurrent specification whereas we have a
sequential input specification. The synchronous programs are
generally compiled to sequential code, although there are a
couple of attempts to support distributed systems [2], [9].

In ADA [16] time is specified using a delay statement.
The delay statement blocks the execution of the current task
until a specified absolute or relative deadline. Similar to
the synchronous languages, ADA also starts from a parallel
description of the program while we start from a sequential
specification. As a consequence, compilers for ADA can not
always detect the presence or absence of deadlock in the
parallel program. Our sequential specification is deadlock
free by definition and this property is preserved after par-
allelization. Guaranteed deadlock freedom is for us one of
the most important arguments to start from a sequential input
specification.

Similar to ADA, the RTC++ [14] approach allows for a
specification of time in the language. The RTC++ approach
is an extension to C++ in which time is added to the
language. RTC++ contains an exception construction which
allows for the specification of, amongst others, timeouts. The
disadvantage is that RTC++ allows the introduction of non-
determinism inside the language. Our approach only allows for
non-determinism at the border of the system and the behavior
is only non-deterministic in case execution times are under-
estimated. An important advantage is that an NLP internally
has a deterministic behavior which simplifies debugging and
analysis significantly.

An approach which also starts from a sequential program
and converts this to a parallel system is PN [18]. The dis-
advantage of this approach is that nested while loops are
not allowed in the input specification, whereas these while
loops are needed to describe modes in stream processing
applications.

III. SYSTEM OVERVIEW

A system can execute using a number of different execution
styles. When a system reacts to events it receives from the
environment it is called event-triggered. A disadvantage is that
event-flooding can occur because often no minimum distance
between events is known at design time. As a consequence,
minimum buffer sizes can not be determined and therefore it
can occur that events have to be discarded. Also a pure event-
triggered system can not detect the absence of events.

If a system executes tasks according to a predetermined
schedule, the system is called time-triggered. The main dis-
advantage of such systems is that it requires that the worst-
case execution time of the tasks are known, otherwise outdated
data might be read by a task inside the application which may
result in an undefined functional behavior of the application.
However, in many systems data caches are applied which
usually result in a significant overestimation of the worst-
case execution times. As a consequence, designers of non-
safety critical systems typically resort to measurement of
the execution times instead and derive from these measured
execution times upper bounds of the execution times of the
tasks. However these upper bounds might be lower than the
worst-case execution times of the tasks.

A system can also execute its tasks data-driven. This means
that tasks are only executed when data is available at their
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Fig. 2. System overview.

input buffers and space is available at the output buffers to
write the results to. A data-driven approach can cope with
variable execution times since tasks execute when there is data
available at their input buffers. If the execution time of one
task’s execution is too long and another execution is shorter,
the total time can still be low enough to meet the deadlines.
The disadvantage is that the tasks can not execute strictly
periodic without an external periodic trigger. Also the absence
of events can not be detected because nothing is executed
without data.

In our approach a hybrid of the time-triggered and data-
driven approaches is applied to make the system more robust
against potentially underestimated execution times and event
flooding, but it allows the use of periodic sources and sinks.
The processing in our approach is done data-driven and also
the aperiodic sources and sinks execute data-driven whereas
periodic sources and sinks execute time-triggered. As a con-
sequence, external signals are always sampled and therefore
even the absence of events can be detected.

Figure 2 shows an overview of an example system that
adheres to our approach. The two radio applications execute
data-driven and independently of each other. They read their
data from buffers connected to the two periodic sources, on
the left in the figure, and write the results to buffers connected
to the periodic and aperiodic sinks, on the right in the figure.

The buffers connected to the sources and sinks are blocking
for the internal tasks but periodic sources can always write to
these buffers and periodic sinks can always read from them.
The aperiodic sources can only write data if there is space
available in the buffers and the sinks can only read data if
there is data available in the buffers.

Commands are received from the best-effort part of the
system, this includes for example a User-Interface (UI). The
ports between the real-time system and the best-effort system
are executed data-driven. As a consequence these ports execute
aperiodically. The aperiodic execution is determined by the
real-time system such that no system overload can occur in the
real-time part as a consequence of too many external events in
a time-interval from the best-effort part of the system. These
data-driven sources sample when there is empty buffer space

available and the data-driven sinks write data when there is
enough data available in their input buffer.

The data-driven output ports can also be used in systems that
produce burst of output data but need to sample their inputs
continuously. An example of such a system is the WLANp
receiver application that is described in Section VI.

A. Non-Determinism

An application is functionally deterministic if each execu-
tion of the application using the same input produces the same
output. A program is functionally non-deterministic if different
outputs are produced given the same inputs.

Our approach follows the same ideas on non-determinism
as described in [7]. The sequential specification is completely
deterministic and after parallelization the application remains
functionally deterministic by construction. The only allowed
non-determinism is at the boundary of the system and is
specified explicitly by the use of sources and sinks. Requiring
determinism in the internal tasks of the system simplifies
the analysis of the real-time requirements and also simplifies
debugging.

Non-determinism is caused by the buffers isolating the time-
triggered tasks from the data-driven tasks. In case of system
overload these buffers can overflow, causing destructive writes,
or underrun, requiring non-destructive reads. This behavior
causes non-determinism as it is dependent on the execution
times which values are written or read from these buffers.

Non-determinism is also a natural result of the sampling
of periodic ports [8]. The logical time of the parallel task
graph is discrete while the actual time of the environment is
continuous. Infinitely small differences in sampling moments
can cause different output results.

The buffers between the sources and sinks and the sys-
tem internals cause non-determinism, but also isolate non-
determinism from the system internals. As soon as the system
internals start processing a data item, i.e. the data item
is read from the source buffer, the outcome is completely
deterministically determined by the application and the results
are written into the sink buffer.

In contrast to the differentiation made in [7], our approach
is a combination of both a language based approach, a
compiled-based approach and a software run-time approach.
A language extension is required to explicitly introduce non-
determinism in the program while compiler support is required
to guarantee determinism in the derived parallel task graph.
The software run-time environment in turn ensures that the
generated synchronization primitives actually adhere to the
memory-consistency model that is supported by the hardware.

B. Memory Consistency

A memory consistency model defines the order in which
updates of variables become visible. The memory consistency
model can be seen as the contract between the programmer, the
compiler and the hardware, from which the programmer can
derive the functional behavior of a program. Because memory
consistency models define the order in which variable updates



become visible, they also define the reordering freedom of load
and store operations. Therefore, they can have a significant
impact on the available parallelism in an application. An
example of a memory consistency model that offers little
reordering freedom but which is relatively easy to use by
the programmer is sequential consistency [15]. Sequential
consistency is supported if the order in which stores become
visible is an interleaving order that might occur if all loads
and stores complete in the order as specified by the sequential
program. As a consequence, sequential consistency offers
minimal reordering freedom which usually limits the available
parallelism severely.

For our sequential NLPs we rely on a simple memory
consistency model which defines that a variable must be
written before the same variable is read. Because there are
no ordering constraints imposed by this memory consistency
model between different variables there is a significant reorder-
ing freedom of loads and stores. There is also a constraint on
the life-time of a value written in a variable by means of a
Single Assignment Section (SAS) [13]. Basically a SAS states
that a value stored in a variable is lost after every execution
of the while loop iteration in which the value is written.

Our parallelization approach can exploit that there is no
ordering constraint between writes and reads of different
variables in the NLP, assuming the memory consistency model
used in the parallel task graph also supports this. A memory
consistency model that supports this reordering freedom is
streaming consistency [17]. Streaming consistency requires
that all shared variables are encapsulated by acquire and
release statements. These acquire and release statement guar-
antee mutual exclusive access of the shared variables in the
critical section. Given streaming consistency, only the acquire
and release statements of a specific CB, which is related to one
particular variable in the NLP, are not allowed to be reordered
but acquire and release statements related to different variables
can be reordered.

The parallelization approach from [4] encapsulates accesses
of shared variables with acquire and release statements and
also the extension with sources and sinks described in this
paper does not violate the encapsulation requirement. A dif-
ferentiation is made between acquire and release statements
for tasks writing a variable and tasks reading a variable. A
buffer location is acquired for write access using the acqWW
function and released using the relWW function. Acquiring a
location for read access is done via acqRW and releasing it is
done via relRW . All functions take the buffer as a parameter.
The functions acqRW and relWW also take the array index
as an additional argument.

Because each source and sink has a different variable
associated to it, statements that access the source or sink
are not related unless they access the same source or sink.
Therefore, they are allowed to be reordered according to the
streaming memory consistency model. Now assuming that the
example code from Figure 1a was implemented using our
NLP language, thus declaring A as a source and B as a sink,
the optimal schedule from Figure 1c is a valid schedule after

i n t source A = ADC( ) @ 5 KHz ;
i n t s ink B = DAC( ) @ 5 KHz ;
s t a r t B 4 ms a f t e r A;

i n i t ( out s t a t e ) ;
loop{

sw i t ch ( s t a t e ){
case 0 :

d e t e c t (A, out s t a t e ’ ) ;
case 1 :

loop{
x = decode (A) ;
y = f ( x ) ;
o u t p u t ( y , out B) ;

} whi le ( . . . ) ;
r e s e t ( out s t a t e ’ ) ;

case 2 :
c l o s e ( out B , out s t a t e ’ ) ;

}
} whi le ( 1 ) ;

(a) Sequential NLP

decode

detect

output

close

sstate

sA

ADC DAC

sB

fADC fDAC

f

reset init

(b) Parallel task graph

Fig. 3. Parallelization of an NLP with a source A and a sink B.

parallelization.

IV. SOURCES AND SINKS

Ports provide the means for the system to communicate
with the environment. There are two types of ports, ports
which are read, called sources and ports which are written,
called sinks. These sources and sinks are specified in the NLP
using a name and a function. Functions in our NLPs can be
implemented in another language, for instance C. The function
corresponding to a port defines how a value is retrieved from
or written to the corresponding port. The name of the source
or sink can be used by statements in the NLP to read or
write to that port. Periodic sources and sinks also have an
additional property, their execution frequency. Aperiodic ports
do not have a frequency. Ports in the system do not have
a relation with each other, unless specified otherwise by the
data dependencies. Therefore, the execution of the ports can
be reordered with respect to each other.

Besides the periodic sources and sinks all functions in the
system, including the function corresponding to the aperiodic
sources and sinks, are executed data-driven, meaning they
execute when there is data available on their inputs and space
available on their outputs. The time triggering of the ports is
performed by a timer. The period is the inverse of the specified
frequency at which the ports operates. An example NLP with a
port for which the frequency is specified is shown in Figure 3a.
In this example there is a source and a sink, which both operate
at a frequency of 5 KHz.

Sources and sinks often have latency constraints with re-
spect to one another. For example after a periodic sink starts,
there must always be data available at its input buffer. If not,
noticeable glitches can occur. A minimal latency between the
source and the sink can prevent this.

Latency constraints can be specified by means of a min-
imum time d ∈ R that one port should start after another.
Note that also a negative delay can be specified to indicate
that the sink should start before the source. In the example it
is specified that the n-th execution of the sink should start 4
ms after the n-th execution of the source.



i n t source A = f ( ) ;
i n t s ink B = g ( ) ;

whi le ( 1 ){
i f ( c == 0)

B = h (A) ;
e l s e

B = k (A) ;
}

(a) Valid NLP.

i n t source A = f ( ) ;
i n t s ink B = g ( ) ;

whi le ( 1 ){
i f ( c == 0)

B = h (A) ;
}

(b) Invalid NLP.

i n t source A = f ( ) ;
i n t s ink B = g ( ) ;

whi le ( 1 ){
i f ( c == 0)

B = h (A) ;
i f ( c != 0)

B = k (A) ;
}

(c) Invalid NLP.

Fig. 4. An example where it can be verified if the communication rate equals
the synchronization rate (a) and two examples where it can not (b), (c).

In the case that statements reading from a source and
statements writing to a sink are in the same while loop, source
and sink rate inconsistencies can be detected automatically at
compile-time. For example the decode function reads equally
often from source A as the output function writes to sink B.
Therefore, the corresponding source and sink should operate
at the same frequency.

If a port is accessed inside an if or switch statement, it
can often not be verified at design time how often data is
actually written to a sink or read from a source. In this case
only the synchronization rates of the tasks are verified with
the CSDF model but not the communication rates. In order to
automatically verify that the communication rate is equal to
the synchronization rate, an extra constraint on the sequential
input program must be added. This extra constraint requires
that if a source is read or a sink is written conditionally, the
source or sink must be read or written in every conditional
branch of that conditional statement.

Consider the example in Figure 4 which shows three code
examples of NLPs, all having one source and one sink. The
first example in Figure 4a reads the source and writes to the
sink in all branches of the if-statement whereas the example
in Figure 4b only accesses the source and sink in the if the
variable c equals 0. The last example from Figure 4c accesses
all ports in all branches. However, in general it can not be
detected if two conditions are always equal or not to each
other and therefore we always reject this construct.

A. Parallelization

From an NLP a parallel task graph is extracted. The result-
ing task graph allows task-level parallelism to be exploited
during execution. The extracted parallel task graph should
preserve the read/write ordering of ports as dictated by the
order of statements in the sequential input specification. For
instance if there are any side-effects on the sources or sinks,
not preserving this sequential ordering results in a different
functional behavior.

An NLP including sources and sinks is parallelized using
the following method. The parallelism from the program body
is extracted and modeled using the techniques presented in [5],
[13]. A task is extracted from each statement in the program
body. A CB is created for every variable in the NLP. The val-
ues from variables needed for the execution of a task is stored
and retrieved from these CBs. Synchronization statements are

inserted to ensure that a read values are available in the CBs
and space is available in the CB to store values produced by
the tasks.

For each specified source and sink a task is extracted which
is not part of the endless loop body of the NLP. For a source,
this task reads data from the source and writes the read data
into a buffer. For a sink this scheme is reversed, data is read
from a buffer and written to a sink. The buffers are of a special
type and are described in more detail in the next section.

The tasks extracted from the source and sink functions
ensure that the sequential read/write order is preserved after
parallelization. Because there is only a single task reading
from a source or writing to a sink the sequential ordering is
trivially preserved. The CBs in combination with the method
for the insertion of synchronization also results in a parallel
task graph that is functionally equivalent to the sequential
specification, as is shown in [13].

An example of the parallelization approach can be found
in Figure 3. The input NLP contains a periodic source A and
a periodic sink B with corresponding functions ADC and
DAC. The extracted task graph is shown in Figure 3b. Our
tool can automatically extract and generate a task graph from
a sequential NLP.

B. Buffers

The buffers between the periodic sources and sinks and
the data-driven tasks are based on the CBs as introduced
in [5]. A CB from [5] contains windows in which a task can
access a buffer location. Windows are used to support out-of-
order access, skipping locations and reading locations multiple
times. However in our approach, at the side of the sources and
sinks only non-blocking FIFO access is allowed. FIFO access
can be implemented using a window of size one location.

For robustness against overload, a protocol must be defined
which defines how the buffers react during system overload
situations. For buffers connected to sources, we see three
options. The first option is to overwrite the oldest data. The
disadvantage is that all read windows must be shifted to ensure
that the newly written data is read after all older data is
read. This causes multiple tasks updating the same windows,
therefore needing atomic operations, which are not always
available in embedded multi-core systems. A second option is
to overwrite the newest data. A simple implementation using
this scheme is keeping the write window at same place. A last
alternative, closely related to the previous alternative, is to not
write the currently sampled data, instead of overwriting the
previously written data. In our implementation we selected
the second option because this was the easiest option to
implement, however the most suitable option is application
and hardware dependent.

For the buffers connected to the sink, we see two alterna-
tives. Either read the last read data again or use a default value.
For both alternatives is a simple implementation, but also here
the most suitable alternative is application dependent.

The usage of these protocols can introduce functional non-
determinism. However, because these buffers are always at the



boundary of the tasks graph, the internal task graph remains
deterministic, which simplifies algorithm specification and
debugging significantly. Furthermore, applications must often
be made robust against potentially corrupt input data anyway.
An example is a radio channel decoder that must be able to
handle errors caused by distortion in the wireless channel.

In the task graph from Figure 3b these special buffers are
depicted by a open end on the side of the external ports,
indicating non-blocking access, and with a closed end on the
system side, indicating blocking access.

V. MODELING AN NLP AS A CSDF

After parallelism is extracted and synchronization state-
ments are inserted, a CSDF model is created to determine
buffer capacities and to verify whether the real-time require-
ments can be satisfied.

Data flow models, such as CSDF, can not model the
time-triggered execution of the periodic sources and sinks
because actors in a data flow model execute when tokens are
available at their input edges. Tokens can also not be generated
periodically and therefore no strictly periodic execution is
possible. In our approach the periodic tasks are modeled as if
they execute data-driven. After analysis it is guaranteed that,
if a data driven execution is possible for a given throughput,
a time-triggered execution is also possible.

The CSDF model is based on the placement of the synchro-
nization statements that are inserted by the code generator of
our parallelization tool. The placement of the synchronization
statements is such that the synchronization is unconditional,
i.e. whether a synchronization statement is executed, is not
dependent on input data. The only exception are the while
loops, for which we will show that particular synchronization
between task can be modeled as if it is unconditional because
other synchronization statements already enforces the same
synchronization constraints.

A while loop in our NLPs has an unknown iteration upper
bound by definition. A consequence is that in general it is
impossible to derive how much time is spent inside the while
loop. To guarantee that a periodic source is read in time and
a periodic sink receives its data in time, synchronization must
be added inside each while loop. In other words, a periodic
port must be accessed by at least one statement inside each
while loop.

Every while loop is modeled in the CSDF model as if it
always executes one iteration. For the synchronization rate
it is irrelevant which task actually accesses the port because
synchronization and communication are decoupled. A sketch
of the proof why modeling the execution of one iteration is
sufficient can be found in the next section.

It is always possible to derive a CSDF model using the
method described above if an NLP contains only scalar
variables or arrays with manifest array access patterns [3]. An
access pattern is manifest if it is possible to derive, at compile
time, the trace of indices for arrays that will occur at run-time.
An access pattern is non-manifest if such a trace can not be
derived. Because we assume that functions are deterministic,

loop{
x = f ( ) ;
y = k ( ) ;
loop{

x’ = g ( y ) ;
} whi le ( h ( x ) ) ;

} whi le ( 1 ) ;

(a) NLP

do{
acqWW( y ) ;
w r i t e ( y , 0 , k ( ) ) ;
relWW ( y , 0 ) ;

} whi le ( 1 ) ;

(b) Task 1

do{
acqWW( x ) ;
w r i t e ( x , 0 , f ( ) ) ;
relWW ( x , 0 ) ;
do{

acqRW ( b , 0 ) ;
t = r e a d ( b , 0 ) ;
relRW ( b ) ;
acqWW( x ) ;

} whi le ( t ) ;
} whi le ( 1 ) ;

(c) Task 2

do{
acqWW( x ) ;
acqRW ( y , 0 ) ;
do{

acqWW( x ) ;
w r i t e ( x , 0 ,
g ( r e a d ( y ) ) ) ;

relWW ( x , 0 ) ;
acqRW ( b , 0 ) ;
t = r e a d ( b , 0 ) ;
relRW ( b ) ;

} whi le ( t ) ;
relRW ( y ) ;

} whi le ( 1 ) ;

(d) Task 3

i n t t ;
do{

do{
acqRW ( x , 0 ) ;
t = h ( r e a d ( x , 0 ) ) ;
relRW ( x ) ;
acqWW( b ) ;
w r i t e ( b , 0 , t ) ;
relWW ( b , 0 ) ;

} whi le ( t ) ;
relRW ( x ) ;

} whi le ( 1 ) ;

(e) Task 4

Fig. 5. Example NLP in (a) and the tasks from the corresponding parallelized
task graph in (b)-(e).
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Fig. 6. CSDF model for the NLP in Figure 5a.

non-manifest behavior can only be a result of the data values
produced by the sources. In the case that an access pattern is
non-manifest, the CSDF model must be made conservatively
and may cause the model to deadlock whereas the task graph
will not deadlock, as shown in [13].

Figure 5a contains an example NLP where the variable x is
written both in the statements before and inside a nested while
loop. The variable y is only written in the statements before the
inner while loop. After parallelization, the generated code from
Figure 5b-5e is obtained. The CB b is introduced to store the
result of the evaluation of the condition from the inner while
loop. The variable t is an internal variable to temporarily store
values from a CB. As can be seen in the figure, also Task 2
must move its window for sx, despite that this task does not
write to x in the inner while loop. This is needed because
all windows must be moved an equal number of times [13],
otherwise one window might prevent that other windows can
move. The variable y is only read by the statements in the
inner while loop, in the example the only statement in the inner
while loop is the function g. Therefore, the synchronization is
added outside of the inner while loop, as is shown in Task 3.



Based on the inserted synchronization, the CSDF model
from Figure 6 is generated. Each task in the task graph is
modeled as an actor in the CSDF model. An edge is added
from each task which writes a variable to each task which
reads from the same variable. Because the variable x is written
by different tasks, an extra actor is required, the so called
merging actor. The merging actor for variable x is named
mx in the figure. This merging actor is required to ensure
that windows do not overtake each other by more than one
iteration. An edge is added from each merging actor to all
tasks that write to the corresponding variable.

If there are multiple tasks that read from the same variable,
a merging actor is also required for the same reasons as on
the writing side. Here an edge is added from all tasks which
read from a variable to the corresponding merging actor. In the
example there is only one task that reads from x so there is
no need for a merging actor. For the variable b the situation is
reversed as opposed to x, a merging actor for the reading tasks
is required, named mb, but not for the writing tasks because
there is only a single task which writes to b.

Because all while loops are always executed and the tasks
synchronize unconditionally, we have that each task synchro-
nizes at least once for every variable in every while loop body.
The CSDF model is created such that only one execution of
a while loop is modeled. This can be seen in Figure 6 where
all tasks synchronize equally often even though there is a rate
difference between the variables x and y.

A. Correctness Sketch

The throughput and latency requirements are specified for
each source and sink. Therefore, the schedule of the tasks
internal to the system is irrelevant as long as we can determine
with the CSDF model that data arrives in time and space
becomes available in time [12].

The base case for throughput concerns is that each task
that corresponds with a function in a while loop, executes
only once. This case is modeled in the CSDF model, see
for example Figure 6. It must now be shown that if a while
loop executes more than one iteration, and therefore also the
corresponding tasks execute more often, that than still space
becomes available in time for the sources and data becomes
available in time for the sinks. This requires us to provide an
argument why space and data do not become available later
in case the while loops execute more than once.

As explained above, every periodic source sink must be
read and every periodic sink must be written in every while
loop. This forces the synchronization for each source or sink
variable to be inside this while loop. The tasks that correspond
with the statements in the while loop potentially communicate
with tasks that correspond with statements outside the while
loop. If the while loop is executed more than once, the
tasks that correspond with statements inside a while loop
synchronize only the first iteration or the last iteration with
tasks that correspond with functions outside the while loop.
That tasks need to synchronize less corresponds in an unfolded
data flow model with less dependencies between actors. Less

i n t source ADC = readADC ( ) @ 250 KHz ;
p a c k e t t s ink p a c k e t = w r i t e P a c k e t ( ) ;

i n i t ( out s t a t e ) ;
loop{

sw i t ch ( s t a t e ){
case 0:{

get11aModeParam (ADC, out nSym’ , out s t a t e ’ ) ;
}
case 1:{

loop{
ge tFEsample s (ADC, out yData ) ;
h A f c F f t ( yData , out f r e q D a t a ) ;
ofdmDeMap ( f r e q D a t a , out symData , out s y m P i l o t ) ;
phaseTrackComp ( symData , symPi lo t , out symTracked ) ;
qamSoftDeMapper ( symTracked , out p a c k e t ) ;
i ’ = i + 1 ;

} whi le ( i <= nSym ) ;
r e s e t ( out s t a t e ’ ) ;

}
}

} whi le ( 1 ) ;

Fig. 7. NLP of a WLANp receiver.

dependencies can only result in an earlier firing of actors
and an earlier production of tokens. Because the data flow
abstraction is a conservative representation of the task graph
executed on our multiprocessor system [20], we can conclude
that data will be produced earlier and space will become
available earlier than in the case of a single while loop
iteration.

Using the method as described in [19], sufficient buffer
capacities for a given throughput constraint can be efficiently
calculated given the generated CSDF model.

B. Latency

Periodic sinks should be started some time after the periodic
sources because data is only available at the sink after some
processing time. The analysis method as presented in [19] can
take these latency constraints into account by adding additional
constraints to the given linear program (LP) formulation. The
LP formulation uses the start times of tasks to determine
buffer capacities for a given throughput. The latency constraint
dictates a minimum difference in start time between the source
and the sink.

Therefore, the LP is extended as follows. If there is a latency
constraint between the tasks t

A
and t

B
of L time units, than

the constraint can be formulated in terms of start time as:

s
B
− s

A
≥ L

Here the variable s
A

denotes that start time of task t
A

and s
B

denotes the start time of task t
B

.

VI. CASE-STUDY

An NLP specification of a WLANp receiver is shown in
Figure 7. The WLANp receiver receives its data from the
periodic source ADC and writes its data to the aperiodic
sink packet. The aperiodic sink executes when there is data
available in the connected buffer. In other words, the sink only
executes if data from the source is processed completely. The
periodic source is required to run at 250 KHz, so the input
stream is sampled every 4 µs.
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Fig. 8. Task graph of the WLANp receiver from Figure 7.

The receiver has different reception modes. In the first mode
the signal is acquired such that the properties of the data signal
are known, such as the number of symbols which make up a
packet. When this is successful, a mode switch occurs and a
whole packet is received. Since a packet has a variable length,
the second mode contains a while loop which only terminates
if the reception of a packet is complete. Since both modes
need the input signal, both modes read data from the source.

After parallelism is extracted from the sequential NLP,
the task graph from Figure 8 is obtained. The task graph
is reasonably complex due to modes, even though the input
program is fairly simple. However, despite the modes in the
receiver and the large number of edges, the task graph can still
be executed using pipeline parallelism. In the figure it can be
seen that a pipeline is formed between the tasks in the while
loop from mode 1. During execution, maximum pipelining
is only possible if the CBs s

nSym
and si, created from the

variables nSym and i, are at least six locations large and the
CB sstate, created from the variable state, is nine locations.
Each statement can than read/write to a different location in
the CB. The data flow analysis can also decide that smaller
buffers are sufficient if the system is fast enough to meet the
250 KHz requirement with less pipelining.

VII. CONCLUSION

This paper presented an approach for the automatic paral-
lelization of NLPs containing sources and sinks. These sources
and sinks can be accessed by statements in different modes and
can be either executed strictly periodic or data-driven. After
parallelization, synchronization statements are inserted into the
extracted task graph to ensure the same functional behavior as
the sequential application.

Between the sources and sinks and the application, buffers
are inserted which ensure that the periodicity of the sources
and sinks is never disturbed in case the execution time
estimates that were used at design time, were optimistic. Peri-
odicity of the sources and sinks is ensured by allowing these
buffers to overflow and underrun. This introduces potentially
local non-determinism in the system.

From the parallelized application, it is shown that a conser-
vative CSDF model can be generated. The generated CSDF
model is based on the synchronization in the task graph. Given
throughput and latency constraints on the sources and sinks,
buffer capacities can be calculated using the CSDF model. It
is shown that a CSDF model can be generated by assuming

only a single execution of the while loops. In case the while
loops are executed more often, it can be shown that data and
space will not arrive later than will be derived with the model.

The presented approach is intended for non-safety critical
applications that require pipelined execution for performance
reasons. The described issues and proposed solutions are our
first but potentially interesting contribution to address the
issues introduced by sources and sinks in sequential programs
in a systematic way.
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