Rare-earth-ion-doped Lasers Integrated on a Silicon Chip

M. Pollnau, E. H. Bernhardi, J. D. B. Bradley, R. M. de Ridder, K. Wörhoff, J. Yang, M. B. J. Diemeer, and A. Driessen

Future integrated photonic circuits will utilize hybrid integration of optical materials with different functionalities, among them optical gain. We have developed two rare-earth-ion-activated materials which can be directly deposited on any passive material platform, among others on silicon wafers. In a Nd-complex-doped fluorinated polymer, we demonstrated the first-ever continuous-wave solid polymer laser, operating at 1062 nm and 878 nm. In amorphous Al₂O₃, we demonstrated an Er-doped, widely wavelength-selective microring laser that operates across the telecom C-band. Employing Bragg gratings lithographically inscribed into channel waveguides, we obtained cavities with a *Q*-factor of $>10^6$. With such grating reflectors, we achieved a free-running 1542-nm distributed-feedback laser with an ultra-narrow linewidth of 1.7 kHz, equaling a coherence length of 55 km and a *Q*-factor of 1.14×10^{11} . With a distributed-Bragg-grating cavity, we obtained an Yb-doped laser at 1021 nm with 47 mW output power and 67% slope efficiency, which may enable linewidths below 100 Hz.