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Abstract—In this paper, we consider three problems, namely,
the output consensus problem, the model-reference output
consensus problem, and the regulation of output consensus
problem, for a network of non-identical right-invertible lin-
ear agents. The network provides each agent with a linear
combination of multiple agents’ outputs. We assume that all
the agents are introspective, meaning that they have access to
their own local measurements. Under this assumption, we then
propose a distributed linear protocol to solve each problem for a
broad class of network topologies, including not only Laplacian
topologies for a directed graph which contains a directed
spanning tree, but a wide family of asymmetric topologies.

I. INTRODUCTION
The problem of achieving consensus among agents in

a network—that is, asymptotic agreement on the agents’
state or output trajectories—has been extensively studied in
recent years and has yielded some advances in e.g., sensor
networking [8], [9], [7], [15] and autonomous vehicle control
applications [14], [12], [11], [13].
Much of the attention has been devoted to achieving state

consensus for a network of identical agents, where each
agent has access to a linear combination of its own state
relative to that of neighboring agents (e.g., [8], [9], [7], [12],
[11], [21]). Roy, Saberi, and Herlugson [15] and Yang, Roy,
Wan, and Saberi [29] considered the state consensus prob-
lem for more general network topologies. A more realistic
scenario—that is, each agent receives a linear combination of
its own partial-state output and that of neighboring agents—
has been considered in [10], [22], [23], [6]. The results of [6]
was expanded by [30] to more general network topologies.
Many of the results on the consensus problem are rooted

in the seminal work of Wu and Chua [26], [27] in the circuit
community, which gives conditions on a network topology
for synchronization of coupled nonlinear oscillators.

A. Non-identical agents and output consensus
Recent activities in the consensus literature have been

focused on achieving consensus for a network of non-
identical agents. This problem is challenging and only some
partial results are available, see for instance [4], [28], [1],
[5], [25].
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In a network of non-identical agents, the agents’ states
may have different dimensions. In this case, the state con-
sensus is not even properly defined, and it is more natural
to aim for output consensus—that is, asymptotic agreement
on the agents’ partial-state outputs. Chopra and Spong [1]
studied the output consensus problem for weakly minimum-
phase nonlinear systems of relative degree one, using a pre-
feedback to create a single-integrator system with decoupled
zero dynamics. Kim, Shim, and Seo [5] considered the output
consensus problem for uncertain single-input single-output,
minimum-phase linear systems, by embedding an identical
model within each agent, the output of which is tracked by
the actual agent output.
The design mentioned in Section I-A generally rely on

some sort of self-knowledge that is separate from the in-
formation transmitted over the network. More specifically,
the agents may know their own state, their own output,
or their own state/output relative to that of the reference
trajectory. We shall refer to agents that possess this type
of self-knowledge as introspective agents. In this paper, we
assume that all the agents in the network are introspective.

B. Contributions of this paper
In this paper we consider networks of non-identical, intro-

spective, right-invertible linear agents, where each agent has
access to its own local measurement, and receives a linear
combination of multiple agents’ outputs. We propose a dis-
tributed linear protocol to solve each of the three problems—
that is, output consensus problem, model-reference output
consensus problem, and regulation of output consensus prob-
lem—under a set of straightforward assumptions about the
agents and the network topology. The assumptions about the
agents are much more general than that made in [1], [5], and
the assumption about the network topology includes not only
Laplacian topologies for a directed graph which contains
a directed spanning tree, but a wide family of asymmetric
topologies.

C. Preliminaries and notations
Given a matrix A ∈ Rm×n, AT denotes its transpose, and

!i(A) is its i’th eigenvalue. A ∈ Rn×n is said to be Hurwitz
stable if all its eigenvalues are in the open left-half plane.
⊗ denotes the Kronecker product between two matrices of
appropriate dimensions. A and a matrix B ∈R p×q is defined
as the Rmp×nq matrix

A⊗B=




a11B . . . a1nB
...

. . .
...

am1B . . . amnB



 ,
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where ai j denotes element (i, j) of A. In denotes the identity
matrix of dimension n, similarly, 0n denotes the square
matrix of dimension n with all zero elements; we sometimes
drop the subscript if the dimension is clear in the context.
When clear form the context, 1 denotes the column vector
with all entries equal to one. For a set of vectors x1, . . . ,xn,
we denote by col(x1, . . . ,xn) the column vector obtained by
stacking the elements of x1, . . . ,xn.
In this paper, we will make use of the classical result

on stabilizing a matrix by scaling. Let us recall Fisher and
Fuller’s result from [2].
Lemma 1: (Fisher and Fuller) Consider an n× n matrix

G. If there exists a permutation matrix P such that all the
leading principal minors of PGP−1 are nonzero, then there
exists a diagonal matrix D such that the eigenvalues of DG
are all in the open right-half complex plane (or, alternatively,
in the open left-half complex plane).

Note that the proof of Lemma 1 given in [2] is constructive.

II. PROBLEM STATEMENT

We consider a network of n multiple-input multiple-output
agents of the form

{
ẋi = Aixi+Biui,
yi = Cixi,

(1)

for i ∈ {1, . . . ,n}, where xi ∈Rni , ui ∈ Rmi and yi ∈ Rp.
For the output consensus problem, our goal is to achieve

agreement asymptotically on the agents’ outputs; that is to
ensure that limt→"(yi(t)− y j(t)) = 0 for all i, j ∈ {1, . . . ,n}.
Output consensus by itself does not impose any conditions

on asymptotic behavior of the output of an individual agent
beyond the fact that the outputs of all the agents have to be
the same asymptotically.
In this paper we are, however, also interested in the model-

reference output consensus problem. In this problem, our
goal is not only to achieve output consensus, but to make
the consensus trajectory follow the output of the reference
system/virtual leader given by

{
ẋr = Arxr+Brur,
yr = Crxr,

(2)

where yr ∈Rp. That is, we wish to ensure that limt→"(yi(t)−
yr(t)) = 0 for all i ∈ {1, . . . ,n}.
Finally, we consider the regulation of output consensus

problem, where the output of each agent has to track the same
trajectory, generated by an arbitrary autonomous exosystem

{
ẋr = Arxr,
yr = Crxr,

(3)

where xr ∈ Rr and yr ∈ Rp. That is we wish to ensure that
limt→"(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . ,n}.
Notice that the model-reference output consensus problem

is more general than the regulation of output consensus
problem, since we would get (3) if we choose ur = 0 in
(2). However, in order to solve the model-reference output
consensus problem, we require stronger assumptions on
(Cr,Ar,Br) and that all the agents have to know ur, which

will be seen explicitly in Section III-B. On the other hand, in
the regulation of output consensus problem, we have hardly
any restrictions on (Cr,Ar).

A. Available information
The agents are introspective, meaning that the agents have

access to their own local information. Specifically, each agent
has access to

zi =Cmi xi. (4)

Thus without any communications among agents provided by
the network, we might still be able to simply asymptotically
stabilize each individual agent and obtain output consensus
with zero consensus trajectory, that is limt→" yi(t) = 0. But
to achieve nontrivial consensus behavior, each agent needs
to have some information provided by the network. In
particular, we assume that each agent i observes a linear
combination of the outputs of multiple agents, that is,

#i =
n

$
j=1

gi jy j, (5)

where gi j ∈ R are scalars, referred as observation weights.
Note that the observation weight gi j represents the influence
(through network communication) of each agent j’s output
on agent i’s observation. We find it natural to assemble the
weights gi j into an n× n network topology G= [gi j].
In the model-reference output consensus and the regulation

of output consensus problems, it is obvious that a non-empty
subset of agents observes their outputs relative to that of
the reference model given by (2), (3), respectively to ensure
that the consensus trajectory tracks the reference trajectory.
Specifically, let I ⊂ {1, . . . ,n} be such a subset. Then, each
agent i ∈ {1, . . . ,n} has access to the quantity

%i = ei(yi− yr), ei =
{
1, i ∈ I ,
0, i /∈ I .

(6)

In the model-reference output consensus problem, all the
agents need to know the input ur of the reference model.

B. Linear protocols
Having the data available for solving each problem, in this

paper, we restrict our attention to linear protocols.
More specifically, for solving the output consensus prob-

lem, we consider the linear protocol of the form
{
ẋci = Āc,ixci + B̄c,i col(zi,#i),
ui = C̄c,ixci + D̄c,i col(zi,#i),

(7)

for i ∈ {1, . . . ,n}, where xci ∈ Rqi is the state of agent i’th
protocol.
For solving the model-reference output consensus prob-

lem, we consider the linear protocols of the form
{
ẋci = Āc,ixci + B̄c,i col(zi,#i,%i,ur),
ui = C̄c,ixci + D̄c,i col(zi,#i,%i,ur),

(8)

for i ∈ {1, . . . ,n}, where xci ∈ Rqi is the state of agent i’th
protocol.
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For solving the regulation of output consensus problem,
we consider the linear protocol of the form

{
ẋci = Āc,ixci + B̄c,i col(zi,#i,%i),
ui = C̄c,ixci + D̄c,i col(zi,#i,%i),

(9)

for i ∈ {1, . . . ,n}, where xci ∈ Rqi is the state of agent i’th
protocol.

C. Assumptions
We make the following assumption about the agents.
Assumption 1: For each i ∈ {1, . . . ,n}, assume that
1) (Ai,Bi) is stabilizable;
2) (Ci,Ai) is detectable;
3) (Ci,Ai,Bi) is right-invertible; and
4) (Cmi ,Ai) is detectable.

In the output consensus problem, we make the following
assumption about the network topology.
Assumption 2: We assume that the network topology G

has only one zero eigenvalue, with right eigenvector 1, and
there exists a permutation matrix P such that all the leading
principal minors of PGP−1, of size less than n are nonzero.

In the model-reference output consensus problem and regu-
lation of output consensus problem, we make the following
assumption about the network topology.
Assumption 3: We assume that the network topology G

has only one zero eigenvalue, with right eigenvector 1, and
there exist a permutation matrix P and a constant & > 0 such
that all the leading principal minors of P(G+&E)P−1, where
E = diag(e1, . . . ,en), are nonzero.

Remark 1: As a special case, if G is a Laplacian matrix
of a digraph which contains a directed spanning tree, then it
is easy to check that Assumption 2 is always satisfied, and
Assumption 3 is always satisfied by choosing eK = 1 for the
root agent K, and arbitrary & > 0.

III. PROTOCOL DESIGN

In this section, we design a distributed protocol of the form
(7), (8), and (9) to solve each of three problems formulated
in Section II, respectively. The first stage of our design
procedure of all three protocols is to design a protocol based
on local measurement (4) to make all the agents substantially
the same except for different exponentially decaying signals.
This is shown in the following lemma.
Lemma 2: Consider a network of agents (1) with the local

measurement zi given by (4). Let Assumption 1 be satisfied.
Let nq be the integer that is equal to the largest degree of
all infinite zeros of (Ai,Bi,Ci), i∈ {1, . . . ,n}. Given arbitrary
matrices A ∈ Rpnq×pnq , B ∈ Rpnq×p, and C ∈ Rp×pnq such
that the system (C,A,B) has no invariant zeros, has uniform
rank nq, is invertible, and all the eigenvalues of A are in
the closed left-half plane, then for each i ∈ {1, . . . ,n}, there
exists a local output feedback of the following form

{
ṗi = Ac,i pi+Bc,izi+Ec,iūi,
ui = Cc,i pi+Dc,iūi,

(10)

where ūi ∈Rp is a new input, such that the resulting system
(1) and (10) can be written as the following form

{ ˙̄xi = Ax̄i+B(ūi+'i),
yi = Cx̄i,

(11)

where 'i ∈ Rp is given by dynamical equations
{ ˙̃xi = Hix̃i,
'i = Rix̃i,

(12)

for some Hurwitz stable matrix Hi.

The proof of Lemma 2 is given in Appendix A.
Remark 2: Note that matrices A, B, and C in Lemma 2

can be chosen arbitrarily as long as the system (C,A,B) has
no invariant zeros, has uniform rank nq, is invertible, and all
the eigenvalues of A are in the closed left-half plane. They
play a role as design parameters. In this paper, we shall use
this property in many locations for various purposes.

Lemma 2 shows that we can design a protocol based on the
local measurement (4), to transform each non-identical agent
model given by (1) into a new model given by (11). The new
models are almost identical; that is, they are the same for
each agent except for an exponentially decaying signal ' i.
In the following three sections we shall first solve each of
our three problems with respect to the new, almost-identical
models given by (11), and then combine each result with
Lemma 2 to solve each problem with respect to the agent
models given by (1).

A. The output consensus problem
The following lemma gives conditions under which the

output consensus problem for a network of agents (11) can
be solved by using #i given by (5).
Lemma 3: Consider a network n agents of the form (11).

Let Assumption 2 be satisfied. Then there exists a protocol
of the form {

q̇i = Ac,iqi+Bc,i#i,
ūi = Cc,iqi,

(13)

such that limt→"(yi(t)− y j(t)) = 0 for all i, j ∈ {1, . . . ,n}.

The proof of Lemma 3 is given in Appendix B.
Combining the results of Lemma 2 and Lemma 3, we

obtain the following result.
Theorem 1: Consider n agents of the form (1). Let As-

sumptions 1 and 2 be satisfied. Then there exists a protocol
of the form (7) that solves the output consensus problem,
that is, limt→"(yi(t)− y j(t)) = 0 for all i, j ∈ {1, . . . ,n}.

Let us make several comments regarding Theorem 1.
• The network topology conditions given in Assumption
2 are satisfied for a broad class of matrices, including
a Laplacian topology for a network which contains a
directed spanning tree, and a class of matrices known as
D-semistable matrices, which have a single eigenvalue
at the origin with the corresponding right eigenvector
1. For the definition of D-semistability, please see [15],
[3]. It is clear that D-semistable matrices includes a wide
family of matrices with more general entry sign pattern
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than the Laplacian matrix, and hence admits consensus
control for a wider set of observation capabilities.

• The consensus trajectory is a linear combination of
modes of the open loop system (11). Note that from
Remark 2, we know that the eigenvalues of A can be
assigned arbitrarily as long as all the eigenvalues of A
are in the closed left-half plane. Therefore, the output
consensus trajectory captures various types of consensus
behavior. In order to avoid the trivial consensus, at least
some of the eigenvalues of A need to be located on the
imaginary axis.

B. The model-reference output consensus problem
Our focus so far has been on achieving output consensus,

without regard to the particular consensus trajectory. In this
section, we consider the model-reference output consensus
problem.
To begin with, we make following assumption about the

reference model/virtual leader given by (2).
Assumption 4: (Cr,Ar,Br) has no invariant zeros, has uni-

form rank nq, is invertible, and all the eigenvalues of Ar are
in the closed left-half plane.

The conditions on (Cr,Ar,Br) given in Assumption 4 are not
as restrictive as it might appear. In fact, any trajectory yr ∈
Rp, which is nq times differentiable can be generated by (2)
with (Cr,Ar,Br), which has no invariant zeros, has uniform
rank nq, is invertible, and all the eigenvalues of Ar are in the
closed left-half plane. The most natural choice of reference
model is p chains of integrators with each integrator of length
nq.
The following lemma gives conditions under which the

model-reference output consensus problem for a network of
agents (11) and the reference model given by (2) can be
solved by using #i given by (5) provided by the network, % i
given by (6) and the input to the reference model u r.
Lemma 4: Consider n agents of the form (11) and the

reference model (2). Let Assumptions 3 and 4 be satisfied.
Then there exists a protocol of the form

{
q̇i = Ac,iqi+Bc,i col(#i,%i,ur),
ūi = Cc,iqi+Dc,i col(#i,%i,ur),

(14)

such that limt→"(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . ,n}.

The proof of Lemma 4 is given in Appendix C.
Combining the results of Lemma 2 and Lemma 4, we

obtain the following result.
Theorem 2: Consider n agents of the form (1) and the

reference model (2). Let Assumptions 1, 3, and 4 be sat-
isfied. Then there exists a protocol of the form (8) that
solves the model-reference output consensus problem, that
is, limt→"(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . ,n}.

C. The regulation of output consensus problem
The main disadvantage of the result in Section III-B is

that the input to the reference model needs to be known by
each agent. In many cases, we actually want the output of
each agent to track a desired a priori specified trajectory,

such as step or sinusoidal signals, generated by an arbitrary
exosystem system given by (3). In this case we use ideas
from output regulation [18].
To begin with, we make following classical assumption

about the reference model given by (3).
Assumption 5: All the eigenvalues of Ar are on imaginary

axis, and the pair (Cr,Ar) is detectable.

The following lemma gives conditions under which the
regulation of output consensus problem for a network of
agents (11) and the reference model given by (3) can be
solved by using #i given by (5) provided by the network,
and %i given by (6).
Lemma 5: Consider n agents of the form (11) and the

reference model (3). Let Assumptions 3 and 5 be satisfied.
Then there exists a protocol of the form

{
q̇i = Ac,iqi+Bc,i col(#i,%i),
ūi = Cc,iqi,

(15)

such that limt→"(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . ,n}.

The proof of Lemma 5 is given in Appendix D.
In order to prove Lemma 5, we need following properties

which can be guaranteed by our design.
1) Since the system (C,A,B) in Lemma 2 has no invariant

zeros and is invertible, from [18], we know that the follow-
ing equations with unknowns ( ∈ R pnq×r and )i ∈ Rp×r,
commonly know as the regulator equations

(Ar = A(+B), (16a)
Cr =C(, (16b)

have a unique solution in terms of ( and ).
2) Since the matrix A in Lemma 2 is arbitrarily assignable

as long as all the eigenvalues of A are in the closed left-half
plane, we choose A such that A and Ar have no common
eigenvalues.
Combining the results of Lemma 2 and Lemma 5, we

obtain the following result.
Theorem 3: Consider n agents of the form (1) and the

reference model (3). Let Assumptions 3 and 5 be satis-
fied. Then there exists a protocol of the form (9) that
solves the regulation of output consensus problem, that is,
limt→"(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . ,n}.
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APPENDIX

A. Proof of Lemma 2

1) We design a squaring-down precompensator
{
ẋ1i = A1i x1i +B1i vi,
ui = C1i x1i +D1i vi,

(17)

for each agent i ∈ {1, . . . ,n}, where x1i is the internal state
of the precompensator, and vi ∈ Rp, such that the resulting
system has an equal number of inputs and outputs and
is invertible. The design procedure was developed in [17].
Notice that the design introduces additional zeros which can
be chosen to be stable.
2) We design a rank-equalizing precompensator

{
ẋ2i = A2i x2i +B2i wi,
vi = C2i x2i +D2i wi,

(18)

for each agent i ∈ {1, . . . ,n}, where x2i is the internal state
of the precompensator, and wi ∈ Rp, such that the resulting
system has uniform rank and, moreover, the infinite-zero
structure of the resulting system are identical (that is, all
of them have relative degree nq—an integer equal to the
largest degree of all infinite zeros of (Ci,Ai,Bi)). The design
procedure was developed in [16]. Notice in order to use the
above design procedure, all the agents need to know the
integer nq.
3) We design an observer to estimate xi,a and xi,q based

on z̃i = col(zi,x1i ,x2i ) and then choose a pre-feedback such
that the resulting system is given by (11).
In order to proceed this stage, let us first consider an

arbitrary system (C,A,B) such that the system (C,A,B) has
no invariant zeros, has uniform rank nq and is invertible.
From [19], we know that for each i ∈ {1, . . . ,n}, there exist
a matrix Ā ∈Rp×pnq, a nonsingular matrix M ∈ R p×p and a
nonsingular state transformation ) i3 such that x̂i = )i3x̄i, and
with this state transformation, (11) can be transformed into





˙̂xi =

[[
0 Ip(nq−1)

]

Ā

]
x̂i+

[
0
M

]
(ūi+'i),

yi =
[
Ip 0

]
x̂i.

(19)

Thus, without loss of generality, we can assume that (C,A,B)
in (11) are given by

A=

[[
0 Ip(nq−1)

]

Ā

]
, B=

[
0
M

]
, C =

[
Ip 0

]
. (20)

Now, let us present the resulting system with two prec-
ompensators in the special coordinate basis (SCB) [19].
From [19], [17], [16], we know that for each i ∈ {1, . . . ,n},
there exist nonsingular transformations ) i1 and )i2, such that
col(xi,x1i ,x2i ) = )i1 col(xi,a,xi,q) and wi = )i2w̃i, where xi,a
represents the zero dynamics of the resulting system and has
dimension ni,a, and xi,q represents the infinite-zero dynamics
of the resulting system, and has dimension pnq. Using the
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above, we can find the following state space representation
of the resulting system with input w̃i and output yi

{
ẋi,q = Âxi,q+ B̂(w̃i+Di,axi,a),
yi = Ĉxi,q,

(21)

where

Â=

[[
0 Ip(nq−1)

]

Di

]
, B̂=

[
0
Ip

]
, Ĉ =

[
Ip 0

]
,

for some matrices Di ∈ Rp×pnq and Di,a ∈ Rp×ni,a .
Note that the information z̃i is available for agent i since

the local information zi is available for agent i and the
internal states x1i and x2i are always available for agent i.
Moreover, since z̃i is detectable which follows directly from
the detectability of the pair (Cm

i ,Ai), we can always design an
local observer such that the observer error x̃ i= col(xi,a,xi,q)−
col(x̂i,a, x̂i,q) satisfies ˙̃xi = Hix̃i, for some Hurwitz stable Hi.
Now, let us choose the following pre-feedback

w̃i =Mūi−Di,ax̂i,a+ Āx̂i,q−Dix̂i,q, (22)

where x̂i,a and x̂i,q are observer estimates, and ūi ∈ Rp is a
new input. Defining Ri =M−1 [Di,a Di− Ā

]
, 'i = Rix̃i, and

xi,q = x̄i, we then obtain (11) by applying the pre-feedback
(22) to (21).
Notice that the above three stages can be represented by

(10) by defining pi = col(x1i ,x2i , x̂i,a, x̂i,q). The above three
stages can be captured in Fig. 1.

rank 
equalizing 

precompensator

squaring             
down 

precompensator
agent i

   Observer

ui

zi

viwiūi

x1
i

x2
i

Pre-feedback

+w̃iΓi2M
yi

Fig. 1. First three stages of the design

B. Proof of Lemma 3
Since G satisfies Assumption 2, according to the proof

of classical result of Fisher and Fuller (quoted as Lemma
1 above) given in [2], we can design a diagonal matrix
D = diag(d1, . . . ,dn) such that all the eigenvalues of DG
are in the closed right-half plane, and that DG has only
one eigenvalue at origin, with right eigenvector 1. Next,
we define the matrix DG as the (n− 1)× (n− 1) matrix
obtained by removing the last row and last column from the
matrix DG− dn1gTn, where gTn is the last row of G, and we
define * =mini=1,...,n−1 Re(!i(DG)). It is easy to see that all
the eigenvalues of DG are the nonzero eigenvalues of DG,
therefore, * > 0. Let P(+) = PT(+)> 0 be the unique solution
of the algebraic Riccati equation

ATP(+)+P(+)A− *P(+)BBTP(+)+ +Ipnq = 0. (23)

Next let us choose a particular protocol of the form (13) as
{
q̇i = (A−KC−BBTP(+))qi+ diK#i,
ūi = −BTP(+)qi,

(24)

where K is a matrix such that A−KC is Hurwitz stable, and
+ is sufficiently small.
Let us define relative-state variables as p̄i = x̄i − x̄n,

and q̄i = qi − qn for all i ∈ {1, . . . ,n− 1}. We then de-
fine p̄ = col(p̄1, . . . , p̄n−1), q̄ = col(q̄1, . . . , q̄n−1), and , =
col(p̄, q̄, x̃1, . . . , x̃n−1, x̃n).
With just a little bit algebra, from (5), (11), (12) and (24),

we obtain the dynamical equations of the state variable , as

,̇ =




In−1⊗A −In−1⊗ (BBTP(+)) Q1 Q2

(DG)⊗ (KC) In−1⊗ (A−KC−BBTP(+)) 0 0
0 0 Q3 0
0 0 0 Hn



, ,

(25)
where Q1 = blkdiag(BR1, . . . ,BRn−1),Q2 = −1n−1⊗ (BRn),
and Q3 = blkdiag(H1, . . . ,Hn−1).
It is then easy to see that the output consensus problem

is solved if the relative-state system (25) is asymptotically
stable, that is, all the eigenvalues of the matrix

[
In−1⊗A −In−1⊗ (BBTP(+))

(DG)⊗ (KC) In−1⊗ (A−KC−BBTP(+))

]

are in the open left-half plane due to the upper block-
triangular form of the system matrix of (25) and the fact
that H1, . . . ,Hn are Hurwitz stable.
With just a little bit algebra, we can show that the above

matrix is similar to In−1⊗ Ã+(DG)⊗ (B̃C̃), where

Ã=

[
A −BBTP(+)
0 A−KC−BBTP(+)

]
, B̃=

[
0
K

]
, C̃ =

[
C 0

]
. (26)

Following the methodology of [27], we define U such that
J = U−1DGU , where J is the Jordan canonical form of
DG. Then, using the matrix U⊗ In−1 to perform a similarity
transform of the matrix In−1⊗ Ã+(DG)⊗ (B̃C̃), we obtain

(U−1⊗ I)[I⊗ Ã+(DG)⊗ (B̃C̃)](U⊗ I) = I⊗ Ã+ J⊗ (B̃C̃).

The resulting matrix is upper block-triangular, we see that
its eigenvalues are the union of the eigenvalues of Ã+!iB̃C̃
for each !i of the matrix DG.
From [20, Theorem 4], we see that all the eigenvalues of

Ã+!iB̃C̃ are in the open left-half plane, and thus relative-
state dynamics (25) is asymptotically stable. Hence, the
output consensus is achieved.

C. Proof of Lemma 4
Let us first note that from Lemma 2, we know that the

system (C,A,B) is arbitrarily assignable as long as the system
(C,A,B) has no invariant zeros, has uniform rank nq, is
invertible, and all the eigenvalues of A are in the closed left-
half plane. Therefore, we choose (C,A,B) = (Cr,Ar,Br).
Given the matrix E, let & be such that Assumption 3 is

satisfied. According to the proof of classical result of Fisher
and Fuller (quoted as Lemma 1 above) given in [2], we
can design a matrix D = diag(d1, . . . ,dn) such that all the
eigenvalues of D(G+&E) are in the open right-half plane,
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and we define * = mini=1,...,nRe(!i(D(G+&E))) > 0. Let
P(+) = PT(+) > 0 be the unique solution of (23). Let us
choose a particular protocol of the form (14) as

{
q̇i = (A−KC−BBTP(+))qi+ diK#i+&diK%i,
ūi = −BTP(+)qi+ ur,

(27)

where K is a matrix such that A−KC is Hurwitz stable, and
+ is sufficiently small.
Note that the protocol state qi is an estimate of x̄i −

xr. Let us define ri = x̄i − xr, r = col(r1, . . . ,rn), q =
col(q1, . . . ,qn), x̃ = col(x̃1, . . . , x̃n) and , = col(r,q, x̃). Note
that $nj=1gi jCx̄ j =$n

j=1gi jC(x̄ j− xr) since G1= 0, we then
obtain

,̇ =

[
In⊗A −In⊗ (BBTP(+)) Q4

D(G+&E)⊗ (KC) In⊗ (A−KC−BBTP(+)) 0
0 0 Q5

]
, ,

(28)
where Q4 = blkdiag(BR1, . . . ,BRn), and Q5 =
blkdiag(H1, . . . ,Hn).
Following the same lines as the proof of Lemma 3,

we can easily show that the closed-loop system (28) is
asymptotically stable, and thus the model-reference output
consensus is achieved.

D. Proof of Lemma 5

Let us first expand the exosystem (3) as





ẋr = Arxr,
-̇ = A-+B)xr,
yr(t) = Crxr(t),

with -(0) =(xr(0), where ( and ) are the unique solution
of regulator equation (16). It is then easy to verify that -(t)=
(xr(t) for all t and thus yr(t) =Crxr(t) =C(xr(t) =C-(t).
The reason behind this expansion is that the exosystem also
contains a target for the state of the individual agents.
Next, we expand each individual agent (11) as






ẋr,i = Arxr,i+ ui,1,
˙̄xi = Ax̄i+B)xr,i+Bui,2+B'i,

yi(t) = Cx̄i(t),

where we have used ūi = )xr,i+ui,2. Note that the first state
equation for xr,i is basically part of our consensus protocol.
Let us define x f ,i = col(xr,i, x̄i), x f ,r = col(xr,-), u f ,i =

col(ui,1,ui,2), u f ,r = 0, and

Af =

[
Ar 0
B) A

]
, Bf =

[
I 0
0 B

]
, Cf =

[
0 C

]
. (29)

We then obtain the expanded reference model
{
ẋ f ,r = Af x f ,r+Bf u f ,r,
yr = Cf x f ,r,

(30)

where u f ,r = 0 and n individual agents




ẋ f ,i = Af x f ,i+Bf (u f ,i+

[
0
'i

]
),

yi = Cf x f ,i.
(31)

Notice that (Cf ,Af ) is detectable since A and Ar have
no common eigenvalues while (C,A) and (C(,Ar) are de-
tectable. This follows from the fact that

[
I 0

−( I

]
Af

[
I 0
( I

]
=
[
Ar 0
0 A

]
, Cf

[
I 0
( I

]
= [C( C] .

Given the matrix E, let & be such that Assumption 3 is
satisfied. According to the proof of classical result of Fisher
and Fuller (quoted as Lemma 1 above) given in [2], we
can design a diagonal matrix D= diag(d1, . . . ,dn) such that
all the eigenvalues of D(G+ &E) are in the open right-
half plane. Define * =mini=1,...,nRe!i(D(G+&E))> 0. Let
P(+) = PT(+) > 0 be the unique solution of the algebraic
Riccati equation

Af P(+)+P(+)AT
f − *P(+)BT

f B f P(+)+ +Ipnp+r = 0. (32)

Notice that we need that the unique solution P(+) of (32)
satisfies lim+→0P(+) = 0. In order to achieve this, it is
required that all the eigenvalues of A f are in the closed left-
half plane from [24, Theorem 3, Lemma 4]. This is satisfied
due to the lower block-triangular form of A f , and the facts
that all the eigenvalues of Ar are on imaginary axis and all
the eigenvalues of A are in the closed left-half plane. For
each i ∈ {1, . . . ,n}, let us choose the following protocol
{

q̇i = (A f −KfCf −B f BTf P(+))qi+diKf #i+&diKf%i,
u f ,i = −BTf P(+)qi,

(33)

where Kf is a matrix such that A f −KfCf is Hurwitz stable
and + is sufficiently small.
Note that the protocol state qi is an estimate of xe,i = x f ,i−

x f ,r. Let us define xe = col(xe,1, . . . ,xe,n), q= col(q1, . . . ,qn),
x̃= col(x̃1, . . . , x̃n), and , = col(xe, p, x̃).
With some algebra, from (30), (31), and (33), we obtain

the closed loop system

,̇ =

[
In⊗Af −In⊗ (Bf BTf P(+)) Q6

(D(G+&E))⊗ (KfCf ) In⊗ (Af −KfCf −Bf BTf P(+)) 0
0 0 Q5

]
, ,

(34)
where Q6 = (In⊗

[
0
B

]
)blkdiag(R1, . . . ,Rn).

Following the same lines as the proof of Lemma 3,
we can easily show that the closed loop system (34) is
asymptotically stable. The above argument shows that there
exists a protocol of the form (15) that solves the regulation
of output consensus for multi-agent system (11).
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