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Abstract—As today’s devices, gadgets and machines become
more intelligent, the complexity of embedded software con-
trolling them grows enormously. To deal with this complexity,
embedded software is designed using model-based paradigms.
The process of modelling is a combination of formal and
creative, design steps. Because of the partially non-formal
character of modelling, the relation between a model and
the system cannot be expressed mathematically. Therefore, the
modeller’s justification that the model represents the system
adequately can only be non-formal. In this paper we discuss
the nature of non-formal modelling steps and pin-point those
that create a ’link’ between the model and the system. We
propose steps to structure the explanation and justification of
non-fomal modelling decisions. This in turn should enhance
confidence that the non-formal, physical world surrounding
the embedded system is adequately represented in the model.
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I. INTRODUCTION

With the increasing complexity of today’s computer-
controlled systems, the role of models in software engi-
neering in mastering this complexity is growing. A model
describes a system on an abstraction level higher than that
of a code, which in turn provides insight and facilitates
communication. Models may be constructed as part of auto-
mated code generation and system analysis, which increases
software design efficiency and lowers the number of errors.

Numerous modelling techniques and tools support differ-
ent steps of software design, testing and verification. In this
article, we focus on modelling of embedded systems, for the
purpose of formal verification, using model-checking. But,
rather than focusing on computational aspects, we will look
at modelling as a design activity.

No matter whether we model software only or the whole
system, the software environment has to be represented
in the model. Modelling software environment bridges the
physical world and the mathematical world, as illustrated in
Figure 1. In the physical world, there is a software embedded
in a system consisting of mechanical, electrical and other
parts. The goal of formal verification is to find out whether
the system satisfies the requirement of interest. Therefore the
model has to mimic all (and only) the system components
and aspects relevant to the requirement.

Angelika Mader
Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente
The Netherlands
Email: a.h.mader@utwente.nl

Roel Wieringa
Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente
The Netherlands
Email: rj.wieringa@utwente.nl

verification formal
model proof properties
mathematical
world
,,,,,,,,,,,,,,, modelling ] formalising
justification justification
physical
world
embedded system confidence desired
artefact behaviour
Figure 1. Relationships between the model and the system.

The model is a formal object and property checking,
transformation, and any other manipulation are mathematical
activities. However, model construction, a design activity in
its nature, is a combination of formal and non-formal steps.
Choosing a particular solution pattern for the modelling
problem or deciding on criteria to decompose a system are
examples of non-formal design decisions. They are inter-
twined with mathematical transformations and operations.

The (partially) non-formal nature of model construction
steps prevents formal expression of the model-system rela-
tionship. Consequently, to justify the model’s adequacy, or
to just explain the model to the stakeholders, the modeller
has to justify the modelling decisions non-formally, relating
parts of the system with parts of the model.

Non-formal modelling decisions are mostly not docu-
mented and they also often stay implicit. This state of
affairs should be improved for several reasons. One is to
improve the justification of the claim “’the model has been
proven to have property P, so the modelled system also has
property P”. Another is to to improve our capability to teach
modelling to others (to students or to other engineers).

In this article we propose a taxonomy of non-formal
modelling decisions as a first step towards understanding
these decisions. Knowing what these decisions are, could at
the same time prescribe what decisions the modeller has to
address when explaining or justifying the model to others.

We focus on the explanation of an already existing model.



The model is designed through a discovery process, which
is not a straightforward course of actions, but a rather curvy
path of exploration of possible solutions, with many dead-
ends. In contrast, justification or explanation describes model
construction as a structured, straightforward, monotonic
process [18]. To be able to understand the model, it is
not necessary to go through all the discovery steps in a
chronological order; it is sufficient to outline some of the
construction steps that demonstrate which components of
the model represent which components of the system and
give the rationale of a chosen solution. In this article we
propose a structure of such an explanation.

We view modelling as a design activity and as an engi-
neering activity. As a design activity, modelling is a problem-
solving activity. As an engineering activity, modelling de-
ploys steps that are also used in science when representing
physical phenomena with a model or a theory.

The characterisation we present combines elements ad-
dressed by design science and philosophy of science (refer-
ences will be given later). A body of work in these two
areas refers to sciences other than computer science and
engineering disciplines other than software engineering. We
compare and relate the concepts we found in the literature
with the steps used in software-intensive systems modelling.
This paper is continuation of our previous work [15] in
which two of the authors co-authored a paper on modelling
decisions. There, modelling decisions are classified in form
of questions that the modeller has to answer when construct-
ing a model. In this paper we relate some of those steps with
what is now known about modelling and abstraction in other
branches of science and engineering. We also distinguish
between the "low-level’ steps that result in concrete elements
of the model and ’high-level steps’ that influence the model
as a solution, but are not ’tangible’ in form of concrete model
elements.

The rest of the paper is organised as follows. Section II
looks at the problems characteristic to embedded systems
modelling. These problems are related to the fact that the
modeller has to represent part of the software environment
in the software model. Section III pin-points low level mod-
elling steps - those that result in concrete model components
and Section IV adresses high-level modelling steps - those
that explain why certain modelling decisions are made. In
Section V we will discuss how our analysis can be useful
for explanation and justification of modelling decisions.

II. WHY IS MODELLING DIFFICULT?

The challenges of embedded software modelling emerge
from (1) the necessity to describe physical world when
designing or verifying software, without knowing in advance
what parts exactly have to be described, (2) heterogeneity
of the physical environment designed by other domain
experts, and (3) lack of proof that the model represents
the software and the physical world adequately. The latter

is inherent for all modelling pursuits, not just embedded
software modelling.

A. The Physical Aspect

Embedded software controls the rest of the system (a plant
as we call it) that consists of mechanical, electrical, and other
parts, like for example chemical components. Most of the
software modelling efforts focus on modelling the software
only. But, no matter whether we design only a software
specification or we describe both the software and the plant
together, the plant has to be represented in the model.

The necessity to describe the physical plant is not sur-
prising, knowing that software is a solution to a problem
which, generally speaking, can be formulated as a need to
change something in the plant, which surrounds the soft-
ware [10]. Even though responsible for the plant behaviour,
the software can directly access only actuators and sensors.
To be able to ’calculate’, or ’reason’ about the plant parts
connected directly or indirectly to the actuators and sensors,
there has to be in internal representation of the plant within
the software [12]. It relates signals observed on the sensors
with other monitored values in the plant, and values sent to
the actuators with the behaviour of the plant components.

Some models represent the plant separately from the
software, for the system requirements verification. The plant
model has to show the connection between the requirements
on the software interface (actuators and sensors) and the
overall system requirements that refer to the plant behaviour.

One of the problems in representing the plant is that the
modeller has to extract what information, what knowledge
about the plant is relevant as the plant representation. There
is no automated process that selects the causally related
events and phenomena that relate the software behaviour
and the plant behaviour. Instead, it is left to the insight and
experience of the modeller to identify the relevant elements.
This is error-prone and difficult to learn.

B. Heterogeneity of Modelled Domains

Another problem is transforming the relevant knowledge
into a suitable form. Software belongs to a discrete domain,
thus its descriptions (models) are suited to be described
with discrete models, such as automata, discrete message
passing, or state machines, to name just a few. On the
other hand, most of the plant processes are continuous. They
are designed by different engineering disciplines that focus
on mechanical, electrical and other non-software aspects.
To address, design, validate, reason about these aspects,
different mathematical frameworks, laws and theories are
much more suitable than those used for the software models.

For example, the rollers that move paper sheets in an
inserter (a machine that automatically folds papers and puts
them in envelopes) are designed by mechanical engineers.
In the domain of mechanical engineering, these rollers are
represented with differential equations containing their size,



rotational and tangent speed, and their stiffness. Mechanical
engineers calculate the rollers’ stiffness and the pressure they
apply to the paper so that the paper moves along without
slipping. The software modeller then has to decide which of
these details are relevant to be represented in the model — is
it the rollers speed in relation to the motor’s current? is it the
rollers spatial distribution? and so on. There are no obvious
answers to these questions. Moreover, this knowledge has to
be described with a discrete software model.

The problem exists even when the processes are discrete
or discretised by domain experts, for example by control
engineers. Modern control theory is based on discrete math-
ematics that takes into account aspects of signals that are not
relevant to the software (such as stability and observability).
The signals are represented in a mathematical framework
suitable to treat these aspects. Consequently, this framework
resides in orthogonally different mathematical domains than
that of the software [11]. Besides, some plant descriptions
are not mathematical — there are diagrams, blue-prints,
natural language descriptions of the plant which parts the
modeller also has to incorporate into the model.

C. "All models are wrong, but some models are useful.”

Modelling an embedded system has to bridge between the
physical world and the mathematical world, as illustrated
in Figure 1. In formal verification, the goal is to find
out whether the system satisfies the requirement we are
interested in. Therefore the model has to mimic all the
system components and aspects relevant to the requirement
of interest. The requirement is encoded into an expression
about a model property. In other modelling techniques, the
property is not necessarily checked automatically, so we do
not have a formal proof for any statement about the model.

In all these cases, we do not have a formal proof that
the model is adequate. A model is a representation of a
system, an abstraction that mimics a set of system aspects,
processes and parts. A model simulates, imitates an aspect
of interest and, as Simon [20] explained, we can look at one
level of abstraction and learn about the system by analysing
the model, while not knowing much about other levels and
representing them with rough approximations.

As the quote [3] in the title of this subsection suggests,
all models are wrong, but this does not matter, as long as
the conclusion we draw about the system, by analysing the
model is correct. The problem here is - how do we show
that the model is adequate, that, even though it is wrong,
represents all the relevant system aspects. How do we know
that the modeller did not miss something important or over-
approximated some of the phenomena of the system?

The answer is that we do not and canot have a formal
proof for the model’s adequacy. One approach is to test the
model and show that its behaviour matches the system be-
haviour. This is not a formal proof of the model’s adequacy,
but it raises confidence in it. Another approach is to make

an informal or semi-formal argument that demonstrates
the model’s adequacy. Surely the significant part of this
argument is the rationale of modelling decisions and steps.
In the absence of a formal proof, showing how the model is
constructed is relevant in the model’s adequacy argument.

III. TAXONOMY OF MODELLING STEPS

In this section we relate embedded system modelling steps
to modelling steps performed in other engineering disci-
plines and natural sciences. The steps we will discuss are:
abstraction, idealization, approximation, decomposition and
localization, establishing analogies, and establishing causal
relationships. Philosophers of science discuss these activities
as they are undertaken in science and classical engineering
disciplines. Their analysis is part of their search for answers
to philosophical questions, such as: ”Are scientific theories
telling the truth?” and “What does it mean for a model to
represent a part of the world?”.

Even though our goals are not philosophical, we can use
the answers found by philosophers to answer our more
pragmatic question - how do we know that the model
represents the system adequately? The activities identified
by philosophers are the very same activities that, when
explained on a concrete model, uncover how the model
was constructed. These steps are the closest we can get
to finding the system-model relationship, given the lack of
some formal, mathematical relation.

We will use literature that explored mostly physics and
fluid mechanics, focusing on comparison between the mod-
elling activities in science and engineering. To the best of
our knowledge, a compaarable analysis has not been done
for embedded systems modelling.

One may ask: Why do we need to analyse these steps
exclusively for software engineering? Why don’t we just
take over the analysis already performed for other disci-
plines? Our answer is that other engineering disciplines
often use directly the models and theories from science
and, if necessary, adapt them [2]. In embedded software
engineering, as we explained in the previous section, we
cannot directly use control laws, statical equations and other
models as parts of software discrete models. Instead, we
have to non-formally interpret and combine parts of different
models into software engineering models.

Another difference between modelling in other branches
of science and engineering and modelling embedded systems
is that in science in general, the model is a stepping stone
from the observable world to a theory. Science strives for
generality and theories apply not only to a single system
but to some phenomena in general. Some models in science
are idealized in order to explain an isolated mechanism in
nature, but they do not necessarily provide accurate numer-
ical results. A theory that explains a mechanism holds for
an idealized model, but when applied to a real phenomena,
it may turn not to be completely accurate. [4]



In embedded system modelling, by contrast, we are not
interested in generality, our model has to represent only
the system under development. The results we get from
verification models are not numbers, they are ’yes’ or 'no’
answers to questions about the system properties. We cannot
afford a wrong answer there, the model has to be adequate,
accurate “enough’ to give us the correct answer.

A. Abstractions

Abstraction is leaving out, omitting describing some of the
system components, properties, processess, aspects. Under-
neath every abstraction lies, often implicit, reasoning why
omitting certain information about the system still results
in a model that adequately represents the system. Take for
example, a verification model of the software embedded in
the inserter we mentioned in Sect. II. The software controls
transport of papers and envelopes from their designated
feeders through the machine modules, to the exit. The
software also controls movement of numerous mechanical
parts that fold a paper, open an envelope, and insert the
folded paper into the envelope. But, in the inserting module,
the moisturising of the envelope flap with a stroke of a
brush is controlled mechanically. The moisturising takes
place simulataneously with other software controlled actions
without interfering with them in any way. Therefore, the flap
moisturizing is invisible for the software, and consequently
irrelevant for the software model.

Philosophy of science literature lists the reasons why
abstractions are performed. One is the relevance, and the
example we gave falls into this category. The property
under investigation, the purpose of the model, the desired
preciseness of calculation or predictive accuracy do allow to
ignore many parameters [5] . Another reason is pragmatic,
as the number of potentially relevant factors for the property
we are interested in, is extremely high, which would make
constructing a model impractical [5].

In modelling for verification, we start dealing with this
complexity in the early phase of the model design, while
defininig the modelling problem. The modelling problem
is decomposed into sub-problems by decomposing the re-
quirement of interest into sub-requirements for which we
can design models without having a state explosion or other
problems related to computational complexity. If, for exam-
ple, the requirement is a safe control of a car, the requirement
will be decomposed into the following requirements: "When
the car is on ice, if the driver hits the brake, it will be
overruled by the control”, "The cruise control gives the
control to the driver as soon as he presses the brake or
gas pedal”, ”Air-bag is blown if collision is detected”. By
decomposing the safety requirement into sub-requirements
the models are less complex and easier managable.

There are no firmly established criteria on what should
the ’filter of abstraction’ capture and what simply does not
count [22]. An analysis [22] of criteria for abstracting away

aspects, parts, phenomena of the modelled target, found the
following criteria in the contemporary literature: relevance
vs. irrelevance, simplicity vs. complexity, manageability vs.
unmanageability, tractability vs. intractability, and the author
adds his own, related to the cognitive value of the model,
information vs. noise. The same analysis also categorizes the
abstractions done in science to those that (1) omit relevant
factors for the sake of getting to partial truths that are in
some way useful [4]; (2) the abstractions that omit only
irrelevant factors, so even if they were incorporated in the
model, they would not change the modelling result; (3) the
abstractions made for the sake of simplicity, aimed at reach-
ing high cognitive value, rather than providing calculation or
prediction. The latter criterion is implicitly present in best
practices of modelling in software engineering, where for
example layout of diagrams has to be ’clean’ and readable.

In embedded system formal verification, we want the
models that give truthful predictions, confirmations and dis-
putes. Does that mean that we cannot afford the abstractions
that, when put into the model, would change verification
result? By decomposing the problem into computationally
tractable and managable problems, we eliminate partially the
problem of having to abstract away for pragmatic reasons.
However, there are many modelling assumptions that are
not part of the model. These assumptions are critical for
the model’s adequacy because, if they are not fulfilled, the
verification result may not hold. For example, we can say our
model describes the system that operates on temperatures
between -10 and +50C, but nowhere in our model we
represent temperature values.

In many cases, abstractions are made for the goal of hiding
information [6], likr for example when using encapsulation.
But, modellers also completely omit certain aspects of the
system, like in the cases in which they abstract away the
plant description and prove only the requirements at the soft-
ware interface. They implicitly assume that the behaviour on
the software interface will result in the desired behaviour of
the whole system. The plant components are not irrelevant,
but they are (or should be) addressed separately from the
model.

When describing the plant, the modeller chooses what
aspects to desribe and what to leave out. The plant is
described by different domain experts, such as mechanical
and electrical engineers. For software verification only some
of the descriptions given by different experts is relevant.
For a mechanical engineer, the stiffness of a material and
other mechanical properties are relevant, the dimensions
play a role, and their statics. The modeller of the plant
for the purpose of software verification needs to know
the spatial distribution of some of the elements, how the
mechanical elements are connected, and how movement of
one influences the movement of the other components.



B. Idealizations

Unlike abstractions that omit the truth by not describing
parts of the system, idealizations introduce distortions or,
we can say, false assumptions. The modeller describes
certain system aspects as if they were different than they
are. “Idealizations change properties of objects, perfecting
them in certain ways, not all of which even approximate
to reality.” [22]. Point masses in calculating positions of
planets rotating around the sun is a paradigm example of
an idealization in physics. There is no such thing as a point
mass, but in the point-mass models of Newton’s and Kepler’s
theories they are assumed to exist, and they help understand
the movement of planets and calculate their positions.

In software modelling, we often idealize events as in-
stantaneous, like opening and closing a valve, for example.
Another example is representation of sensors as dimension-
less points in the system. Rollers that move papers along a
printer are made of soft rubber. On their contact with paper
they flatten temporarily which changes their round shape
and tangent speed with which paper is moved. However, for
some calculations they can be idealised to perfectly round-
shaped rollers without compromising the overal result.

Cartwright [4] recognizes two different types of ideal-
izations. One type are idealizations that describe the phe-
nomena in a way that can never be achieved in reality,
like for example point masses in physics. These are useful
to explain and understand the phenomena, but they never
give accurate predictions. The second type are idealizations
that can be approximated in reality. For example, if we
assume vacuum for the law that calculates pendulum angle
and velocity, we could have this in reality, by putting the
pendulum in a very low pressure room. The theories based
on these idealizations approximate the truth. The second
type of idealizations allows for de-idealization [17], which
is relaxing ideal conditions and bringing them closer and
closer to reality. In science, they are performed with the
goal to simplify theories and make them computationally
tractable [21]. Verification models are designed to provide
accurate result, without a ’second chance’ to de-idealize.

A special type of the truth distortion is assumption of a
worst-case scenario. The modeller assumes extreme condi-
tions, such as extreme temperatures or pressures. These are
at the same time the strongest mathematical conditions on
the model, and if the property holds under these conditions,
it will guaranteed holds in less strong conditions. Also, to
examine the property of interest, the modeller sometimes
has to invent elements that do not exist in the system, but
are necessary to observe what happens in the model.

C. Approximations

Approximation is assigning a numerical value that is not
the exact one, but within an acceptable error boundary.
If for example the prediction we want to make with the
model is of an order of minutes or hours, than we may

choose to round all the values that are below seconds. For
example, in model-checking language Uppaal'time passage
is represented with time units which have to be normalised
to the lowest common denominator of all the time values. If
all the processes take time in order of minutes, than one time
unit is interpreted as one minute. But if there is a process
that lasts order of seconds, all the times have to be converted
into seconds, and in the model described with time units
that represent seconds. This increases the state space, and
complexity of the model. So, it may be convenient, if the
property of interest allows, to approximate the duration of
that one single process to zero.

Laymon [14] defines a special kind of idealization, which
is a transformational approximation. It is a substitution
of a term or an expression in a mathematical expression
that represents a theory or a law, with another term or an
expression, under the assumption that the overall function
will stay stable. Transformational approximations do not
apply to discrete, state-based models we are focusing on.
But, there are other transformations that the modeller invents
to have a model that is simpler, smaller, easier to manage,
easier to comprehend. For example, the structure of the
model maybe a structure that is not present in the system,
but that shares the relevant properties with the system.

D. Abstractions and Idealizations Relationship

In many cases both idealizations and abstractions are
performed at the same time, or even more, they are closely
linked. We mentioned an example of dimensionless sensors
in the model, but it is difficult to say whether we just
abstracted away the dimension or idealize sensors in form
of points.

When explaining the model, we do not necessarily sep-
arate abstractions, idealizations and approximations from
each other. A modelling decision the modeller finds relevant
to address explicitly can be a mixture of these. Still, by
knowing the distinction between these decisions we have
three ways to justify a difference between the model and
the modelled system. In the case of an abstraction, we left
out the elements that do not influence the property we want
to prove (or we address them separately). In an idealization,
we added things to make computations in the model easier,
without compromising the results interpretation back in the
modelled system. In an approximation, we argue that the
model is a good-enough approximation of what is the case
in the real-world; it will produce a slightly wrong prediction
but that prediction is still good enough for our purposes, e.g.
within safety margins.

E. Finding Analogies

Analogies represent one phenomena with phenomena of a
different nature. In physics, a typical example of analogical
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model is a model of light based on an analogy to water
or sound wave. Analogies are based on similarities of dif-
ferent phenomena. An analogical model incorporated into a
computer-based system possesses phenomena and properties
which have no counterpart in the subject [13]. If we go back
again to the example of the inserter machine, modelling
exact layout of its feeders and rollers that move papers
might result in a model that is too complex. Instead, it
is possible to model a machine with a different, easier to
model layout of the feeders, as long as the properties of
interest described in the model remain unchanged. When
looking at the model only, without knowing the system
layout, one would assume the layout of the inserter whose
relevant behaviour is analogous to the inserter behaviour.

F. Decomposition (and localization)

Decomposition is a way to deal with complexity. Bech-
tel et al. [1] distinguish between decomposition — giving
structure to observed system or phenomena, and localization
— tracing what part is responsible for a certain function.
They define decomposition and localization as strategies
for discovering mechanisms for articulating structure of
the phenomena. We look at decomposition and localization
under the umbrella term of decomposition.

Decomposition, as we define it, consists of a top-down and
a bottom-up type of process. In the bottom-up process, the
modeller assigns the structure to the system by recognizing
parts that have the same characteristics. In the top-down
process the modeller isolates different components and dis-
covers what each one does. After performing a combination
of these two types of processes, the modeller is able to
show different structures and parts responsible for different
functions. Together with decomposition there is a formal or
non-formal, implicit or explicit argument of recomposition.

One might argue that man-made, engineered artefacts re-
veal their parts which makes their decomposition easier than
the decomposition of phenomena in the nature. However,
today’s computer-controlled systems are so complex, that
there are many possible structures that the modeller has
to explore. These systems do not have a single unique
decomposition. For verification and simulation models, the
modeller has to do the following decompositions.

o Decomposition of the modelling problem. The problem
is almost always expressed in vague terms, and even if
it is not, it may happen that the requirement has to be
decomposed into sub-requirements.

o Decomposition of the system. The system is built
by different engineers, it has different components,
functions, performs different processes; all these have
to be explored to understand the modelling problem.

o Decomposition of the model. Related to different struc-
tures of the system are different perspectives from
which we can view the system. They usually come from
different engineering disciplines.

o Level of abstraction with which software and the plant
are represented is about abstractions, but it can be
argued that how we establish hierarchies is decompo-
sition, too.

Decomposition of the model and decopmosition of the
system do not necessarily coincide. If they do, we have
isomorphism between the system and the model compo-
nents. If not, we argue implicitly or explicitly that the
two structures are equivalent regarding the property and
behaviour of interest. We may have a partial isomorphism if
only some of the model components are isomorphic to the
system copmonents; or, if there is an isomorphism on some
of the abstraction levels, but not on all of them.

The structure of the model depends often on the structure
of the system, but it also depends on the modelling method
chosen. If we chose an object-oriented method, we will
see’ the system as composition of objects, which will
be represented in the model, together with their internal
structure, functions they perform, etc.

G. Representing causal relationships.

Causal relationships show how the behaviour on the
software interface causes the plant as a whole to behave
as required. The software can interact directly only with
actuators and sensors, whereas the system requirement refers
to the plant parts that are usually on some distance from
the sensors and actuators. Therefore, the task of the mod-
eller, and of the software designer, is to establish causal
relationships between the system components that result in
the overall system behaviour. For example, the relationship
between warming up food in a microwave oven, and the
sensors and actuators of the embedded software in the oven
is: the motor rotates the plate holder, the magnetic element
emits the energy when the software sends the signal to the
switch, the sensor senses the temperature, and the timer
measures the time. Usually this reasoning is performed
informally and stays implicit. Seater et al. explored how
these relationships can be made explicit [19].

When we model the system as a whole, we do not
necessarily separate the software and the plant, so these
relationships are formally described with the model. When
describing software only, there is, within the software spec-
ification, a representation of (a part of) the plant and causal
relationships [12]. Variables or structures keep track of
sensors’ values and the order of events and based on this
data they determine the state of the components that are not
directly connected to the software.

While decompositions and components that are the result
of abstraction and idealization focus either on static picture
of the system, or if they describe dynamic aspects like
processes, they show then their static represantation in the
model. Causal relationships cannot be pinpointed in the
model, they are not documented as such, but can be shown
by analysing multiple model components model.



IV. MODELLING PROCESS

The steps we identified in the previous section are those
that the modeller performs after making the decision what
parts of the system to represent in the model. These steps
show how the selected elements are represented in the
model. But, these steps do not explain why a system element
is chosen to be represented in the model. In explanation of
the modelling decisions we have to have a wider picture
of the modelling problem. We will identify the rest of the
model explanation elements through analysis of modelling
as a design process.

Modelling is a conceptual design activity. In software
engineering, one of the commonly used paradigms to de-
scribe software design is that of problem analysis, solution
design and solution validation [8]. Different structures for
the software development process, such as the V-model,
the incremental model, iterative cycle models, all contain
these three aspects as phases of software design. Applied
on modelling, these three activities are: modelling problem
analysis, model design and validation or justification of the
model. In the rest of this section we will examine the
processes and steps within each of these three activities. We
will not suggest their chronological order, given that our goal
is neither to describe evolutionary nor incremental character
of the model design process. Also we will not investigate
relations between all the processes and steps.

A. Problem Analysis

Like most of the design problems in software engineering,
a modelling problem is almost always ill-structured. This is
the term used by Simon [20] to characterise problems that
are not well-defined. Translated to modelling, this means
that the modelling problem, the system and the system
requirement are often formulated in vague terms. It is
the task of the modeller to refine the problem definition.
Figure 2 shows our classification of the problems that that
the modeller has to solve while designing a model.> This
classification is based on the analysis of the case studies
we performed, and on the analysis of software engineering
processes in general [10].

1) Analysing the Modelling Problem: There is no single
“correct” model of a system that can describe the system for
different purposes. The model and the purpose for which the
model is designed are inseparable and together determine
how the model will be designed. A number of modelling
decisions, such as the choice of an abstraction, depend on
the purpose of the model. Therefore, an explicit statement of
the purpose is therefore a prerequisite for both, construction
and justification of a model.

In case of verification models, the purpose is determined
by the property to prove. For a simulation model, it has to

2The activities on this and other diagrams are numbered to correspond
the numbering of the sections discussing them.

iv A Problem analysis

iv A 1 Learning about the modeling problem

Identifying the purpose of the model

Identifying the constraints
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Learning how each component
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Learning the jargon of domain
experts
Understanding relationships
between components

—-[ iv A 3 Eliciting system requirements i

Figure 2. Activities that are part of problem analysis during model design.

be defined what are the phenomena that will be observed.
Identification of all these may not be known in detail
beforehand. Also, formalising a property or making precise
what is observed is part of the modelling process. Therefore,
the statement of the purpose of a model may be constructed
incrementally.

There can be a number of limitations posed by stake-
holders on the model itself. They can concern the choice
of modelling language, the decomposition of the model,
the resources available to build the model (in case of the
model is implemented with hardware elements) and many
others. This, too, influences the modelling decisions and
narrows down the solution space. An explanation of practical
constraints clarifies why certain modelling choices prevailed
over the other which are as good or which would lead to a
more simple, understandable or easier to manage model (or
whatever is the quality criteria of a stakeholder’s interest).



2) Understanding how the system works: To be able to
determine what to model, the modeller needs to understand
how the system works, what the system requirements are and
what the stakeholders want with the model. The modeller is
not necessarily someone from the organization that designs
the embedded system, therefore not someone who knows the
system. Very often, the modeller starts with the system and
the modelling problem as black boxes and unveils them grad-
ually, by learning about the system. To be able to understand
how the system works, the modeller has access to technical
documentation of the system, the system stakeholders, and
sometimes the system itself. In an industrial organization,
the stakeholders have their own jargon, so the modeller
also learns the ’language’ of domain experts, or languages,
acknowledging that different domain experts sometimes use
the same words for different meanings (and different words
for the same meaning).

In this process, the modeller learns about the existing
system decompositions. In practice, these decompositions
are often mixed, made according to different criteria. Even
though they are not "perfect’ they serve purposes of the or-
ganization. But the decomposition is not a tangible artefact,
it is a concept, and it is what people assign to complex
systems. Therefore, the modeller can also define her own
decompositions while learning about the system.

The modeller also focuses on individual components and
modules and learns how they work. Of course, it is not
possible to get into all the details, but it is necessary to
find out how these components contribute to the overall
system behaviour. The modeller also needs to establish how
different components interact among themselves. In relation
to this process, we identify two additional elements of the
model explanation. They are: explanation why a chosen
abstraction level is accurate enough and an explanation or
justification that the model structure is adequate. In the latter
case, it can happen that the structure of the model does
not coincide with any of the existing system structures. In
this case it might be necessary to justify that the model is
equivalent to the model that would have the same structure.

3) Eliciting system requirements: When modelling is
used for design, the modeller has the role of the software
specification designer as well. Inherent to software specifi-
cation is eliciting system requirements, and this is also done
incrementally.

B. Model Construction

We distinguish two main aspects of model construction
(see Fig. 3). One is the decision what aspects, parts, prop-
erties, phenomena etc. of the system will be represented in
the model. The other are the concrete modelling steps, and
the decisions that have as a direct result a part or a segment
or an element of the model constructed. These decisions are
about how the system will be modelled and we have already
talked about them in Sect III.

Model design .

-[iv B Deciding what is described with the model]

— Distilling relevant knowledge about the system |
—{ Deciding what goes in the model

Decomposing to subproblems (top-down)

Recognising subproblems (bottom-up)

-I iii Model construction '
iii A Abstraction

iii B Idealisation

—{ iii C Approximation

ii E Finding Analogies

—{ iii F Decomposition

iii G Representing causal relationships

Figure 3. Model construction steps and decisions.

We classify the decision on what to model as part of the
solution design, rather than the problem analysis because it
is up to an extent the modeller’s decision what will go in
the model.

The modeller will get enormous amount of information
about the system and about the modelling problem, and after
resolving possible contradictions, learning how the system
works and what the stakeholders really want with the model,
she will distil the parts that are relevant for the requirement
to analyse. It can happen though that some of the relevant
information about the system is not represented in the model,
but is left as a modelling assumption, a condition under
which the model is adequate.

There is a large number of assumptions that have to
hold in order to have the model that represents the system
adequately. They usually stay implicit, but as we showed
in our earlier work, a number of them can be extracted in
form of lists [16]. A list of assumptions can be part of an
explanation of when the model is adequate.

Another aspect of the solution invention is that the mod-
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Figure 4. Aspects of justification that a model is adequate.

eller does both top-down decomposition of the problems
and bottom-up recognition of previously solved problems.
Top-down and bottom-up thinking always come together in
design. Cognitive science showed that a designer recognizes
’templates’ - previously solved problems, and in case of
modelling the modeller will recognize previously solved
problems and will map them to her own ’pattern library’
that resides in her long-term memory [7].

Among the decisions that concern the model components
in an indirect way is the decomposition into the model sub-
components. There is always a mapping between the model
and the system architecture, but it is the modeller’s decision
what structure will be represented in the model. Assigning
hierarchies and decomposing is a top-down strategy to deal
with complexity.

C. Model Justification

Showing that a model is adequate can be done in a non-
formal or semi-formal argument. The argument will, among
possible other elements, contain the justification of the
modelling steps that we analysed as part of problem analysis
and model construction. So, the justification steps will be:
justification of the problem decomposition, justification of
an abstraction etc. Most often, justification is not structured,
but is an implicit part of the communication between the
modeller and the stakeholders.

Fig. 4 does not show the structure of the justification ar-
gument, but it emphasises the aspects of model justification.
We distinguish between the justification that the modeller
performs for herself and the justification that she possibly
performs for the stakeholders. Sometimes, the model has to

be explained to the stakeholders in order to convince them
that the model is adequate.

Testing the model is a way to validate the model and it
can be used as means to both convince the modeller herself
and the stakeholders.

Sometimes, the model is not adequate but it is considered
good enough for an initial analysis. The compromise is made
when the model is representative enough.

A justification argument can also have formal elements.
For example, if we are using model-checking we can use the
technique to validate the model itself, by inventing different
testing queries that will show whether the modeller designed
the model she intended to.

V. DISCUSSION AND FUTURE WORK

In this article we propose ingredients of an embedded
system model explanation. They are the explanation of
modelling decisions which results can be shown directly in
the model (these decisions we discussed in Sect. III) and they
are explanation of the decisions that are part of the modelling
process but cannot be pointed directly in the model.

A full understanding of the modeller’s reasoning while
modelling would require studies in cognitive science, which
we did not do. But, for the purpose of explanation of the
model, and to teach others modelling, the modeller has
to address concrete decisions, not the cognitive process
behind them. The goal of our analysis was to identify
what these decisions are, so that they can be used as a
checklist of important modelling aspects to mention in a
model justification, explanation or when teaching others how
to model. One can build and use this checklist even when
the cognitive processes are not quite understood.

The modelling steps and processes we discuss also do not
show incremental model growth. To show that the model is
adequate or to just explain the model to others, it is not
necessary to document the decisions in form of a diary, as
the modeller ran into the need of making these decisions;
only the justification of the decisions is needed.

Some of the steps are a combination of the individual
steps we identified. For example, sometimes it is not easy
or possible to separate a decomposition and an abstraction
step. Also, addressing all the modelling steps would not be
practical. We leave to the modeller which steps to explain,
once the model is designed.

Ideally, we would want to formalize all the modeling steps
and design a tool and a language that would design a model
on a press of a button. But, the difficulty with modeling
is that there are always non-formal steps that precede
automation and formalization. We can extend the degree
of automation by designing domain specific languages, and
patterns, but it is not possible to formalize the decision to
use a certain pattern, or a decision how to idealize some
phenomena in the system.



Some of the non-formal steps are made explicit by defin-
ing modelling as a structured process, or collecting best
practices in standards that prescribe how to make better
models. Our structure is a contribution in structuring the
part of the modeling process that evaluates the model’s
adequacy. Some authors, such as [9] formalize the process
itself, in order to explicitly document certain classes of
design decisions. We could map our own classification into
their problem-oriented classes of design decisions, which
would not formalize the decision itself, but would formalize
the classes of validation arguments. For the goal of this paper
this embedding would not add so much, but we plan it for
future work.

Finally, our last remark is - how do we know that we
covered all the relevant aspects of modelling? Designing
taxonomies or making classifications are the first steps in
understanding unknown or not fully understood phenomena.
It may happen that the model is missing some steps. Possibly
there are steps that we did not cover in our analysis, as non-
formal modelling aspect is a very broad area. Still, the steps
we did identify contribute to making modelling decisions
explicit which raises the confidence in the model’s adequacy.

For future work we plan to compare modelling decisions
made by control and software engineers. The design models
made by these two groups of experts are often made in
isolation, using different mathematical frameworks. We plan
to investigate what knowledge these experts need to share
so that from the early stages of design, decisions in both
domains can be optimised.
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