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Abstract—The particle filter is a powerful filtering technique
that is able to handle a broad scope of nonlinear problems.
However, it has also limitations: a standard particle filter is
unable to handle, for instance, systems that include static vari-
ables (parameters) to be estimated together with the dynamic
states. This limitation is due to the well-known “self-resolving”
phenomenon, which is caused by the gradual loss of information
that occurs during the resampling steps. In the context of online
Bayesian parameter estimation, some approaches to handle this
problem have proposed, such as adding artificial dynamics to
the parameter model. However, these approaches typically both
introduce new parameters (e.g. the intensity of artificial process
noise) and inherent biases to the estimation problem.

In this paper, we will give a give a look at two Sequential
Monte Carlo techniques that do not rely on biasing the system
model: the Autonomous Multiple Model particle filter and the
Rao-Blackwellized Marginal particle filter. These approaches are
not new, but have not been applied yet to the problem of online
Bayesian parameter estimation for non-structured models. We
will derive suitable adaptations of these methods for this problem
and evaluate them using simulations.

I. INTRODUCTION

In a Bayesian estimation problem, we refer to “self-

resolving” as a situation where uncertainties and ambiguities,

that exist in the exact posterior distribution, are for some

reason not reflected in the output of the estimation algorithm.

The phenomenon is known to affect Sequential Monte Carlo

(SMC) methods, also known as particle filters, for certain

classes of problems, and it is commonly referred as “degen-

eracy” in particle filter literature.

Vermaak, Doucet and Pérez [1] have observed that a particle

filter applied to a multi-modal distribution does not consis-

tently maintain this multi-modality. Other problems that have

been identified to suffer from degeneracy include classification

[2], smoothing [3], track labelling [4], and our problem of

interest, parameter estimation [5].

For that reason, most proposed methods for parameter

estimation based on particle filters are offline and/or non-

Bayesian; an excellent survey about these methods has been

made by Kantas et al. [5]. A few approaches to online

Bayesian parameter estimation, described in the same sur-

vey, have been proposed. These include introducing artificial

dynamics to the parameter [6] and filtering using a fixed-

lag approximation [7]. However, since these methods operate

by biasing the system model, one may question whether

these methods can produce accurate representations of the

true posterior distribution of the parameters. This may be

extremely relevant if we are interested not only in obtaining

point estimates for the parameters, but also other statistical

information, such as the standard deviation.

In this paper, we will present two SMC approaches for

online Bayesian parameter estimation, that do not rely on

biasing the system model. One is the Autonomous Multiple

Model particle filter (AMMPF), a static version of the In-

teracting Multiple Model particle filter (IMMPF), which has

been proposed by Blom and Bloem [2] for the classification

problem. Another is the Rao-Blackwellized marginal particle

filter (RBMPF), which has been proposed by Lindsten, Schön

and Svensson [8] for parameter estimation and smoothing for

a certain class of structured system models. We will derive an

extension of the algorithm for general non-structured models

containing both dynamic states and parameters.

This work is organized as follows. Section II is a review

of the “self-resolving” phenomenon in particle filters and its

effect on parameter estimation. Sections III and IV present

respectively the AMMPF and RBMPF SMC approaches. Sec-

tion V presents simulations where we compare both methods

with the artificial dynamics approach. Section VI draws con-

clusions.

II. THE SELF-RESOLVING PHENOMENON IN THE CONTEXT

OF PARAMETER ESTIMATION

Let us consider a standard, Sequential Importance Resam-

pling (SIR) particle filter that estimates a stochastic process Xk

using NP particles. Each particle, say with index i, represents

an hypothesis x0(i), . . . , xk(i) on the trajectory of the state (in

this work, as usual, we use uppercase letters to represent ran-

dom variables, and lowercase letters to represent realizations of

these random variables). Periodic resampling, which consists

of eliminating hypotheses and replicating others, causes all

particles to eventually assume a common past trajectory, i.e.

all hypotheses to have the form

x0, . . . , xjsr
, xjsr+1

(i), . . . , xk(i) (1)

for some 0 ≤ jsr ≤ k. Effectively, the particle set, instead of

approximating the true posterior p(x0, . . . , xk|Zk) (where Zk

denotes all observations up to and including time k), becomes
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biased towards

p(xjsr+1, . . . , xk|x0, . . . , xjsr
, Zk). (2)

In filtering, we are interested in the expectation of some

function g(xk) of the current state, conditioned on the avail-

able information Zk; we denote this conditional expectation

as EZk [g(Xk)] =
∫

g(xk)p(xk|Z
k)dxk. If we have the

“forgetness condition”

EZk [g(Xk)] ≈

∫

g(xk)p(xk|x0, . . . , xjsr
, Zk)dxk (3)

i.e. the condition that the filtering process gradually “forgets”

old trajectories, then the bias does not have significant impact1.

Unfortunately, it is obvious that this is not the case in the

parameter estimation problem. Let us suppose that the state

Xk has form Xk = [S′

k,Θ
′]′, where Sk denotes the dynamic

part of the state, Θ corresponds to one or more parameters,

and ′ denotes the transpose operator. Let θ∗ be the value of Θ
assumed in the past trajectory x0, . . . , xjsr

. It is straightforward

to see that if we attempt to compute the mean value of Θ using

the biased density (2), we will obtain θ̂ = θ∗. Besides, if we

attempt to calculate the variance of Θ using the same biased

density, we will obtain

σ2
θ =

∫

(θ − θ∗)
2
p(xk|x0, . . . , xjsr

, Zk)dxk

=

∫

(θ − θ∗)
2
p(θ|x0, . . . , xjsr

, Zk)dθ

=

∫

(θ − θ∗)
2
δ(θ − θ∗)dθ

= 0. (4)

It is important to remark that self-resolving cannot be

avoided by using standard particle filtering tuning techniques,

i.e. increasing the number of particles or using a better

importance sampling function. At best, these techniques can

postpone self-resolving (i.e. decrease jsr) which may make the

point estimation error close to optimal but will unavoidably

result in the variance of the estimated parameters to be

eventually assumed to be zero.

III. THE AUTONOMOUS MULTIPLE MODEL PARTICLE

FILTER

The Autonomous Multiple Model particle filter (AMMPF)

that we are going to present consists of multiple particle filters

running in parallel, each assuming a particular hypothesis on

the value of the parameter vector. Since the true value of the

parameter vector does not change with time, the AMMPF can

be considered, as we mentioned earlier, a “static” version of

the IMMPF presented in [2].

Assuming again that the state Xk has form Xk = [S′

k,Θ
′]′,

where Sk and Θ denote respectively the dynamic and static

1The “forgetness condition” that we present here is merely intended to give
intuition to the problem. Rigorously speaking, to avoid degeneracy, the system
must be “mixing” in a certain sense; a condition to classify a system as such
appears in [9], but as mentioned in the same work, this condition may be too
restrictive.

parts of the state, the algorithm requires all components of the

parameter vector Θ to be discrete. However, if the cardinality

of Θ is sufficiently small, we may perform discretization of

the parameter space as an approximation.

In order to explain the filter, let us first consider a standard,

“plain vanilla” particle filter. Let p(x0, . . . , xk|Zk) be the

trajectory probability density, where Zk is the collection of

measurements up to and including time k. The density is

approximated by a set of particles {uk(i), wk(i)}
NP

i=1 (where

uk(i) = (x0(i), . . . , xk(i)), wk(i) is the particle weight, and

NP is the number of particles). The expectation of a function

g(xk) conditioned on Zk, in the standard PF, is approximated

according to

EZk [g(Xk)] =

∫

g(xk)p(x0, . . . , xk|Z
k)dx0 . . . dxk

≈
NP
∑

i=1

wk(i)g(xk(i)). (5)

Let us now assume that Θ assumes value in some set Ω. In

the AMMPF, we use |Ω| particle filters (where | · | denotes the

cardinality operator), with each particle filter approximating

a conditional density p(s0, . . . , sk|θ, Z
k) for some θ ∈ |Ω|.

Hence, the corresponding set of particles is {uθ
k(i), w

θ
k(i)}

NP

i=1,

where uθ
k(i) =

(

sθ0(i), . . . , s
θ
k(i)

)

. The marginal probability

p(θ|Zk) is thereafter (approximately) calculated. Finally, the

conditional expectation EZk [g(Xk)] is calculated using:

EZk [g(Xk)]

=
∑

θ∈Ω

∫

g(sk, θ)p(s0, . . . , sk, θ|Z
k)ds0 . . . dsk

=
∑

θ∈Ω

p(θ|Zk)

∫

g(sk, θ)p(s0, . . . , sk|θ, Z
k)ds0 . . . dsk

≈
∑

θ∈Ω

p(θ|Zk)

NP
∑

i=1

wθ
k(i)g(s

θ
k(i), θ). (6)

A. Derivation of the AMMPF

Let us assume, as usual, that the system formed by the se-

quence of states and observations, {(Xk, Zk)}, corresponds to

a partially observed Markov-1 process (i.e. p(zk|xk, Z
k−1) =

p(zk|xk) and p(xk|xk−1, Z
k−1) = p(xk|xk−1)). In this

case, it is also easy to see that p(sk|sk−1, θ, Z
k−1) =

p(sk|sk−1, θ), and the particle filter algorithm to approximate

p(s0, . . . , sk|θ, Zk) can be derived straightforwardly. Note that

the importance sampling function for the particle filters will

have form q(sk|sk−1, θ, z
k).

In order to calculate the marginal probability p(θ|Zk),
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observe that

p(θ|Zk)

=

∫

p(θ, sk|Z
k)dsk

=
1

p(zk|Zk−1)

∫

p(zk|θ, sk)p(θ, sk|Z
k−1)dsk

=
p(θ|Zk−1)

p(zk|Zk−1)

∫

p(zk|θ, sk)p(sk|θ, Z
k−1)dsk

=
p(θ|Zk−1)

p(zk|Zk−1)

∫

. . .

∫

p(zk|θ, sk)

× p(sk|s0, . . . , sk−1, θ, Z
k−1)

× p(s0, . . . , sk−1|θ, Z
k−1)ds0 . . . dsk

=
p(θ|Zk−1)

p(zk|Zk−1)

∫

. . .

∫

p(zk|θ, sk)p(sk|sk−1, θ)

q(sk|sk−1, θ, zk)

× p(s0, . . . , sk−1|θ, Z
k−1)q(sk|sk−1, θ, z

k)ds0 . . . dsk.
(7)

Observe now that p(s0, . . . , sk−1|θ, Z
k−1) is represented by

the set of particles {uθ
k−1(i), w

θ
k−1(i)}

NP

i=1, with uθ
k−1(i) =

(

sθ0(i), . . . , s
θ
k−1(i)

)

, and that

sθk(i) ∼ q(sk|s
θ
k−1(i), θ, z

k), i = 1, . . . , NP (8)

such that we can approximate (7) as

p(θ|Zk) =
p(θ|Zk−1)

p(zk|Zk−1)

NP
∑

i=1

wθ
k−1(i)

×
p(zk|θ, s

θ
k(i))p(s

θ
k(i)|s

θ
k−1(i), θ)

q(sθk(i)|s
θ
k−1

(i), θ, zk)

=
p(θ|Zk−1)

p(zk|Zk−1)

NP
∑

i=1

wθ
k−1(i)w

θ
k(i) (9)

where wθ
k(i) corresponds to the unnormalized weight at-

tributed to particle i at time k. Since p(zk|Z
k−1) does not

depend on θ, it does not need to be explicitly calculated. It can

be taken into account by normalizing the marginal probabilities

accross Ω.

B. Algorithm

Initialization: For each θ ∈ Ω
1) Set p(θ|Z0) ≡ p(θ)
2) For each particle i = 1, . . . , NP

a) Sample sθ0(i) ∼ p(s0|θ)
b) Make wθ

0(i) =
1

NP

At every time step k = 1, 2, . . .:
1) For each θ ∈ Ω

a) For each particle i = 1, . . . , NP

i) Sample

s
θ
k(i) ∼ q(sk|s

θ
k−1(i), θ, zk) (10)

where q(sk|sk−1, θ, z
k) is an importance sampling

function
ii) Calculate the unnormalized weight according to

w
θ
k(i) =

p(zk|s
θ
k(i), θ)p(s

θ
k(i)|s

θ
k−1(i), θ)

q(sθk(i)|s
θ
k−1

(i), θ, zk)
(11)

b) Compute the unnormalized marginal probability of θ
according to

p(θ|Zk) = p(θ|Zk−1)

NP∑

i=1

w
θ
k−1(i)w

θ
k(i) (12)

c) Normalize the particle weights according to

w
θ
k(i) =

wθ
k(i)∑NP

j=1
wθ

k(j)
(13)

2) Normalize the marginal parameter probabilities according to

p(θ|Zk) =
p(θ|Zk)∑

θ∗∈Ω
p(θ∗|Zk)

(14)

C. Rationale and computational aspects

The rationale for using the AMMPF approach against the

self-resolving phenomenon is simple. We know that calcu-

lating p(x0, . . . , xk|Z
k) using a particle filter leads to self-

resolving, due to the presence of static components in Xk.

We deal with this problem by “splitting” the posterior into

the conditional density p(s0, . . . , sk|θ, Z
k) and the marginal

probability p(θ|Zk), and apply the particle approximation only

to p(sk|θ, Z
k).

The marginal p(θ|Zk) is calculated “exactly”, on basis, of

course, of the other approximations, i.e. the particle approxi-

mation of p(s0, . . . , sk|θ, Z
k) and the possible discretization

of Θ. The success of this approach, naturally, depends on

the mixing properties of the Bayesian recursion to obtain

p(s0, . . . , sk|θ, Z
k). If the particle approximation of this con-

ditional density avoids self-resolving, i.e. satisfies the “for-

getness condition” (3), the AMMPF should be an effective

strategy.

Since the AMMPF consists of |Ω| particle filters running in

parallel, its computational complexity is O(|Ω|NP ), assuming

that the individual particle filters use the systematic resampling

scheme (and hence have complexity O(NP )), and considering

the dimensions of Zk and Xk as constants.

IV. THE RAO-BLACKWELLIZED MARGINAL PARTICLE

FILTER

The Rao-Blackwellized marginal particle filter (RBMPF) is

a variant of the particle filter algorithm, designed to counter

the self-resolving phenomenon. It has previously been applied

[8] to the parameter estimation problem for a certain class of

structured models. The algorithm consists of a combination of

two well-known Sequential Monte Carlo (SMC) techniques:

the Rao-Blackwellized particle filter (RBPF) [10] and the

marginal particle filter2 (MPF) [11].

Let us consider again that the state Xk has the form Xk =
[S′

k,Θ
′]′, with Θ corresponding to the parameter vector, and

that {(Xk, Zk)} is a partially observed Markov-1 process. In

the RBMPF, the marginal density p(sk|Zk) is approximated

using the set of particles {sk(i), wk(i)}
NP

i=1. The conditional

2To not be confused with the marginalized particle filter, which is another
name for the Rao-Blackwellized particle filter. The marginal particle filter
has this name because instead of considering the full trajectory density
p(x0, . . . , xk|Z

k), it considers only the marginal density p(xk|Z
k).
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density p(θ|sk(i), Zk) is computed analytically, leading to the

following approximation for EZk [g(Xk)]:

EZk [g(Xk)] =

∫ ∫

g(sk, θk)p(θ, sk|Z
k)dθdsk

=

∫ ∫

g(sk, θ)p(θ|sk, Z
k)p(sk|Z

k)dθdsk

≈
NP
∑

i=1

wk(i)

∫

g(sk(i), θ)p(θ|sk(i), Z
k)dθ.

(15)

Naturally, this approximation is only useful if the integral in

(15) can be solved. This condition typically does not hold. In

fact, it does not hold even for models where a RBPF (i.e. “non-

marginal”’) could be applied, i.e. models where the estimation

of Θ is a linear-Gaussian problem conditioned on a trajectory

s0, . . . , sk. For this case, an extra approximation, proposed in

[8], is required for the RBMPF.

We would like, however, to apply the RBMPF to general

models containing both dynamic states and parameters, with-

out requiring them to have a partial linear-Gaussian structure.

One situation where a closed form expression for (15) actually

exists is when all parameters are discrete; if that is not case, we

may perform discretization of the parameter space, in the same

way that we have proposed in Section III for the AMMPF. In

this case, we may replace the integral in (15) by a sum, and as

we are going to show, it is always possible to approximately

compute the conditional probability mass p(θ|sk(i), Z
k). With

Θ assuming values in Ω, the expectation (15) is calculated

using

EZk [g(Xk)] ≈
NP
∑

i=1

wk(i)
∑

θ∈Ω

g(sk(i), θ)p(θ|sk(i), Z
k) (16)

and the set of particles produced by the algorithm at each time

step k consists of

{

sk(i), wk(i),
{

p(θ|sk(i), Z
k)
}

θ∈Ω

}NP

i=1
. (17)

We will show now how to iteratively obtain (17).

A. Derivation of the MPF for p(sk|Z
k)

Since the set of particle states and weights

{sk(i), wk(i)}
NP

i=1
has to represent p(sk|Z

k) instead of

p(s0, . . . , sk|Z
k), we need to use a marginal particle filter.

We cannot, however, use the MPF exactly as described

by Klaas, Freitas and Doucet [11], because the sequence

{(Sk, Zk)} is not necessarily partially observed Markov-1

(although {(Xk, Zk)} is assumed to be). Let us then derive a

version of the MPF adapted to our case. Observe first that

p(sk|Z
k) =

∑

θ∈Ω

p(sk, θ|Z
k)

=
∑

θ∈Ω

p(zk|sk, θ)p(sk, θ|Z
k−1)

p(zk|Zk−1)
(18)

where we can see that

p(sk, θ|Z
k−1)

=
∑

θ∗∈Ω

∫

p(sk, θ|sk−1, θ
∗)p(sk−1, θ

∗|Zk−1)dsk−1

=

∫

p(sk|sk−1, θ)p(sk−1, θ|Z
k−1)dsk−1 (19)

and therefore

p(sk|Z
k)

=
∑

θ∈Ω

p(zk|sk, θ)

p(zk|Zk−1)

∫

p(sk|sk−1, θ)p(sk−1, θ|Z
k−1)dsk−1

=

∑

θ∈Ω

∫

p(zk|sk, θ)p(sk|sk−1, θ)p(sk−1, θ|Z
k−1)dsk−1

p(zk|Zk−1)

=
EZk−1 [p(zk|sk,Θ)p(sk|Xk−1)]

p(zk|Zk−1)
. (20)

Observe now that a conditional expectation of the form

EZk [g(Sk)] is given by

EZk [g(Sk)]

=

∫

g(sk)p(sk|Z
k)dsk

=

∫

g(sk)
EZk−1 [p(zk|sk,Θ)p(sk|Xk−1)]

p(zk|Zk−1)
dsk

=

∫

g(sk)
EZk−1 [p(zk|sk,Θ)p(sk|Xk−1)] q(sk|zk)

p(zk|Zk−1)q(sk|zk)
dsk

(21)

where q(sk|zk) is an appropriate importance sampling func-

tion. If we generate NP independent, identically distributed

particle states sk(i) by sampling from q(sk|zk), then using

the law of large numbers, we may approximate EZk [g(Sk)]
using

EZk [g(Sk)] ≈
NP
∑

i=1

g(sk(i))wk(i) (22)

where the particle weights are given by

wk(i) =
EZk−1 [p(zk|sk(i),Θ)p(sk(i)|Xk−1)]

NP p(zk|Zk−1)q(sk(i)|zk)
. (23)

To calculate (23), we can approximate the numerator of (23)

using (16), i.e. we use the set of particles (17) produced at the

previous iteration k − 1:

EZk−1 [p(zk|sk(i),Θ)p(sk(i)|Xk−1)]

≈
NP
∑

j=1

wk−1(j)
∑

θ∈Ω

p(zk|sk(i), θ)p(sk(i)|sk−1(j), θ)

× p(θ|sk−1(j), Z
k−1)

=
∑

θ∈Ω

p(zk|sk(i), θ)
NP
∑

j=1

wk−1(j)p(sk(i)|sk−1(j), θ)

× p(θ|sk−1(j), Z
k−1). (24)

Unlike the standard particle filter, the MPF does not contain

a resampling step. There are also two special cases of interest:
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1) Special case: if p(zk|sk, θ) = p(zk|sk): In this case, the

following relationship (for the particle weights) holds:

wk(i) ∝
p(zk|sk(i))EZk−1 [p(sk(i)|Xk−1)]

q(sk(i)|zk)
(25)

where EZk−1 [p(sk(i)|Xk−1)] can be approximated using the

set of particles (17) produced at the previous iteration k − 1.

Note that if we choose EZk−1 [p(sk|Xk−1)] as the importance

sampling function q(sk|zk), we will have

wk(i) ∝ p(zk|sk(i)) (26)

and hence, EZk−1 [p(sk|Xk−1)] corresponds to the “standard”

importance sampling function of the MPF (i.e. analogous to

the importance sampling function p(xk|xk−1) for the standard

PF).

2) Special case: if p(zk|sk, θ) = p(zk|sk) and

p(sk|xk−1) = p(sk|sk−1): This case corresponds to the

original MPF as presented in [11]. One practical problem

with this characteristic is the problem of track labelling for

a multi-target scenario with no target births or deaths (see

[12]). In this case, we have

wk(i) ∝
p(zk|sk(i))EZk−1 [p(sk(i)|Sk−1)]

q(sk(i)|zk)
(27)

where

EZk−1 [p(sk(i)|Sk−1)] ≈
NP
∑

j=1

wk−1(j)p(sk(i)|sk−1(j))).

(28)

which does not require a summation over all θ ∈ Ω, and thus

has lower computational cost. Note that (28) also corresponds

to the “standard” importance sampling function for this special

case.

B. Calculation of conditional probabilities p(θ|sk, Zk)

Observe that the conditional probability p(θ|sk(i), Z
k) is

given by

p(θ|sk(i), Z
k) =

p(zk|θ, sk(i))p(θ, sk(i)|Z
k−1)

p(zk|sk(i), Zk−1)p(sk(i)|Zk−1)
(29)

and from (19), we have

p(θ|sk(i), Z
k)

=
p(zk|θ, sk(i))

∫

p(sk(i)|sk−1, θ)p(sk−1, θ|Z
k−1)dsk−1

p(zk|sk(i), Zk−1)p(sk(i)|Zk−1)
.

(30)

By using the set of particles (17) obtained at the previous

iteration k − 1, we can approximate (30) by

p(θ|sk(i), Z
k)

≈
p(zk|θ, sk(i))

p(zk|sk(i), Zk−1)p(sk(i)|Zk−1)

×
NP
∑

j=1

wk−1(j)p(sk(i)|sk−1(j), θ)p(θ|sk−1(j), Z
k−1).

(31)

The denominator of (31) does not depend on θ, and hence,

can be taken in account by normalization across all θ ∈ Ω,

for each particle state sk(i).

C. Algorithm

Initialization: For each particle i = 1, . . . , NP

1) Sample s0(i) ∼ p(s0)
2) Make w0(i) =

1

NP

3) For each θ ∈ Ω, set p(θ|s0(i)).

At every time step k = 1, 2, . . .:
1) For each particle i = 1, . . . , NP

a) Sample

sk(i) ∼ q(sk|zk) (32)

where q(sk|zk) is the MPF importance sampling function
b) Calculate the unnormalized weight according to

wk(i)

= q(sk(i)|zk)
−1

∑

θ∈Ω

p(zk|sk(i), θ)

NP∑

j=1

wk−1(j)

× p(sk(i)|sk−1(j), θ)p(θ|sk−1(j), Z
k−1) (33)

c) For each θ ∈ Ω, compute the unnormalized conditional
parameter probability according to

p(θ|sk(i), Z
k)

= p(zk|θ, sk(i))

NP∑

j=1

wk−1(j)

× p(sk(i)|sk−1(j), θ)p(θ|sk−1(j), Z
k−1) (34)

d) Normalize the conditional parameter probabilities ac-
cording to

p(θ|sk(i), Z
k) =

p(θ|sk(i), Z
k)∑

θ∗∈Ω
p(θ∗|sk(i), Zk)

(35)

2) Normalize the particle weights according to

wk(i) =
wk(i)∑NP

j=1
wk(j)

(36)

D. Rationale and computational aspects

As the reader may have noted, the RBMPF is similar to a

“switched” AMMPF:

• In the AMMPF, we use the particle approximation to

obtain p(s0, . . . , sk|θ, Zk), and calculate p(θ|Zk) analyt-

ically;

• In the RBMPF, we use the particle approximation to

obtain p(sk|Zk), and calculate p(θ|sk, Zk) analytically.

Therefore, the efficacy of the RBMPF approach depends

on the mixing properties of p(sk|Z
k), instead of p(sk|θ, Z

k).
Note that using a RBPF instead of a RBMPF (i.e. using the

particle approximation to obtain p(s0, . . . , sk|Z
k) and calcu-

lating p(θ|s0, . . . , sk, Z
k) analytically) leads to degeneracy;

see [8].

From a computational point of view, the RBMPF is more

costly than the AMMPF (see Table I for a summary on

the algorithms’ complexities). However, the RBMPF has less

memory requirements than the AMMPF, as it needs to store

|Ω|NP conditional probabilities, instead of |Ω|NP particles.
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TABLE I
COMPUTATIONAL COMPLEXITY OF SMC PARAMETER ESTIMATION

METHODS (USING SYSTEMATIC RESAMPLING WHEN APPLICABLE)

SIR PF O(NP )
AMMPF O(|Ω|NP )
RBMPF O(|Ω|N2

P )

V. SIMULATION

A. Simulation description

For the simulation scenarios, we will consider the problem

of estimating the turn rate of a target performing a constant

turn. In this problem, we consider a moving target, that moves

according to the constant turn model described in [13]. The

state of the target is given by Xk =
[

P x
k , P

y

k , V
x
k , V

y

k ,Θ
]′

,

where x and y denote the Cartesian coordinates,
(

P x
k , P

y

k

)

and
(

V x
k , V

y

k

)

correspond respectively to the position and

velocity components, and Θ is the turn rate, that we treat

as an unknown parameter (Θ will always be expressed in
◦/second). Hence, the dynamic part of the state corresponds

to Sk =
[

P x
k , P

y

k , V
x
k , V

y

k

]′

.

We will evaluate two scenarios; one with the power spectral

density of the process noise (see [13]) given by σ2
w = 36, and

another with σ2
w = 144. In both scenarios, the true value of Θ

is θ = 5. The target trajectories are shown in Figs. 1(a) and

2(a). Observations will be based on the following observation

model:

p(zk|xk) = N

(

zk;

[

px

py

]

,

[

2.25 0
0 2.25

])

. (37)

Note that these scenarios correspond to the special case

described in Section IV-A1.

We are going to compare the performance of four SMC

algorithms: the standard SIR particle filter, the SIR particle

filter with artificial dynamics (that we refer as SIR-AD PF),

the AMMPF and the RBMPF. The SIR-AD PF attributes an

artificial dynamic model to Θ, corresponding to

p(Θk+1|Θk) = N (Θk+1; Θk; 0.01) (38)

and for the AMMPF and the RBMPF, we consider Θ as a dis-

crete parameter, assuming values in Ω = {−9,−7, . . . , 7, 9}.

We assume the following prior densities for Sk and Θ:

p(s0) = p(s0|θ) = N









s0;









px
0

p
y
0

vx
0

v
y
0









,









100 0 0 0
0 100 0 0
0 0 25 0
0 0 0 25

















,

p(θ) = p(θ|s0) = N (θ; 0.01, 36) (39)

where for the AMMPF and the RBMPF, we consider dis-

cretized versions of p(θ) and p(θ|s0) respectively, obtained

by taking the true values of these densities for θ ∈ Ω and

thereafter doing a normalization. We use 1,000 particles for

RBMPF and for each particle filter of the AMMPF, and 10,000

particles for the SIR and SIR-AD particle filters. This means

that we use |Ω| times less particles for the AMMPF and

the RBMPF, to compensate the fact that they have higher

computational complexity. We make that choice to get a better

insight over the results; it is not strictly fair since the RBMPF

has higher complexity than the AMMPF.

All particles filters use the “standard” importance sampling

function, i.e. p(xk|xk−1) for the SIR PF and the SIR-AD PF,

p(sk|sk−1) for the AMMPF, and EZk−1 [p(sk|Xk−1)] for the

RBMPF. We perform a Monte Carlo simulation with 50 runs

for both scenarios.

Note that the turn rate estimation problem has partially

linear-Gaussian structure, such that a multiple model Kalman

Filter with appropriate parameter discretization, or perhaps

even an Extended Kalman Filter, would probably yield sat-

isfactory results. The choice of problem was arbitrarily made:

it should be clear to the reader that the algorithms that we

are analyzing do not require any linear-Gaussian assumptions

on the dynamic and observations models, neither rely on any

linear-Gaussian approximations.

B. Simulation results

The results for the two scenarios are shown in Figs. 1 and

2. For each run, we compute the effective number of particles

(NEff), given by
(

∑NP

i=1
wk(i)

)−2

(for the AMMPF, we take

the simple average of the NEff over the multiple particle

filters).

Figs. 1(b) and 2(b) shows the NEff averaged over the Monte

Carlo runs and divided by the number of particles, for the four

algorithms. The second scenario (with higher process noise)

results in overall lower NEff, as expected from the normal

behavior of SMC methods. We observe also that the AMMPF

results in considerably lower NEff than the other algorithms.

That also makes sense, since the AMMPF algorithm devotes

a large number of particles to explore unlikely values of the

parameter Θ.

Figs. 1(c) and 2(c) show the Root Mean Square (RMS)

errors associated with the Minimum Mean Square Error

(MMSE) parameter estimate θ̂k calculated at each time step.

The algorithms with best estimation accuracy (in RMS sense)

were the RBMPF and the AMMPF respectively for the first

and second scenarios. For the first scenario, the RBMPF and

the AMMPF had significantly better performance than the

SIR and SIR-AD PFs. In the second scenario the difference

is not much expressive, possibly because the parameter has

much lower observability and the lower NEff impairs the

RBMPF and AMMPF, since they are using smaller numbers

of particles.

Besides the point estimate θ̂k, we also calculate, for

each run and time step, the standard deviation σk =
√

EZk

[

(

θ̂k −Θ
)2

]

, obtained from the output of the algo-

rithms. Thereafter we find, for each sequence of Monte Carlo

runs, the number of “outliers”’. We classify an estimate θ̂k
as an “outlier” if its error w.r.t. the true value of θ is more

than 3σk. The rate of outliers is thus given by the number

of outliers divided by the number of Monte Carlo runs, and

shown in Figs. 1(d) and 2(d). Note that this definition of
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Fig. 1. Monte Carlo simulation results for σ2
w = 36
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Fig. 2. Monte Carlo simulation results for σ2
w = 144
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outliers is arbitrary, since the turn rate estimation problem is

not linear-Gaussian and hence we do not know how “heavy-

tailed” p(θ|Zk) is. However, for practical purposes, the rate of

outliers provides some intuition on how much the calculated

standard deviation is consistent with actual estimation errors.

The results show that the SIR PF has unacceptable per-

formance in that sense, which is obviously expected since

we know that the algorithm leads to self-resolving, and thus

zero standard deviation. The three other algorithms effectively

avoid this situation of total degeneracy. For both scenarios, the

RBMPF results in the lowest number of outliers.

The results of the AMMPF are more difficult to interpret.

The algorithm seems to result in relatively higher number of

outliers, even higher than the SIR-AD PF for the scenario with

higher σ2
w. That is somewhat counterintuitive, since unlike

the SIR-AD PF, the AMMPF does not rely on biasing the

system model and thus should lead to a better approximation

of p(θ|Zk).
A possible explanation is the lower NEff of the AMMPF,

which perhaps impairs its ability of obtaining a good particle

approximation, even more for the second scenario. If that is the

case, a possible solution would be to use a larger number of

particles or a better importance sampling function. We should

also note that the apparent better σk-to-error consistency of

the SIR-AD PF for the second scenario may be due to the

inflation of σk (caused by the artificial process noise), rather

than due to a better approximation of p(θ|Zk).

VI. CONCLUSIONS

In this work, we presented two SMC algorithms, basically

modified versions of existing methods, for online Bayesian

parameter estimation: the AMMPF and the RBMPF. These

methods avoid the self-resolving problem and do not rely on

biasing the system model, being, in theory, suitable for obtain-

ing both point estimates of the parameters and other statistical

descriptions, such as the standard deviation. However, both

methods rely on discretization of the parameter space, which

makes them unsuitable for problems with high dimensional

parameter vectors.

In the simulations, the RBMPF showed to have performance

as good or better than a particle filter with artificial dynamics

in terms of accuracy of point estimation, and better perfor-

mance in terms of consistency between standard deviation and

actual errors. On the other hand, the AMMPF was better than

the artificial dynamics approach in terms of accuracy of point

estimation, but as bad or worse in terms of standard deviation

consistency. It is not clear of whether this is due to the use

of an insufficient number of particles, or perhaps a theoretical

deficiency of the algorithm.

To obtain more conclusive results, we consider, as future

works, to test these algorithms with different estimation prob-

lems and with more variation on the number of particles.

Naturally, proposing alternatives to these algorithms with

reduced computational complexity, especially for the more

intensive RBMPF, is also an interesting subject for future

research.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the EU’s Seventh Framework Programme under grant

agreement n◦ 238710. The research has been carried out in

the MC IMPULSE project: https://mcimpulse.isy.liu.se.

This research has been also supported by the Netherlands

Organisation for Scientific Research (NWO) under the Casimir

program, contract 018.003.004. Under this grant Yvo Boers

holds a part-time position at the Department of Applied

Mathematics at the University of Twente.

REFERENCES

[1] J. Vermaak, A. Doucet, and P. Pérez, “Maintaining multi-modality
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