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Abstract

The capacity of a wireless lattice network with local interference is studied. In
particular, the transport capacity under a multiple unicast traffic pattern is stud-
ied for a network of nodes placed on the hexagonal lattice. The communication
model is that local interference allows reliable broadcast to all neighbors, but
that simultaneous transmissions from multiple neighbors lead to a collision. If
broadcast is not exploited and only point-to-point transmissions are used, the
normalized transport capacity was previously shown to be between 1/3 and 2/5.
In this work it is demonstrated that by exploiting broadcast the normalized
transport capacity of the hexagonal lattice is at least 3/7.

1 Introduction

Network coding [1] in wireless networks provides a means to exploit broadcast [2–4]
and achieve throughputs that are higher than possible based on point-to-point trans-
missions. We study the capacity of a network in which 1) nodes are located on the
hexagonal lattice and 2) there is only local interference. In particular, we study the
transport capacity in a multiple unicast setting. Our previous studies [5, 6] indicate
that the capacity is at least 2/5 and at most 6/7. The contribution of this work is
an improved lower bound of 3/7. If broadcast is not exploited and only point-to-point
transmissions are used, the normalized transport capacity was previously shown [6] to
be between 1/3 and 2/5. Hence, the multiplicative factor of improvement obtained by
exploiting broadcast is at least 15/14 and at most 18/7.

The constructive scheme that is used to prove the new lower bound is based on the
scheme given in [7,8]. The aim of [7,8] was to demonstrate the energy efficiency gains
that can be obtained by using network coding. As a consequence, no attention was
given to throughput and the presented network codes do not achieve high throughputs.
The scheme that is presented in the current work uses the previous scheme as a building
block and does achieve high throughput.

For an overview of related work on the benefits offered by exploiting broadcast and
using network coding we refer the reader to [6, 8–10]

The outline of the remainder of this paper is as follows. The model is defined in
Section 2 after which our main result is presented in Section 3. Finally, a constructive
proof of this result is given in Section 4.



2 Model

2.1 Network topology

We consider a network with nodes located on the hexagonal lattice and edges between
nearest neighbours. The size of the network is K × K, where K = (L + 1)(L + 3)
for some positive integer L. We index nodes with a vector u ∈ N2, where we write

u = (u[1], u[2]). The location in R2 of u is uGΛ, with GΛ =

 1 0

1/2
√

3/2

. Now, we

consider (V,E) with

V = {u ∈ N2 | 0 ≤ u[1] ≤ K − 1, 0 ≤ u[2] ≤ K − 1},

E = {(u, v) ⊂ V × V | ‖(u[1]− v[1], u[2]− v[2])GΛ‖2 = 1}.
Let e1 = (1, 0) and e2 = (0, 1).

2.2 Communication Model

Time is slotted and we consider half-duplex constraints, meaning that no node can
simultaneously transmit and receive. Symbols are from the finite field F2, i.e., we con-
sider bits. Let X̃n(u) and Ỹn(u) be the symbols transmitted and received respectively,
by node u in time slot n. Let Nu = {v ∈ V |(v, u) ∈ E} denote the neighbourhood of u.
The channel output Ỹn(v) depends only on the channel inputs of neighbouring nodes
in the same time slot.

We use the communication model as defined in [6]. Broadcast is exploited, but
interference leads to collisions. Hence the functional relation between channel inputs
and outputs is that Ỹn(u) = X̃n(v), iff u ∈ Nv and all nodes in u ∪ Nu \ {v} remain
silent. If half-duplex or interference constraints are not satisfied, the channel output is
uniformly distributed and no information is obtained about the channel inputs, see [6]
for details.

2.3 Transport Capacity

The traffic pattern that we consider is multiple unicast. For a set of M unicast sessions,
let s(m) and r(m) denote the source and destination, respectively, of the mth session,
andR(m) its throughput. Our measure of interest is the transport capacity of a network
which is defined as the maximum, over all configurations of unicast sessions on a given
network and all possible transmission strategies, of

∑M
m=1 dist(s(m), r(m))R(m)/|V |,

where dist(s(m), r(m)) is the number of hops on the shortest path from s(m) to r(m).
The transport capacity is the maximum number of bits× hops per time slot, normalized
by network size, that can be transported in the network.

Our interest is in the transport capacity of the hexagonal lattice in the limit of large
number of nodes.

2.4 Notation

If f(x) = o(g(x)), then limx→∞ f(x)/g(x) = 0. For integers a, b and p > 0, a ≡
b (mod p) iff a− b is divisible by p.



3 Results

The main result presented in this work is the following lower bound on the normalized
transport capacity.

Theorem 1. The normalized transport capacity of the hexagonal lattice under half-
duplex constraints and reliable broadcast to all neighbors is at least 3/7.

This bound provides an improvement over the earlier bound of 2/5 given in [6].
Some other results from [6] are an upper bound of 6/7 of on the transport capacity
as well as bounds on the capacity in case no broadcast is available. More precisely,
if all transmissions in the network are point-to-point, the transport capacity is lower
bounded by 1/3 and upper bounded by 2/5. Note that this upper bound corresponds to
the previous lower bound in the presence of broadcasting. Hence, previously, it was not
possible to claim that exploiting broadcast would improve transport capacity. From
Theorem 1 it follows that exploiting broadcast does improve the transport capacity.
Combining all known bounds gives that exploiting broadcast leads to a multiplicative
improvement factor of at least 15/14 and at most 18/7.

4 Achievable Strategy

The achievable strategy is based on the construction that was first given in [7]. An
improved presentation of this construction is given in [8]. The problem addressed in the
above mentioned works is that of minimizing energy consumption without imposing any
constraints on the achieved throughput. The elements of the energy efficient scheme
are as follows:

1. Carefull placement of unicast sessions. The sessions have the property that all
sources and destinations are located at the border of the network. (A similar set
of sessions will be considered in the construction below, see Figure 4.)

2. Operation in rounds of multiple time slots.

3. In each round:

(a) Nodes in the interior transmit once,

(b) Nodes on the boundary transmit twice,

(c) One symbol is decoded from each session in the network.

Observe, that since all interior nodes transmit only once per round, the above con-
struction achieves good energy efficiency; the fraction of nodes that transmit twice is
approaching zero in the limit of a large network.

In this section we present a new constructive scheme that uses the existing con-
struction as a building block. The new scheme achieves normalized transport capacity
3/7, hence proving Theorem 1. Remember that the network is of size K ×K, where
K = (L+ 1)(L+ 3) for a positive integer L. The elements of the strategy are:

1. Construct subsets of the network of size (L+ 2)× (L+ 2). The number of such
subsets is L3. This implies overlap among the subsets.

2. In each subset of size (L+ 2)× (L+ 2) construct 4L+ 1 sessions, such that the
total length of all sessions in a subset is 3L(L+ 1).

3. Operate in rounds of 7(L+ 4) time slots.

4. In each round deliver, for each session, one symbol at each receiver.
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Figure 1: The sets S(αh, αv, αo) for 0 ≤ αh, αv, αo ≤ L− 1. (L = 2)

Figure 2: For L = 4, the sets S(αh, αv, αo) for 0 ≤ αh, αv ≤ 1 and 0 ≤ αo ≤ L − 1.
(Only part of the network is shown.)



Proof of Theorem 1. Observe that based on the above strategy, the details of which
are given below, the achieved number of bit×hops per time slot is

L33L(L+ 1)

7(L+ 4)
=

3

7
L4 + o

(
L4
)
, (1)

which normalized by the network size of L4 + o(L4) is approaching 3/7 in the limit of
large L.

The different elements of the strategy are addressed in detail in subsequent subsec-
tions.

4.1 Definition of subsets

Let S0 = {u ∈ V |0 ≤ u[1] ≤ L+ 1, 0 ≤ u[2] ≤ L+ 1} and

I0 = {u ∈ S0|1 ≤ u[1] ≤ L, 1 ≤ u[2] ≤ L},
L0 = {u ∈ S0|u[1] = 0, 1 ≤ u[2] ≤ L},
R0 = {u ∈ S0|u[1] = L+ 1, 1 ≤ u[2] ≤ L},
T0 = {u ∈ S0|1 ≤ u[1] ≤ L, u[2] = L+ 1},
B0 = {u ∈ S0|1 ≤ u[1] ≤ L, u[2] = 0},
C0 = L0 ∪R0 ∪ T0 ∪B0,

(2)

i.e., we have a set S0 of size (L+2)×(L+2), its interior, its left, right, top and bottom
boundary and its complete boundary (excluding corners). We denote by ul ∈ L0,
ur ∈ R0, ut ∈ T0, ub ∈ B0 and ui ∈ I0, arbitrary nodes in these sets.

We consider L3 different subsets of V constructed from S0 by using an offset. The
new subsets are indexed by the three parameters αh, αv, αo, each chosen from the set
{0, 1, . . . , L− 1}. The subsets are defined as

S(αh, αv, αo) = S0 + αhe1(L+ 3) + αve2(L+ 3) + αo(e1 + e2). (3)

For L = 2 the sets S(αh, αv, 0) are depicted in Figure 1, some of the sets for L = 4 are
given in Figure 2. Let I(αh, αv, αo) and the other components of subset S(αh, αv, αo)
be defined according to (2).

The subsets have been defined in such a way, that even though each node is part of
a number of subsets that grows with L, it is at the border of at most 4 such subsets.

Lemma 1. For any u ∈ V

|{(αh, αv, αo)|u ∈ C(αh, αv, αo)}| ≤ 4. (4)

Proof. If u ∈ L(αh, αv, αo), then there is no (α̃h, α̃v, α̃o) 6= (αh, αv, αo) for which u ∈
L(α̃h, α̃v, α̃o). The same holds for the other border types.

4.2 Scheduling

We use rounds of 7(L+4) time slots, counting time slots in a round from 0 to 7(L+4)−1.
The schedule consists of two parts. The first part assigns to each time slot a set of
nodes that are scheduled to transmit in that time slot. The second part assigns to a
scheduled node a set of parameters αh, αv and αo, i.e., a set S(αh, αv, αo).
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Figure 3: Schedule: Square nodes are scheduled to transmit in the 0-th time slot of a
round.

In the ith time slot of a round node u is scheduled to transmit iff

u[1]− 2u[2] ≡ i (mod 7)}. (5)

The schedule is illustrated in Figure 3. It has the property that in each time slot, no
node in the network has more than one scheduled neighbour. Also, in each round, each
node is scheduled L+ 4 times.

Next, for each node u we assign it’s L+4 scheduled slots to triples (αh, αv, αo). This
is done by considering all triples (αh, αv, αo). If u ∈ I(αh, αv, αo) one slot is assigned
to (αh, αv, αo), if u ∈ C(αh, αv, αo), two time slots are assigned to (αh, αv, αo). By
Lemma 1, L+ 4 slots suffice.

Equivalently, we can think of the above procedure of assigning scheduled trans-
missions to different subsets S(αh, αv, αo). The corresponding received symbols are
assigned to a subset S(αh, αv, αo) accordingly. The resulting schedule is such that for
each S(αh, αv, αo):

1. All nodes in I(αh, αv, αo) are scheduled to transmit once.

2. All nodes in C(αh, αv, αo) are scheduled to transmit twice.

3. All transmissions are successfully received by all neighbours.

4. No node in S(αh, αv, αo) is receiving from nodes outside S(αh, αv, αo).

From these observations it follows that the schedule completely decouples the different
subsets. The same set of unicast sessions (not considering offsets) and the same network
code can be used in all subsets. Therefore, we will consider only S0 in the remainder.

4.3 Sessions

In S0 we construct 4L + 1 unicast sessions. These sessions are denoted by m1(i),
m2(j) and m3(k), where 1 ≤ i ≤ L, 1 ≤ j ≤ L and 1 ≤ k ≤ 2L + 1. Session
md(i), d ∈ {1, 2, 3}, has the sequence of message symbols md

0(i),md
1(i),md

2(i), . . . to
be transferred. In the achievable strategy session m3(L + 1) will be given throughput
zero. Hence, we put all its message symbols to zero, i.e., m3

t (L+ 1) = 0 for all t.
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Figure 4: Placement of unicast sessions in S0. (L = 3)

The source and destination of session md(i) are denoted by sd(i) and rd(i) respec-
tively. Sources and destinations are positioned as depicted in Figure 4, i.e., as follows

s1(i) = (0, i), r1(i) = (L+ 1, i),

s2(j) = (j, L+ 1), r2(j) = (j, 0),

s3(k) = (L+ 1 + min{0, L+ 1− k},max{0, L+ 1− k}),

r3(k) = (max{0, L+ 1− k}, L+ 1 + min{0, L+ 1− k}).

Let λd(i) denote the number of hops on the shortest path between the source and
destination of session md(i). We have λ1(i) = λ2(i) = L+ 1 and

L∑
k=1

λ3(k) +
2L+1∑
k=L+2

λ3(k) = 2
L∑

k=1

k = L(L+ 1).

Therefore, the total number of hops, excluding m3(L+ 1), is 3L(L+ 1).

4.4 Coding

Now that we have set up the scheduling and the sessions we can directly apply the
network coding scheme from [8, Section 4] to achieve unit throughput per round for
each of the sessions.

The network coding from [8] has the properties that 1) no intermediate node in
the network can recover the source symbols it is receiving in linear combinations (as
would be required in the COPE framework [3], for instance), 2) source symbols are only
retransmitted in linear combinations by nodes that are on the shortest path between
source and destination, 3) destination nodes can decode the required messages.
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