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Abstract—Scientific data are often annotated based on their
properties, which are not maintained during further data
processing. Not maintaining annotations results in loss of infor-
mation. Decisions made on such incomplete information may
be wrong. In this paper the problem of propagating annotations
along a data processing chain is formulated. In particular,
an annotation of a data element is an identification that this
data element exhibits a specific property. The propagation of
this property from the input of an operation to its output is
called the identification problem. In this paper the identification
problem is described as a clustering problem.
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I. INTRODUCTION

In todays world large volumes of data are captured for
diverse applications. To facilitate the interpretation of the
data annotations are common both in business and scientific
applications. Large amounts of work have been done in
generating annotations notably in the field of data-mining.
It is customary to issue an annotation identifying a class for
data. Sadly annotations are only generated as the end result,
and little effort has been done in propagating them during
further data processing.

Not maintaining annotations results in loss of information.
If an annotation identifies a datum as anomalous the user
can exercise more caution when making a decision based
on it. Or consider the result of the application as non valid
altogether. The annotations denote properties of the data
such as belonging to a certain class. If the annotation is not
propagated it may be lost. Since it is not always possible to
use the same classifier on both input and output data.

In this paper the problem of propagating annotations along
a data processing chain is formulated. The propagation of
annotations can be understood as the generation of a map-
ping between input and output annotations. This mapping
is derived as the solution of a clustering operation. By as-
signing input to output annotations under constraints derived
from the existence of the annotation, and characteristics of
the operation and the data structure.

In particular, the annotation of a data element is an
identification that this data element exhibits a specific prop-
erty. The propagation of this property from the input of an

operation to its output is called the identification problem.
In this paper the identification problem is described as
a clustering problem. Part of the identification resides in
deriving the presence of the annotation in the output and
how much of it is annotated. Further our position is the
identification problem can be posed as a clustering problem.
To delineate the position we derive the description of the
problem from elicited requirements and also provide for two
operations an initial solution to the clustering problem.

An initial solution is presented using entropy as an
optimisation function.

A more formal description of the problem in terms of
topologies, enabling the further development and validation
is also described.

II. MOTIVATION

The meaning of the annotation, further called property of
data elements, determines the applications of the identifica-
tion problem. The meaning is assigned and interpreted by
the user, but is not necessary for solving the identification
problem.

If the property signifies data captured during a system
malfunction. We can determine if the malfunction matters
and if so what is its extent in the final result. Based on such
an assessment the end user can decide if the results produced
by the application are valid or not.

A. Application description

To illustrate the identification problem we introduce a
sample weather monitoring application (Fig. 1).

The application consists of three temperature sensors (Fig.
1 part: S1,S2,S3) located in a mountainous area. The sensors
report data on an hourly basis. They are located at given
locations (Fig. 1 part: (X,Y)). Simple statistics (Minimum,
Average and Maximum) are calculated from the data (Fig.
1 part: Statistics) on a weekly basis. From the statistics the
weekly average is separated in the projection operation (Fig.
1 part: Projection). The two other values are disregarded in
this sample application, to keep the explanation succinct.
Based on the weekly average and the locations of the sensors
a spacial interpolation is done (Fig. 1 part: Interpolation).



The temperature interpolation is used by a team of hydrolo-
gists in order to predict the water flow arriving in the related
catchment.

The three sensors report on a timely basis and the results
are incorporated into the water flow prediction models.
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Figure 1. Sample weather monitoring application

The temperature sensors are deployed in a hostile environ-
ment. Strong winds, abundant precipitations, and prolonged
cloud cover may hinder the correct functioning of the tem-
perature sensor. As such they undergo regular maintenance.
As part of the maintenance tasks the sensors are re-calibrated
and broken sensors are replaced.

Besides annotating the data as being acquired during a
maintenance period. In the case of an un-calibrated sensor
the person performing the maintenance checks when was the
last calibration done. And estimates based on the weather
patterns from which moment was the calibration of sensor
no longer reliable. Both the maintenance period and the
estimated un-calibration of the sensor are properties which
the data exhibit. These two properties are not related to the
data values. They can not be derived from the values reported
by the sensor. Hence, we can not rely on data values to solve
the identification problem.

1) Does the anomaly matter?: We have now to determine
if the data generated by one or many un-calibrated sensors
impacts on the end result. For this we have to determine
if any such data is present in the output. The simplest way
of achieving this is by attaching a marker to the data. And
ensure that the marker is found on the output only if the
property is found in the data.

For example in the case of the statistics operation (Fig.
1 part: Statistics) if all the data for one week where un-
calibrated. It would make sense that the output where also
un-calibrated.

However if there where some properly calibrated data in
the data being aggregated as part of the statistics operation.
It would be impossible to recognise an individual calibrated
datum. The ratio from inputs to outputs although constant
prevents the tracking of a single datum in the output. From a
weeks data, only three values are produced, the Minimum,
Average and Maximum. We can not recognise directly a
single reading in the output of the Statistics operation.

2) If so, what is its extent?: If there is un-calibrated
data present in the input. We are also interested in knowing
what is the extent of this data. That is, in the case of an

interpolation, (Fig. 1 part: Interpolation) the un-calibrated
data is used to compute part or all of the data. Determining
to which parts of the output it contributes enables the user to
determine the impact of the un-calibrated data in the result.
And as such the validity of the results.

Further spacial interpolation operations represent a change
in the data structure. In the case of our application three
averages are combined together. The locations of each one of
the averages determine their participation in the computation
of an output. This participation is a function of the distance.

We have then three single data points as input originating
form the projection operation (Fig. 1 part: Projection).
Giving as output an array with of six times seven values
(Fig. 1 part: b.). This change of data structure enlarges the
impact of the un-calibrated input. Hence it is important to
ascertain the extent of the un-calibrated data in the ouput.

3) General operations: Aggregations and interpolations
are two examples of orthogonal operations. That is aggre-
gations only have an impact on the amount of data going
in and out, but not on the data structure. Interpolations have
the same amount of data, namely one in one out, but they
modify the data structure. Other operations can be classified
as combinations of both. That is in terms of ratios between
inputs and outputs, and changes in the data structure.

Given data and a property which it exhibits, we want to:

• Determine if the property is present.
• Determine the extent of the property.

In the output of any operation.

III. REQUIRED PROPERTIES

We have previously stated our goals and illustrated the
issues conforming the identification problem. In this section
we will describe the properties which are required for a
generic data identification method.

A. Data Identification

Previously we motivated the need to identify data holding
a given property. For the identification problem it does not
matter what the property is, or its origin. Only that it exists
in the data.

This makes the identification problem independent for
each property. The data are hence identified by attaching
an independent marker per interesting property to each data
point. Data are considered identified if they have at least one
marker attached to it.

A marker is a flag placed on data identifying it as holding
a specific property.

We can then state the first two required properties of the
identification probles as:

Req. 1: Properties are independent from each other.
Req. 2: Data are identified by a marker.



B. Operation properties

In order to solve the identification problem we require
some information from the operation. The operation de-
termines the contribution of an input in the computation
of an output. We also aim to be as generic as possible.
This forbids the direct analysis of the operation as part of
the identification problem. Thus, the approach is to classify
operations based on their properties to nevertheless influence
the identification problem.
Req. 3: We require operation properties to solve the identi-

fication problem.
The properties we use concern the interaction of the

operation with the input and output data structures:
• Are several data aggregated into a single output datum?
• Do the input and output data structure differ?
• Given two operations on same input and output data

structures do they have the same solution to the iden-
tification problem?

An operation representing each class is used to illustrate
each of these aspects.

We focus mainly on aggregations as examples of tempo-
ral transforms and interpolations as examples of structural
transforms. The two operations represent orthogonal cases,
that is, for the identification problem, the combination of the
solution to both extreme cases allows to handle many other
operations.

1) Temporal transformation: In temporal transformations
several input data are combined into a single output da-
tum. There exist several kinds of temporal transformation.
Aggregations being the most common. An example of an
aggregation is an average. In the case of an average all inputs
participate equally.

Follows that the number of identified inputs, together
with a threshold, influences the identification problem. The
threshold is chosen to avoid the output being over or under
identified. That is to avoid all the outputs or none of them
being identified, respectively.
Req. 4: The number of identified inputs, together with a

threshold, influences the identification problem, for
temporal transformations.

2) Structural transformation: When the output data struc-
ture differs from the input data structure the operation
performs a structural transformation. For example in the case
of a spatial interpolation [12].

The value of each output is the outcome of the com-
putation on at least one input. To ascertain if an input
participates in the calculation of an output we require the
distance between the location of the input and the output
and a threshold. A way of measuring the distance is by
projecting the locations of the inputs directly on to the output
data structure. Then a suitable threshold is chosen on the
distance to avoid over or under identifying the output.

OutputInput

i. Statistics a. b. c.ii. iii.

a. = min(i.,ii.,iii.) c. = max(i.,ii.,iii.)b. = avg(i.,ii.,iii.)

i. x2 a. b. c.ii. iii.

a. = 2 x i. c. = 2 x iii.b. = 2 x ii.
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Figure 2. Simple statistics operation

Req. 5: The projection of the locations of the inputs into
the output data structure is necessary to determine
the distance between inputs and outputs.

Req. 6: The distance from an input and a threshold, in-
fluences the identification problem, for structural
transformations.

3) Operation interpretation of the data structure: We
have seen that the relationship between the operation and
the data structure plays a role in the identification problem.
However not all operations interpret a data structure in the
same way.

We can see in (Fig. 2) how two operations with the same
input and output data structures require different solutions
to the identification problem. The first operation (Fig. 2
part: 1.) calculates basic statistics, (minimum, average, and
maximum) on the inputs. As such each of the three outputs
(a.,b.,c.) is an aggregation of all 3 inputs (i.,ii.,iii.). Con-
versely for a multiplication operation (Fig. 2 part: 2.) we see
that each of the outputs depends on a single input. Summing
up:
Req. 7: The interpretation of the input and output data struc-

tures by the operation influences the identification
problem.

C. Preserving the identification relationship
For the identification of the output to be useful the

identified data has to preserve its relationship with the non
identified data. That is the output should not be over or
under identified with regards to the input. This is achieved
by selecting a threshold.

The purpose of the threshold is to preserve the relationship
between the inputs and the outputs. That is, if an input A has
less identified data than an input B then the corresponding
identification on the output must preserve this characteristic.

This threshold is applied on the number of identified
inputs, or on the distance between projected inputs and
outputs, for temporal or structural transforms respectively.
Req. 8: A threshold is chosen in both the amount of iden-

tified inputs and the distance between projected in-
puts and outputs. Thus warranting that the property
is not over or under represented in the output.

D. Handling multiple operations
We know that in the case of a structural transform the

distance between projected inputs and outputs influences the



identification problem. Further we can treat this distance as
a count by considering the number of elements on the output
data structure separating the projected inputs and the output.

Both the number of identified inputs and the distance from
a projected input to an output are orthogonal. That is both
counts influence the identification process independently.

Further on both counts a threshold is applied in order to
preserve the identification relationship. Hence dealing with
a generic operation is possible through the combination of
both counts and associated thresholds.
Req. 9: The identification problem for a generic operation

can be handled through the combination of both
counts and the selection of an appropriate thresh-
olds.

To facilitate future reference we summarise in (Fig. 3) the
required properties.

Req. 1: Properties are independent from each other.
Req. 2: Data are identified by a marker.
Req. 3: We require operation properties to solve the identification problem.
Req. 4: The number of identified inputs, together with a threshold, influ-

ences the identification problem, for temporal transformations.
Req. 5: The projection of the locations of the inputs into the output data

structure is necessary to determine the distance between inputs and
outputs.

Req. 6: The distance from an input and a threshold, influences the identi-
fication problem, for structural transformations.

Req. 7: The interpretation of the input and output data structures by the
operation influences the identification problem.

Req. 8: A threshold is chosen in both the amount of identified inputs and
the distance between projected inputs and outputs. Thus warranting
that the property is not over or under represented in the output.

Req. 9: The identification problem for a generic operation can be handled
through the combination of both counts and the selection of an
appropriate thresholds.

Figure 3. Required properties for information identification

IV. REVISED PROBLEM STATEMENT

We will now provide and illustrate a more abstract de-
scription of the problem and introduce the relevant building
blocks.

A. Identification problem

The identification problem consists of identifying output
data. This is done based on the existence of the property in
the input data and the interaction between the operation and
the input and output data structures.

The identification problem can be solved with a mapping.
In order to construct such a mapping we use clustering.

The mapping relates input and output markers, which we
first introduce.

1) Marker: A marker consists of a binary flag indicating
the presence of a given property in the data. A binary flag
suffices since we consider all properties to be independent
from each other (Fig. 3 req: 1). Since the data is stored
in a data structure the marker is associated with the data
structure. This fulfils required property (Fig. 3 req: 2).

Now that markers have been introduced we illustrate how
the mapping is built through clustering.

2) Clustering: Clustering has two outputs. The assign-
ment of the inputs to clusters and a centroid for each cluster,
a representative.

The assignment is made so that the similarity between the
inputs is the greatest. And the representative is chosen to be
the most resemblant to all the inputs in that cluster.

We will see now how the clustering operation builds the
mapping solving the identification problem both for temporal
and structural transformations.

Temporal transformations: In the case of temporal
transformation the solution to the identification problem is
one where many inputs are mapped to an output. Temporal
transformations have a single output. This output can contain
the property or not. Yet we have more than two inputs,
otherwise the operation would be trivial.

We know that several input markers have to be treated
equally (Sect. III-C). That is those elements are similar
with regards to the mapping. This makes the assignment to
clusters the ideal operation for constructing such a mapping.

Required property (Fig. 3 req: 4) is fulfilled by using a
clustering operation. Hence supporting our position that the
identification problem is a clustering problem.

Structural transformations: Further in the case of
structural transformations the solution to the identification
problem is one where one input is mapped to one output.
Yet there are multiple possible outputs for one input. All
elements within the same distance of an input are affected
by the data from that input in the same manner. So if an
input is identified, all output markers with nearby markers
identified are possible representatives,

Since we can only have one output marker its best if it
were the most representative. This makes the selection of a
cluster centroid the ideal operation for constructing such a
mapping.

Required properties (Fig. 3 req: 5,6) are fulfilled by using
a clustering operation. Further supporting our position that
the identification problem is a clustering problem.

3) Data structure interpretation: The interpretation of
the input and output data structures by the operation also
plays a role in the identification problem (Fig. 3 req: 7). It
structures the input and output of the clustering problem.
This is achieved by building a partial order amongst the
inputs and the outputs.

This is best illustrated with an example. In the case of
the statistics operation (Fig. 2 part: 1.) all three outputs (a.-
c.) can not be differentiated. That is all three are outputs
of the same inputs under the same kind of operation, an
aggregation. This can be expressed by restricting the output
partial order two only two markers. Namely either all outputs
are identified or no outputs are identified.



B. Handling general operations

From the clustering operation we obtain two different
results. The assignment to clusters and the centroids. Each
of the two results represents a solution to the identification
problem for a kind of operation. We know that temporal and
structural transforms are orthogonal in their properties.

A mapping which combines both outputs from a cluster-
ing would solve the identification problem for an operation
which was both a temporal and a structural transform. Such
a mapping would associate several input markers to one
output marker. And the output marker would be selected to
be the most representative amongst similar output markers.
Required property (Fig. 3 req: 9) is hence fulfilled by using
a clustering operation.

C. Topological framework

We can now simplify the description of the identification
problem by describing a formal framework for clustering.
Illustrating the clustering/identification problem in terms of
sets, topologies and functions between them (Fig. 4).

Partial orders can be build amongst the input and output
markers. This enables the building of two topologies (Fig.
4 part: T, T′) for the input and output markers respectively
[13]. One or both of the topologies, depending on the kind of
operation are then clustered. The outcome of this clustering
are topologies (Fig. 4 part: T′′,T′′′) respectively.

OI

(I,T'') (O,T''')

Identification problem

(I,T) (O,T')

T TopologyMapping between topologies

Partial order relationship I Input markers

O Output markers Topology clustering or Identity 

Figure 4. Topological description of the method

We then apply clustering to solve the identification prob-
lem for different kinds of operations.

1) Clustering the input topology: In the case of temporal
transformation we associate several input markers to one
output marker. This is achieved by clustering the input
topology (Fig. 4 part: T) into as many clusters as elements in
the output topology (Fig. 4 part: T′). The output topology is
left as is through an identity function and becomes (Fig.
4 part: T′′). Making the mapping (Fig. 4 part: Mapping
between topologies) one-to-one. That is each cluster of input
markers has an assigned output marker.

Bear in mind that one of the markers indicates presence of
the property, the other not presence. Hence we can determine
if the property is present in the output.

2) Clustering the output topology: Further in the case of
a structural transform several output markers are suitable
to represent an input marker. That is each input marker
can be assigned to a subset of the possible output markers.
The subsets need not be disjoint. By clustering the output
topology (Fig. 4 part: T′) and reducing it to only the
centroids. Hence a solution to the identification problem. In
other words the clustering transforms the output topology
(Fig. 4 part: T′) to (Fig. 4 part: T′′′) making the mapping
(Fig. 4 part: Mapping between topologies) one-to-one. That
is each input marker is assigned an output marker.

The output markers represent areas of the data structure
where the property is present. As such the determination of
an output marker enables to asses how present is the property
in the output of an operation.

D. Clustering constraints

The topological framework poses the identification prob-
lem as a clustering problem. However certain constraints are
placed to facilitate the creation of the mapping and represent
operation and data structure properties. These constraints are
expressed in the form of the topologies.

1) Topologies: The characteristics in the relations be-
tween elements (Fig. 3 req: 3) build the topologies.

For example in the case of temporal transformations
the number of identified inputs influences the identification
problem (Fig. 3 req: 4). Hence all inputs containing the same
number of markers have to be considered equal. Further
inputs with more markers, represent data in which the
property is more present. As such the outputs are more likely
to posses the property. This characteristic of the partial order
is easily expressed in a string topology.

Similarly in the case of structural transforms the projec-
tion of the inputs in the output data structure influences the
identification problem (Fig. 3 req: 5). This influence is easily
represented by ensuring that the topology takes on a diamond
shape. This enables the clustering to consider the projected
positions of the inputs.

The representation and manipulation of the partial orders
as topologies fulfils required properties (Fig. 3 req: 3.,4.,5.)

Further the introduction of topologies provides suitable
properties for the derivation of the solution, and its formal
validation.

V. INITIAL SOLUTION

We have seen that the identification problem is solved by
building a one-to-one mapping between two topologies. The
two topologies are the result of a clustering operation. Before
they are clustered the topologies express a partial order over
the markers. This partial order incorporates characteristics of



the data structure and the interpretation of the data structures
by the operation.

The elements of the topologies are markers. Markers are
elements of the set {i · i ∈ Zn

2}. Where n is the size of the
data structure. This choice of representation is made since
we are only interested in the presence or absence of the
property.

The mapping is then built by clustering the markers
taking into account the partial orders. This clustering is
implemented as an optimisation under constraints.

A. Clustering as an optimisation problem

To implement the clustering of the markers as an optimisa-
tion problem two elements are necessary a set of constraints,
and an optimisation function.

The constraints ensure that the solution is a valid one. In
our case the constraints are derived from the partial orders
built amongst the markers.

Further by defining a measure over the set of possible
solutions the optimisation function aims to reach the optimal
mapping. The maximum value is reached for the optimal
solution. We also need one common measurement for both
clustering outputs.

1) Temporal transformations: In the case of temporal
transformations the requirement to not over or not under
identify the property translates easily into an entropy mea-
sure. The frequency of the output markers is calculated based
on the frequency of the input markers and the mapping.
That is the frequency of an output marker is the sum of the
frequencies of all the input markers that are mapped to it.
The output marker frequencies conform hence a probability
distribution from which the entropy can be calculated. Max-
imising the entropy warrants that the property is not over
nor under identified in the output.

2) Structural transformations: For structural transforma-
tions the requirements is to find the most representative
marker for each input. This is achieved by ensuring that
the representative markers are as different as possible. The
difference between representative markers can be measured
in terms of the distance between them. Since the distance is
bound, we can normalise it, making a normalised distance
distribution. We then calculate the entropy of the normalised
distance distribution. Maximising the entropy warrants that
the chosen representative markers are as different as possi-
ble.

B. Aggregation

In the case of an aggregation operation we aim to find
the assignment of each input marker to one of the two
possible output markers. We do this by clustering the input
markers under constraints derived from the partial orders
(Sect. IV-D1). As an optimisation criteria we want both
outputs to have the same frequency if at all possible (Sect.

V-A). This warrants that the property is not over or under
identified in the output.

Figure (Fig. 5) shows what a sample solution looks like
for an aggregation. Below each marker (000, · · · , 111) we
have the frequency with which the marker appears in the
input data set. The ovals in figure (Fig. 5) depict the two
clusters that are built. The input markers contained in the
upper oval are mapped to (1) output marker. Only (000) is
mapped to (0) output maker, it has a very high frequency
(0.75). The value of (0.75) means that most of the time the
data does not exhibit the property. It is impossible, in this
situation, to reach the ideal optimal frequency of one half
for each of the two outputs markers.

We can also see in figure (Fig. 5) the input and output
topologies. We know that all elements with a similar amount
of markers have to be treated equally. This is represented by
the string topology (Fig. 5 part: Inputs) in which the markers
with the same number of ones are grouped together.
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Figure 5. Optimal mapping between input and output identifications for
an aggregation

C. Interpolation

In the case of an interpolation we aim to find the best
representatives amongst the output markers for each input
marker. We know that the positions of the projected input
sources participate in the selection of the candidates. We call
them seeds. Seeds are indicated by an @ sign in (Fig. 6).

For each one of the seeds a representative, potentially
itself, is selected as the centroid of the cluster. The centroids
have to be as different as possible. Hence as far apart from
each other as possible.

We can see in (Fig. 6 part: 2.) that four centroids, marked
with an “X” , have been selected. We see however that given
the distances between them another equally optimal solution
is possible. That is the distances between all the centroids
do not change if markers (110) and (011) are chosen instead
of (100) and (001) respectively.

Further in figure (Fig. 6 part: 2.) we see the input and
output topologies. Both are diamond topologies enabling
the projection of input markers to output markers. In order



to build a one-to-one mapping between these two topolo-
gies the output topology is clustered. Reducing the output
topology to diamond containing only the centroids, and their
relations.

Input
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Figure 6. Optimal solution for a spacial interpolation

VI. RELATED WORK

Previous work by the same authors [1] defines in a less
rigorous way the identification problem. Further, in the
present article the identification problem is described as a
clustering problem. A topological framework is introduced
to facilitate further research.

A. Identification and meta-data

Markers identifying the existence of a property exist
mainly as meta-data tags. A tag being a token attached to
data denoting a property derived from the data. Meta-data
tags are generally hand assigned. They aim to facilitate the
organisation, retrieval and inference of information about
images [4], [11], or documents [3].

The identification problem in this setting translates in
to associating a tag to a document based on similarities.
In [3] tag occurrence and co-occurrence together with the
citation graph build a context in which the distance between
documents can be measured. Inside this distance a similarity
threshold is found during the traversal of the citation graph.
Documents which are related, inside the threshold, share the
tags.

A similar method can be applied to images. In [4] [11]
the context is built on the basis of features extracted from
the image. The time at which the image was taken is used
in [4] to narrow down the context in which similarities are
measured. Only images which are taken at around the same
time are considered for similarity analysis. The similarity
aims to share manually assigned tags in a collection of
home made pictures. In such a setting the propagation of all
the tags inside clusters, based on time and similar features,
provides good results.

The similarity, implemented as a clustering operation in
[11] relies on the detection of special regions in the image.
The special regions are then classified. And a common

representative for each class found. The tags on the repre-
sentatives are then propagated to images containing similar
regions.

We deviate from the prior works in that we consider the
propagation of a property across an operation. Similarity
does not play a direct role as such.

We share with the literature the concern of the potentially
unbounded number of tags, in our case properties. In [6]
the aim is to assist with the identification process. That is
to supply to a user a series of suitable tags for a document.
Leaving the identification problem in the hands of the user.
The tags are selected based on similarity with previously
annotated documents.

Tags can also be used to facilitate the sharing informa-
tion about scientific tasks. In [9] scientific workflows are
annotated. Enabling the re-utilisation of workflows and the
documentation of the why and how of different scientific
artefacts. The annotations provided by the scientist are also
searchable enabling the re-use of scientific workflows or
parts thereof by other scientist.

Annotations are also used to enrich chemical experiments
[8]. In this work the annotations are provided by scientist
in order to provide searching and reasoning on top of
multiple chemical experiments. The capture aims to be as
early as possible, sometimes even during the planning stages
of the experiment. The annotations assist here with the
identification and re-use of chemical experiment results.

A complementary field is that of data mining. In which,
there exist several techniques for extracting data with desired
properties. A survey of the ten most popular techniques can
be found in [14]. All of the techniques mentioned rely on the
values of the data to derive common properties. For example
the expectation maximisation algorithm relies on data values
to train a mixture of normal distributions. Based on this
mixture new data points can be assigned to one of several
distributions or classes. Data in a class can then be identified
with a property.

We do not rely on data values, nor on attributes of the
property. Only the presence or absence of the property to-
gether with operation and data structure properties influence
the identification problem.

B. Properties on relational data

In the database domain data property propagation is a
well understood problem. Mainly to convey provenance
data on static relations [7], [5] and [10]. Propagation of
properties on static relations is generally controlled through
extensions in the query language enabling the user to specify
if an annotation is to be propagated or not. All approaches
share that the property markers are associated with the data,
potentially holding several markers. The property of interest
may also span several columns of the relation. To minimise
the encoding of the area which is annotated on the table the
optimal ordering of columns has to be determined [7].



There exist also the possibility of manipulating annota-
tions in the same way as data, in [5] this is achieved through
the introduction of keywords. In [7] the annotation table can
be queried in the same way as any other table, enabling the
querying of data through the annotations attached to it.

When manipulating relational data advantage can be taken
of relational algebra to propagate annotations. Bowers [2]
presents a calculus which enables the propagation of an-
notations across transforms expressed in relational algebra.
Our work differs in the following points: i) In Bowers
Annotations are composed to derive new annotations based
on their understanding and ii) We do not restrict our opera-
tions to only a relational description. However there exist
some resemblance in the way the identification problem
is described. Both our approach and Bowers rely on the
composition of functions: annotation, and transform, to
describe the problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have motivated and described the identi-
fication problem as a clustering problem. The identification
problem aims to identify properties in the outputs of op-
erations. This is done based on the input identification of
the property and some information about the operation. The
extra information are operation properties, hence decoupling
the identification problem from the operation. Further the
identification problem only relies on the existence or absence
of the property. This restricts the identification problem to
handle one property at a time.

The clustering problem used to describe the identification
problem is justified as its two outputs, mapping and centroids
handle the two orthogonal elements of the identification
problem. That is the consideration of temporal and structural
transformations.

We introduced a topological framework enabling the ver-
ification of techniques to solve the identification problem.
And propose an initial solution to the identification problem
as an optimisation problem. Two illustrative solutions to the
identification problem are also described.

Further work is required to define constraints on the
functions and topologies for different kinds of operations.
The formal validation of the optimisation problem as a
solution to the identification problem is work in progress.
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