
A Graphical Tool for Observing State and Behavioral
Changes at Join Points

Haihan Yin (ACM Member Number: 5775898)
Software Engineering group, University of Twente, 7500 AE Enschede, the Netherlands

h.yin@cs.utwente.nl

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.3.2
[Language Classifications]: Very high-level languages;
D.2.2 [Design Tools and Techniques]: User interfaces

Keywords
Aspect-Oriented Programming, Debugging, Visualization

1. MOTIVATION
To comprehend programs or to fix a bug, programmers

always mentally simulate the program execution by read-
ing the source code. Aspect-oriented programming (AOP)
increases this mental effort, because it can alter the state
and the behavior of the base program at a join point to any
extent by executing advices. Advices are implicitly invoked
in the source code and their compositions at a join point
may vary according to the runtime context. They can ac-
cess and even change the context values of join points. As
an example, consider listing 1. When Ship.rotate() is called,
the around advice is executed. If Ship.rotate() is unexpectedly
not executed, there are two causes: it is not called or it is
bypassed by the around advice. Besides, the around advice
modifies the parameter of the advised method call on line 3
and then passes the modified parameter to the original call.
Without appropriate tools, it is difficult to notice the effects
of the implicitly executed around advice.

1 void around (Ship ship): Ship.rotate() && target(ship) {
2 if (ship.isAlive()) {
3 ship.setPosition(...);
4 proceed(ship);
5 }
6 }

Listing 1: An advice example

The goal of my work is to increase the comprehensibility of
AO programs by using a graphical tool, that can succinctly
visualize the state and behavioral changes at join points.

2. RELATED WORK
AspectJ Development Tools (AJDT) can mark the places

where join point shadows (JPS) are and uses a Seesoft view

to navigate JPSs within a project. Noticing that AJDT does
not scale well for large programs, Pfeiffer and Gurd pro-
posed Asbro [8], which utilizes Treemaps to compactly show
the distribution of JPSs. Except showing the existence of
JPSs, AspectMaps [4] also provides static inspections to the
composition at a single JPS. However, the static information
cannot accurately show what actually happens at runtime.

Pothier and Tanter [9] implemented an omniscient debug-
ger for AspectJ. It records runtime information executed
by the woven bytecode. Therefore, some AO information,
such as precedence declarations and pointcut evaluations,
is lost after the compilation. My previous work [11] pro-
posed a breakpoint-based debugger with an AO model that
preserves all AO concepts at runtime. It can visualize the
program composition at each join point at the granularity
of advices. However, programmers need to manually inves-
tigate what happens within each advice.

Many works analysed the changes brought by introducing
an aspect to an existing system. The changes may exist be-
tween aspects. Works [7, 6, 5, 3] have discussed the problem
of aspect (or advice) interference. The changes can also exist
between aspects and base programs. Works [2, 10] classify
aspects according to how an aspect changes the control flow
or the data flow of the base program.

3. APPROACH
Figure 1 shows some initial idea of the visualization. Sup-

pose executing Ship.rotate() modifies property of the ship in-
stance. Figure (a) visualizes the expected execution of list-
ing 1. It abstracts away all details except those changes
states and behavior. Rectangles represents executions of
methods or advices. The black dot represents a join point
and the arrow points to the actual runtime behavior when
the corresponding join point is reached. A label is attached
to the black dot and it is written what data is changed after
the join point. Figures (b) and (c) show the situations when
Ship.rotate() is not called and the around advice does not call
proceed(). To realize the described functionalities, following
components are required.

First, an omniscient debugger for providing runtime infor-
mation of the interesting join points specified by program-
mers. The debugger obtains information from NOIRIn [1],
which is an execution environment that models advanced-
dispatching (AD) concepts as first class objects. AOP lan-
guages is one type of AD languages. Therefore, the debugger
component can be also used for other AD languages. The
obtained information is mainly salient runtime events, such
as method calls and pointcut evaluations. Besides, the de-

29

Copyright is held by the author/owner(s).
AOSD’13 Companion, March 24–29, 2013, Fukuoka, Japan.
ACM 978-1-4503-1873-0/13/03.

Player.keyPressed(KeyEvent)

Player.keyPressed(KeyEvent)

call(void Ship.rotate(int))
around

Player.keyPressed(KeyEvent)

call(void Ship.rotate(int))
around

Ship.rotate(int)

(b) Ship.rotate(int) is not called

(c) proceed() is not called

(a) exepected execution

[Ship] is modified

Figure 1: Initial design of graphical representation
of AO-related executions.

bugger needs a well-defined interface to allow higher-layer
applications, such as the graphical part of this tool, to use
the recorded data.

Sometimes, inspecting one join point is not enough. It
is helpful to know whether there are repeated cases in the
whole execution history. An example is finding all the join
points where the executions are similar to a known join point
with undesired execution. Therefore, a query language for
finding information in the recorded data is needed. To mini-
mize the effort for learning the tool, I intend to reuse most of
presentations in figure 1 to express queries. Figure 2 shows
an example of the graphical query. It 2 matches all the
join points where Ship.rotate(int) is called in the scope of
Player.keyPressed() and an around advice is applied without
calling proceed(). The dashed lines indicates the absent of
the proceed() call. The graphical approach has two advan-
tages: (1) queries, that are difficult to be described textually,
can be specified easily by using graphs with expressions, (2)
programmers do not have to learn a new query language.
Specific user interface that allows programmers to compose
graph elements are required.

Player.keyPressed(KeyEvent)

call(void Ship.rotate(int))
around

proceed()

Figure 2: An example of the graphical query

Third, an algorithm for filtering information that needs
to be rendered. There are many situations at a join point,
some may skip the original call and some may end up with an
infinite loop. In all situations, information, which is relevant
with the state and behavioral changes, should be kept and
rendered. A change is always related to what is supposed to
happen and what actually happens. For example, an around
advice can replace a parameter in proceed(). Programmers
should be informed what is the replaced and the replacing
parameters, and where the replacement took place. The
information, which is irrelevant with the changes, should be
hidden, like the if test on line 2 in listing 1.

4. RESULT AND CONTRIBUTIONS
The tool will be implemented as Eclipse plug-ins. To eval-

uate the tool, I intend to conduct an experiment measur-

ing how far our tool decreases the comprehension effort for
AO programs. Before the experiment, some common tasks
requiring comprehension effort are designed. Examples of
such tasks are determining whether a value is modified at
a join point and finding out whether an advice is executed
at a join point. In the experiment, subjects are assigned
with the same set of tasks. They are asked to perform each
task repeatedly by using the tools, which are AJDT, As-
bro, AspectMaps, the omniscient debugger for AspectJ, and
our tool. Suppose the longer the time is used, the more
comprehension effort is paid. Therefore, I will measure the
used time for each task and compare them at the end. The
threats to validity include: (1)Subjects have different exper-
tise in AO languages. Experts are likely to spent less time
in finishing tasks. (2)The experience obtained from finishing
the same task in prior tools may shorten the time spent on
the following tools.

This is the first work that focuses on the visualization of
changes at join points. Expected contributions, which cor-
respond to the approach steps, of my work: an omniscient
debugger, a graphical query language, and a filtering algo-
rithm. Using the tool, programmers can view information,
such as why a method is not executed at a join point, which
values are modified by advices. Implicit behavior of AO pro-
grams can be abstracted and then explicitly visualized. In
this way, the program comprehensibility is increased.

5. REFERENCES
[1] C. M. Bockisch, A. Sewe, H. Yin, M. Mezini, and

M. Akşit. An in-depth look at alia4j. Journal of Object
Technology, 11(1):7:1–7:28, April 2012.

[2] C. Clifton and G. T. Leavens. Observers and
Assistants: A Proposal for Modular Aspect-Oriented
Reasoning. In In FOAL Workshop, 2002.

[3] C. Disenfeld and S. Katz. A Closer Look at Aspect
Interference and Cooperation. AOSD ’12. ACM, 2012.

[4] J. Fabry, A. Kellens, and S. Ducasse. AspectMaps: A
Scalable Visualization of Join Point Shadows.

[5] A. Hannousse, R. Douence, and G. Ardourel. Static
Analysis of Aspect Interaction and Composition in
Component Models. GPCE ’11. ACM, 2011.

[6] A. Marot and R. Wuyts. Detecting Unanticipated
Aspect Interferences at Runtime with Compositional
Intentions. RAM-SE ’09. ACM, 2009.

[7] I. Nagy. On the Design of Aspect-Oriented
Composition Models for Software Evolution. PhD
thesis, 2006.

[8] J.-H. Pfeiffer and J. R. Gurd. Visualisation-Based
Tool Support for the Development of Aspect-Oriented
Programs. AOSD ’06, pages 146–157. ACM, 2006.

[9] G. Pothier and E. Tanter. Extending Omniscient
Debugging to Support Aspect-Oriented Programming.
In Proceedings of SAC, 2008.

[10] M. Rinard, A. Salcianu, and S. Bugrara. A
Classification System and Analysis for
Aspect-Oriented Programs. SIGSOFT ’04/FSE-12.

[11] H. Yin, C. Bockisch, and M. Aksit. A Fine-Grained
Debugger For Aspect-Oriented Programming.
AOSD’12, 2012.

30

