
A Pointcut Language for Setting Advanced Breakpoints

Haihan Yin, Christoph Bockisch, Mehmet Akşit
Software Engineering group, University of Twente, 7500 AE Enschede, the Netherlands

{h.yin, c.m.bockisch, m.aksit}@cs.utwente.nl

ABSTRACT
In interactive debugging, it is an essential task to set break-
points specifying where a program should be suspended at
runtime to allow interaction. A debugging session may use
multiple logically related breakpoints so that the sequence of
their (de)activations leads to the expected suspension with
the least irrelevant suspensions. A (de)activation is some-
times decided by some runtime context values related to
that breakpoint. However, existing breakpoints, which are
mainly based on line locations, are not expressive enough to
describe the logic and the collaboration. Programmers have
to manually perform some repeated tasks, thus debugging
efficiency is decreased.

In this paper, we identify five frequently encountered de-
bugging scenarios that require to use multiple breakpoints.
For such scenarios, it is often easier than using the tra-
ditional debugger to write pointcuts in an aspect-oriented
language, and to suspend the execution at the selected join
points. However, existing languages cannot handle the sce-
narios neatly and uniformly. Therefore, we design and im-
plement a breakpoint language that uses pointcuts to select
suspension times in the program. Our language allows pro-
grammers to use comprehensible source-level abstractions to
define breakpoints. Also, multiple breakpoints can be freely
composed to express their collaboration. In this way, an
expected suspension can be expressively programmed and
reached with less or even no irrelevant suspensions.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.3.2
[Language Classifications]: Very high-level languages;
D.2.2 [Design Tools and Techniques]: User interfaces

Keywords
Debugging, Advanced breakpoint, Pointcut language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13, March 24-29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1766-5/13/03 ...$15.00.

1. INTRODUCTION
Software is kept being maintained from its delivery until

its end. Maintenance takes the majority of effort spent in
developing software and a significant portion of maintenance
is carried out for debugging [14, 11]. An important step,
which is called fault localization, of debugging is finding out
the root cause based on some observed symptoms. The root
cause always happens before unexpected symptoms appear.
Eisenstadt [9] studied 59 bug anecdotes and he concluded
that over 50% of the difficulties resulted from this temporal
or spatial chasm between the root cause and the symptom,
or from inapplicable debugging tools.

In interactive debugging, programmers use breakpoints to
mark places in the source code where the program should
be suspended at runtime. When the debuggee program is
suspended, programmers can inspect the program state, ob-
serve the program behavior, or perform other debugging
tasks by using a debugger. How breakpoints are set can
significantly affect the efficiency of debugging. An inexpe-
rienced programmer may set too many breakpoints; redun-
dant ones distract her attention from those revealing the
root cause. Or she may set too few, which results in passing
the root cause.

Breakpoints should not be arbitrarily set, because each
suspension has a cost. At least, programmers need to de-
cide whether the suspension is relevant. Observing a symp-
tom, programmers usually first roughly choose a program
slice that is most likely to cause the symptom, and then
set breakpoints to observe the slice. For example, if a field
stores a wrong value, breakpoints are set at places where the
field is modified. Thus, logically, breakpoints are grouped
by programmers according to what they do instead of where
they are. However, the traditional breakpoints are mainly
based on source lines, which do not embrace any logic of
why breakpoints are placed there [7]. Programmers have to
mentally sketch the logic relationships between these break-
points.

Also, breakpoints are independent from each other. At
runtime, each breakpoint has its states such as being acti-
vated, and contexts such as the value of a variable. Some-
times, a desired suspension requires multiple breakpoints
and their states which sequentially form a path leading to
the suspension. This may require non-trivial manual effort,
such as recording the state or context at one suspension and
using it at another. Limitations of the traditional break-
points often require programmers to perform many repeated
debugging steps. Thus, debugging efficiency is decreased.

145

We identify five frequently encountered scenarios that the
traditional breakpoints cannot handle well. The identified
scenarios require breakpoints to be set at places sharing
some common characteristics, such as similar syntax. The
concept of pointcut perfectly fits in this context. These sce-
narios show that using pointcut-advices to construct places
for setting breakpoints is a more convenient and efficient ap-
proach than traditional debugging. However, current AOP
languages are not specifically designed for solving these sce-
narios. Thus, pointcut-advices are too verbose. Further-
more, pointcut-advices cannot be used to set a breakpoint
to specific advice compositions, which is one of our identi-
fied scenarios. Also, programs that are added for debugging
may accidentally stay in the project. This will introduce
unnecessary maintenance effort in the future.

Therefore, we propose a declarative breakpoint language
(BPL). By building on AspectJ, BPL can be used to de-
bug Java or AspectJ programs. The breakpoint, that is the
core concept of BPL, is a first-class value. A breakpoint
can be defined by AspectJ-like pointcuts which use source-
level abstractions. This makes the description of breakpoints
more comprehensible than line breakpoints. We extend and
improve existing AspectJ pointcut designators with seven
novel ones. In BPL, breakpoints are named and can be
used to compose higher-level breakpoints. The composition
level can be infinite because we treat the primitive and the
composed breakpoints in a uniform way. BPL is the first
approach providing a pointcut for selecting a specific action
composition at runtime.

This paper is structured as follows. Section 2 presents five
debugging scenarios and describes how debugging processes
are performed in different approaches. Section 3 gives a de-
tailed introduction to the new features introduced in BPL.
Section 4 highlights several implementation considerations
in our prototype. Section 5 describes two debugging exam-
ples by using the traditional debugging, the program solu-
tion, and our solution respectively. Section 6 and 7 describe
related work and conclude this paper respectively.

2. PROBLEM STATEMENTS
Debugging is a cognitive process and how it is performed

significantly depends on the programmer’s observations and
experience. A programmer tends to give the same treatment
when she observes the same symptom, such as a certain
exception being thrown. In this section, we select several
debugging scenarios that are frequently encountered. For
each scenario, we elaborate the way of using the traditional
debugger. We tag debugging steps in the description like
“a.1”, in which the letter represents a debugging process and
the digit represents the step order of that process.

Each scenario requires multiple breakpoints or suspen-
sions at different locations, which share some common prop-
erties, such as similar syntax, relation to the same variable,
etc. In AspectJ, a pointcut is used to select places with
common properties. This has inspired us to use AspectJ
programs during debugging, where pointcuts select the join
points at which we want to suspend the execution and where
we set a breakpoint in the otherwise empty advice body.
In this section, we also demonstrate this approach for the
identified scenarios. Actually, this approach is a variant of
program instrumentation.

The program solution serves two purposes. First, the pro-
gram can describe the scenario in a more succinct and clear

way than instructions for manual debugging given in natu-
ral language. Take pointcut call(void Shape.set∗(..)) for exam-
ple, it can be seen as two debugging tasks in this context:
finding all places calling methods which satisfy the pattern
“void Shape.set∗(..)”, and then setting line breakpoints there.
Second, the programs will be compared with our solution,
which is an AspectJ-like language.

We have two basic criteria for the program solution. First,
the program should be in a separate module. AspectJ mod-
ularizes scattering concerns and we want to keep this prin-
ciple in the program solution. Second, the program should
be simple. Effort spent on writing the program should be
comparable to that spent on the traditional debugger. In
most cases, writing a lengthy or a sophisticated program for
setting a breakpoint is not desirable.

2.1 Scenario 1: Selecting Multiple Locations
Sometimes, it is difficult to decide which specific location

is executed at runtime. For example, to debug unexpected
behavior in a system, which the programmer is not familiar
with, she may deduce roughly which function is executed by
matching names of the function with the observed runtime
behavior. A function can be implemented as a set of over-
loading constructors or methods. However, to know which
specific one is executed at runtime, she may need to set a
breakpoint to each implementation.

The difficulties of using the traditional debugging in this
scenario mainly come from finding locations for setting break-
points and managing breakpoints as logic units.

Finding locations.
Suppose the programmer observes that a field stores an

unexpected value, she needs to monitor the runtime states
of this fields. The first option is setting a watchpoint to this
field (a.1). When the watchpoint is hit, the programmer
needs to perform one “step over” to inspect the field value
after the modification (a.2).

The second option requires the programmer to manually
find out the last assignment (b.1) to this field before the
unexpected value is observed. This assignment can be in any
constructor or method modifying this field. She needs to set
a line breakpoint to each found place (b.2) and specify a
condition to check whether the expression on the right-hand
side of the assignment equals the unexpected value (b.3).

Managing breakpoints.
Using the Breakpoint view provided in modern IDEs, such

as Eclipse, the programmer can organize the breakpoints she
set. The view can group the breakpoints according to their
types, such as line breakpoint or watchpoint, or their loca-
tions, such as files or projects. Breakpoints can be (de)ac-
tivated and deleted at the granularity of groups. However,
there is no approach provided to group breakpoints as logic
units. Thus, a debugging task applied to a logic operation
will possibly required repeating steps.

Listing 1 shows how an AspectJ program monitors unex-
pected assignments to the field Clazz.var. AspectJ can access
the value assigned to a field by using args(). The pointcut
describes the desired places for suspensions and a breakpoint
is set in the body of the before advice. When the program
is suspended in the advice, the programmer can locate the
root cause by using the stack trace. Usually, the second top

146

frame in the stack trace points to the root cause, because
the top frame represents the execution of the advice.

1 public aspect Scenario1Aspect {
2 before(int val) : set(int Clazz.var) && args(val) &&
3 if(val==/∗Unexpected value∗/) {
4 // set a breakpoint on this line
5 }
6 }

Listing 1: An AspectJ program monitoring assign-
ments to a field

2.2 Scenario 2: Monitoring Updates on a Field
Listing 2 shows a program slice updating a field, which is

a HashMap. On lines 4-8, we use ellipsis to indicate that the
separated statements may reside in different methods and
their execution order is not the same as the lexical order.

1 class Scenario2 {
2 private HashMap map1;
3

4 map1.put(key1, value1);
5 ...
6 map1.get(key2); //returns a null value
7 ...
8 map1.put(key2, value2);
9 }

Listing 2: Multiple places updating a field

When a value retrieved from the HashMap is wrong, as line
6 shows, the potential root causes are places updating this
HashMap, such as lines 4 and 8.

To debug this with a traditional debugger, the program-
mer needs to find all the updating locations (c.1), set break-
points there (c.2), and evaluate the values of the expressions
for updates at runtime (c.3). A watchpoint for the field is
not helpful in this scenario, because it can only suspend the
program when the field is accessed or modified instead of
being updated. Setting a breakpoint to the called method
HashMap.put() may result in redundant suspensions, because
there may be other HashMaps in the program.

Listing 3 gives an AspectJ solution for this scenario. It
is a privileged aspect which can access protected members
of other classes. On line 6, the advice checks whether the
callee object t is same as the value stored in the expected
field, such as the private field map1 in Listing 2.

1 public privileged aspect Scenario2Aspect {
2 before(Scenario2 caller, HashMap t, String s) :
3 call(public Object HashMap.put(..)) && this(caller) &&
4 target(t) && args(s, ∗) &&
5 if(s.equals(/∗value of key2∗/)) {
6 if(caller.map1 == t) {
7 // set a breakpoint on this line
8 }
9 }}

Listing 3: An AspectJ program monitoring updates
on the object referenced by a specific field

2.3 Scenario 3: Finding Null Pointer Derefer-
ences

The dot operator dereferences an object pointer to access
a member from that object. A line of code may contain
multiple dereference operations as in the following listing:

1 total.getObjects().addAll(current.getObjects());

If a NullPointerException occurs on this line, the error
message only tells the line number where the exception oc-
curs instead of the specific operation. For debugging this
scenario, the programmer needs to place a breakpoint at
the line where the exception occurs (d.1). When the pro-
gram is suspended, she needs to repeatedly perform “step
into” and then “step return” to check each dereference oper-
ation until the exception occurs (d.2). Meanwhile, she has
to manually note which dereference operation the debugger
reaches (d.3).

Another option is to change the layout of the code so that
there is a dereference operation per line, like the following
listing shows (e.1). After rerunning the program (e.2), the
error message can accurately tell which line throws the ex-
ception. Since this option requires rewriting the source code,
it is also not generally applicable.

1 total.getObjects()
2 .addAll(
3 current.getObjects());

Listing 4 presents an AspectJ program corresponding to
this scenario. The pointcut is only satisfied if the receiver of
a dereference operation is null (see line 5). The advice body
further restricts the line number on line 7. If a breakpoint is
set at line 8, it can suspend the execution before the derefer-
ence operation, which ends up with a NullPointerException,
is about to occur.

1 public aspect Scenarios3Aspect {
2 before(Object receiver) :
3 (call(∗ ∗.∗(..)) || get(∗ ∗.∗)) && target(receiver) &&
4 withincode(/∗a method pattern∗/)
5 && if(receiver == null) {
6 int line = thisJoinPoint.getSourceLocation().getLine();
7 if(line == /∗expectedLine∗/) {
8 // set a breakpoint on this line
9 }

10 }
11 }

Listing 4: An AspectJ program checking null re-
ceivers on a source line

2.4 Scenario 4 : Recording Execution History
Listing 5 shows program slices related to operations on

two stream objects. An exception would be thrown when
line 6 is executed, because it tries to read data from a closed
Stream.

1 InputStream s1 = new FileInputStream(...);
2 InputStream s2 = new FileInputStream(...);
3 s1.close();
4 s2.read();
5 s2.close();
6 s1.read(); // An exception is thrown.

Listing 5: A program performing operations on
stream objects

An execution path can lead to unexpected behavior, such
as first close then read. Programmers need to track the cause
backwards from the point where the symptom is observed.
However, most traditional debuggers do not provide back-
tracking. Using breakpoints, the programmer is likely to

147

suspend the program either before or after the cause. If
the cause is passed, the programmer needs to restart a new
debugging session. Moreover, debugging Listing 5 requires
that all events of the path refer to the same object. The
programmer has to manually note corresponding informa-
tion with the traditional debugger.

Tracematch [1] is an AspectJ extension designed for ob-
serving execution traces. Therefore, we choose Tracematch
as the alternative debugging solution for this scenario. List-
ing 6 shows a Tracematch program. Lines 2 and 3 define two
events named close and read. Both of them bind the target

value to the parameter of the tracematch (line 1). Events
with different targets are not recorded by the same tracematch

instance. Line 4 declares the expected, but undesired exe-
cution path with the two names. When the path is matched
on the same Stream, the instruction represented by line 5 is
executed.

1 tracematch(Stream s) {
2 sym close before : call(∗ Stream.close(..)) && target(s);
3 sym read before : call(∗ Stream.read(..)) && target(s);
4 close read {
5 // set a breakpoint on this line
6 }
7 }

Listing 6: A tracematch specifying an undesired ex-
ecution path

2.5 Scenario 5: Exploring a Program Compo-
sition

The execution of an advice can alter the flow of its base
program to any extent. Many works [17, 8, 13, 15, 12] have
identified the problem of aspect (or advice) interference. An
incorrect composition, which can be either between advices
or between advices and the base program, at a join point
causes unexpected runtime behavior. Therefore, the pro-
grammer needs to inspect the execution of the composition
at such a join point. What complicates this task is that
pointcuts can include dynamic tests. Thus, when advice
share a join point shadow, these advice are not necessarily
executed together.

To debug this scenario, the programmer first needs to find
join point shadows (JPS) affected by all advices of the ex-
pected composition (f.1) and then set breakpoints to these
shared JPSs (f.2). Because in AspectJ, whether an advice
is applied can only be seen when it is actually executed,
the programmer needs to execute the program once (f.3),
manually perform bookkeeping of the program composition
at each join point (f.4) and record the hit count of the line
which contains the desired join point (f.5). In the second de-
bugging session, setting line breakpoints with the recorded
hit counts (f.6) leads to suspensions at the expected join
point before any advice is executed.

For this case, AspectJ cannot provide a clean way for
putting debugging code in a separate module. There is no
pointcut which can uniquely identify the execution of an ad-
vice, because advices are unnamed in AspectJ. Furthermore,
an advice using the pointcut adviceexecution() cannot easily
obtain information about the join point triggering the exe-
cution of the advice. Without this information, it is impos-
sible to know whether different advice executions are com-
posed at the same join point. Though there are works, such
as Oarta [16] and dependent advice [5], supporting named

advices, none of them can use advice names to specify an
expected runtime composition.

2.6 Summary
In this section, we have described five debugging scenarios

that require non-trivial manual tasks such as setting break-
points, repeating steps, and recording past states. For these
scenarios, the program solutions that describe the suspen-
sion conditions in a declarative way show their strength and
potential.

However, some debugging programs are verbose. In List-
ing 3, comparing the field value and the current target ob-
ject is always required in debugging scenario 2. In Listing
4, most of the parts are generic except the location infor-
mation. These programs can be more reusable if the config-
urable parts are parameterized. Besides, there is no solution
that treats these scenarios in a uniform way. Take scenar-
ios 4 and 5 for example, Tracematch can easily specify a
sequential execution of operations a and b. However, it is
impossible to reuse the previous declarations to express that
the operation a should also be advised by the advice c.

Last but not least, we do not encourage to add code, which
is not part of the main functionality, to the source program.
The added code may introduce unnecessary maintenance ef-
fort if the programmer forgets to remove it after fixing a bug.
Even though source control management systems, such as
subversion, can be used to tell the differences between two
versions, programmers need to distinguish the added debug-
ging programs and the fixed parts.

3. BREAKPOINT LANGUAGE
Based on the observations described in section 2, we have

designed and developed a breakpoint language (BPL) for
setting advanced breakpoints. BPL reuses many features
of AspectJ and Tracematch. Additionally, it has its own
unique functionalities.

The debuggee programs of BPL are Java programs or As-
pectJ programs. During the debugging, breakpoints spec-
ified by the BPL suspend the debuggee program at join
points where they are satisfied.

Listing 7 shows the grammar rule of a breakpoint decla-
ration. A breakpoint declaration has a name, a parameter
list, and a pointcut expression. The rule for PointcutExpr

extends the AspectJ pointcut with seven designators. We
describe these designators and their usages in the following
subsections.

1 BreakpointDeclaration :
2 Name ’(’ FormalParameterList? ’)’ ’:’ PointcutExpr ’;’ ;

Listing 7: The grammar rule of a breakpoint decla-
ration

3.1 The Pointcut call()on()
The pointcut call()on() is derived from the pointcut call().

It matches join points where a method is called on an object
referenced by a specific field. The call() and on() parts take
the method and the field specifications respectively. This
pointcut can be used at any place where call() is applicable.
It should be noted that the on() part matches based on the
referential identity of the values, i.e., it also matches alias of
the specified field.

148

Listing 8 shows an example of using call()on(). Compared
to Listing 3 in Scenario 2, it implicitly constrains the callee
object of the method.

1 bp(String s) :
2 call(public Object HashMap.put(..))on(Scenario2.map1) &&
3 args(s, ∗) && if(s.equals(”key2”));

Listing 8: A breakpoint declaration using pointcut
call()on()

3.2 The Pointcuts location() and checkNPE()
As the following listing shows, the pointcut location() takes

three parameters which represent the file path, the file name,
and the line number in the file respectively. The third pa-
rameter takes a list of line numbers or line ranges, e.g.,
[97, 100..102]. This pointcut can be used jointly with other
pointcuts to restrict locations of JPSs, for example call(...) &&

location(...).

1 bp() : location(‘‘Spacewar”, ‘‘SpaceObject.java”, [97]);

The pointcut checkNPE() matches dereference operations
where the receiver is null. A breakpoint using checkNPE()

suspends the program just before the satisfied dereference
operation is performed, and thus the suspension happens
before a NullPointerException is thrown. The first break-
point declaration shown in Listing 9 checks whether a line
contains a null pointer dereference. The second breakpoint
declaration does the same for the specified method body.

Compared to Listing 4 in Scenario 3, checkNPE() omits
the fixed parts specifying the cause of NullPointerException;
only the source location is left to be configured.

1 bp1() : checkNPE() &&
2 location(”Spacewar”, ”SpaceObject.java”, [97]);
3 bp2() : checkNPE() && withincode(/∗a method pattern∗/);

Listing 9: Breakpoint declarations using pointcuts
location() and checkNPE()

3.3 The Pointcuts path() and bind()
The pointcut path() matches a specific execution path ex-

isting in the history. It takes a path expression, which con-
sists of breakpoint references, as the parameter. We use a
blank space to represent the sequential order and rectangu-
lar brackets to represent the exact expected hit count. For
example, path(a[2] c) expects that breakpoints a and c are
hit in the sequence “aac”. Expression c is shortened from
c[1]. Besides, the “+” sign, which means 1 or more, and “*”,
which means 0 or more, can be appended to a breakpoint
reference. The path() expression is satisfied when all refer-
enced breakpoints are satisfied in the sequence specified as
the path expression.

The pointcut bind() is used to bind context values exposed
by lower-level breakpoints to the higher-level breakpoint.
Listing 10 shows our solution for Scenario 4, which is about
recording execution history.

Lines 1 and 2 declare two breakpoints for read and close op-
erations respectively. Lines 3–5 declare a composite break-
point. Line 4 describes an expected execution path which
requires that breakpoints close and read are hit sequentially.
Line 5 binds values from lower-level breakpoints to the pa-
rameter declared on line 3. A binding relies on the name of

a parameter in the composite breakpoint and the position
of a parameter in the lower-level breakpoint. For example,
read(s) binds the first parameter of the breakpoint read to the
parameter named s of the composite breakpoint closeRead.
Wildcards can be used to skip parameters that are not rele-
vant to the breakpoint declarations. For example, read(∗, s)

and read(.., s) bind the second and the last parameter respec-
tively. In Listing 10, both bindings bind values to the same
parameter s and this implies that the bound values must
refer to the same object.

1 read(Stream t) : call(public ∗ Stream.read()) && target(t);
2 close(Stream t) : call(public ∗ Stream.close()) && target(t);
3 closeRead(Stream s) :
4 path(close read) &&
5 bind(read(s), close(s));

Listing 10: Declaration of a composite breakpoint

It is also possible to bind values to different parameters, as
Listing 11 shows. The equality of bound values is specified
explicitly in the if() expression on line 4. Both breakpoints
closeRead and closeRead if suspend the program at the same
times. The former is more succinct and the latter is more
flexible with restricting the bound values.

1 closeRead if(Stream rStream, Stream cStream) :
2 path(close read) &&
3 bind(read(rStream), close(cStream)) &&
4 if(cStream == rStream);

Listing 11: A composite breakpoint using if()

Our solution for the path expression is greatly inspired by
Tracematch, but there are two fundamental distinctions. In
the view of the structure, a primitive event declared in one
tracematch cannot be referred to by other tracematches. In
BPL, primitive breakpoints are more reusable, because they
can be referred in any number of composite breakpoints. In
the view of the join point model, Tracematch is interested in
event kinds, such as before and around. BPL runs with an
interactive debugger that provides only forward execution.
Therefore, it only suspends the program before executions
of the satisfied join points.

3.4 The Pointcuts adviceexecution() and com-
position()

In AspectJ, adviceexecution() does not take any param-
eter and it cannot select the executions of a specific ad-
vice. BPL provides a backwards-compatible extension of
adviceexecution(), which can take the fully qualified name
of an advice as the parameter. As an example, pointcut
adviceexecution(GameInfo.guiInitiation) selects the execution of
the advice declared in the aspect “GameInfo” and named
with “guiInitiation”. Section 4.3 describes how advices are
named.

We use the term“action”to refer to an advice, a method or
constructor call, a field access, etc. The composition() point-
cut designator selects join points with an action composition
where actions have the specified relationship. To use this
pointcut, the programmer first needs to declare breakpoints
that suspend the program at the executions of the desired
actions. Then, she can use the names of the declared break-
points to specify a composition pattern. Last, the pattern is
used as the parameter of composition().

149

We provide two types of composition pattern. Suppose
beforeExe and afterExe are two breakpoints that both use
adviceexecution(). A breakpoint using composition() suspends
the program at a join point where the composition satisfies
the specified pattern.

Existence - the actions referenced in the specified pattern
should exist in the composition. We use commas to
list breakpoints corresponding to desired actions, e.g.,
composition(afterExe, beforeExe).

Exclusion - the actions referenced in the pattern should
not occur in the composition. We use an exclamation
mark for this relationship, e.g., composition(!afterExe).

4. IMPLEMENTATION CONSIDERATIONS
In earlier work [19], we have developed a debugger for AO

programs on top of the execution environment NOIRIn from
the ALIA4J language-implementation architecture [3]. In
ALIA4J and thus in NOIRIn, aspect-oriented concepts, such
as join point and pointcut evaluation, are modelled as first
class objects. The AO debugger complements a Java debug-
ger with functionalities for debugging AO features. It allows
programmers to inspect the context values, the composition,
etc., at a join point. We modified the AspectBench com-
piler [2] to generate an intermediate representation of As-
pectJ programs as required by the ALIA4J approach, which
preserves the full source locations of AO entities and makes
them accessible at runtime.

BPL is implemented to work together with the AO de-
bugger. When a breakpoint is hit at a join point, the pro-
grammer can use the AO debugger to observe the suspended
program.

At runtime, the breakpoint declarations are sent to NOIRIn.
They are evaluated in the context at a join point along with
the execution of rest of the program.

4.1 Evaluation of Breakpoints
Figure 1 shows a diagram of the classes that are used

in our implementation to represent breakpoints in BPL in
the execution environment. AdvancedBreakpoint represents
the breakpoint and it is managed by a BreakpointManager.
Each breakpoint has a Condition specifying in what condi-
tion the breakpoint can be hit. The figure includes only the
conditions related to the pointcut designators introduced in
section 3.

When the program reaches a join point at runtime, NOIRIn
first analyzes the call context, then computes the action
composition performed at this join point, and finally exe-
cutes actions in the composition. Breakpoints are evaluated
when an action is about to be executed after all context in-
formation, including the call context, the composition, and
the executing action, is prepared.

For all primitive conditions except AdviceExecutionCon-
dition, it is enough to be evaluated once at a join point.
To distinguish this different evaluation frequency, we put a
flag to Condition and its subtypes. The flag has two val-
ues, which are composition-level (c-level) and action-level
(a-level). A breakpoint with a c-level condition is evaluated
once at a join point and one with an a-level condition is
evaluated at every action in the composition. A binary con-
dition such as AndCondition is c-level if and only if its two
operators are c-level.

Figure 1: A class diagram of classes related to the
breakpoint in BPL.

Multiple breakpoints may suspend the program at the
same join point. We use a buffer hitBreakpointBuffer to
store the hit breakpoints at a join point. A hit breakpoint
sends a message with required debugging information to the
buffer. When the evaluations of all breakpoints are finished,
the BreakpointManager checks whether there is any mes-
sage in the buffer. If the buffer is not empty, the manager
emits a suspending request and releases all messages stored
in the buffer. The buffer is cleared when the next evaluation
process starts.

4.2 Evaluation of Composite Breakpoints
Using a path() expression, a composite breakpoint can be

composed of primitive breakpoints or other composite break-
points. It may use bind() to access values from lower-level
breakpoints and further restrict its suspending condition by
using if().

In Figure 1, there are two lists in class CompositeBreakpoint.
The list hittingHistory records the hit history of the lower-
level breakpoints. The list values records values bound to
the parameters. A CompositeBreakpoint is an observer of all
its lower-level breakpoints. Whenever one of its lower-level
breakpoints hits, the evaluation of the composite breakpoint
starts. The evaluation first updates lists hittingHistory and
values. Then, it explores the hittingHistory list and tries to
find an expected path. If an expected path exists, the com-
posite breakpoint starts to evaluate the if() condition. If the
if() condition is true, the composite breakpoint is hit and it
produces a message containing all the debugging informa-
tion, such as locations and bound values, of its lower-level
breakpoints.

For illustration, take Listing 5 as the debuggee program,
Listing 11 as the breakpoint declarations. Figure 2 shows
a complete evaluation process of the breakpoint closeRead if.
Column Code lists code where the primitive breakpoints hit.
Columns Hit History and Values describe the runtime states
of the lists hittingHistory and values respectively. Column
Evaluation has two sub-columns which represent the two-
stage evaluation respectively. Sub-column path represents
matches on the execution path and sub-column If expr. rep-
resents the test of the if() expression. “T” and “F” stand for
true and false. When a path is found, a “T” is put in the
sub-column path. A list representing the indexes of the hit
history is put after “T”, as in like T{0,1}.

150

Code
Hit History Values Evaluation

Index Bp. ref. Index Map path If expr.
s1.close() 0 close 0 “cStream” →s1 F -
s2.read() 1 read 1 “rStream” →s2 T{0,1} F
s2.close() 2 close 2 “cStream” →s2 F -

s1.read() 3 read 3 “rStream” →s1
T{2,3} F
T{0,3} T

Location
Hit History Values Values

Index Bp. ref. Index Map path If expr.
jp0 0 a 0 “o”→ s1 F -
jp1 1 b 1 “o_b” → s2 T F
jp2 2 a 2 “o” → s1 F -
jp3 3 c 3 “o_c” → s2 F -
jp4 4 c 4 “o_c” → s2 F -
jp5 5 b 5 “o_b” → s1 T T

Location
Hit History Values Evaluation

Index Bp. ref. Index Map path If expr.
jp0 0 a 0 “o”→ s1 F -
jp1 1 b 1 “o_b” → s2 T F
jp2 2 a 2 “o” → s1 F -
jp3 3 c 3 “o_c” → s2 F -
jp4 4 c 4 “o_c” → s2 F -
jp5 5 b 5 “o_b” → s1 T T

Figure 2: A table showing how a composite break-
point stores the hit history and the bound values

The breakpoints are hit sequentially from top to bottom
in the table and the evaluation is performed accordingly.
When the program reaches s2.read(), a path is found with
indexes {0,1}. Then, the composite breakpoint uses the in-
dexes of the path to retrieve values, which are required by
the if() condition, from the values list. However, the condi-
tion “cStream==rStream” does not hold. When the program
reaches s1.read(), the composite breakpoint finds a path with
indexes {2,3} but the if() condition again does not hold.
Then, another path with indexes {0,3} is found and satisfies
the if() condition. The composite breakpoint closeRead if is
hit and it produces a suspension message.

4.3 Named Advices
Bodden et al. [5], as well as Marot and Wuyts [16] pro-

posed named advices for the purpose of uniquely identifying
an advice. They extended the AspectJ syntax to achieve
this goal. We name advices for referring to them in point-
cut adviceexecution(). Besides, we do not intend to extend
the syntax of the debuggee program, because the effort inte-
grating it with the rest of our debugging infrastructure [19]
is not trivial. Annotations are not supported in the abc com-
piler, which is part of our tool chain. Therefore, we choose
to use comments as the approach for naming advices.

Listing 12 shows a before advice with a comment nam-
ing the advice as firstBefore. The programmer can refer
to this advice in the breakpoint declaration. For example,
adviceexecution(Azpect.firstBefore). During compilation, meth-
ods with unique identifiers as method names are created. For
simplicity, we do not use the specified name as method name,
but let the compiler decide the name as usual. Instead, we
keep a mapping between the advices’ virtual names as spec-
ified in the comment and their compiled name, as Listing 13
shows. During compilation, a validator checks whether there
are ambiguous virtual names and prints an error message, if
so.

1 aspect Azpect() {
2 /∗∗
3 ∗ @advicename=firstBefore
4 ∗/
5 before() : call(...) {}
6 }

Listing 12: A named advice

1 <map>
2 <entry>
3 <virtual>firstBefore</virtual>
4 <compiled>before$1</compiled>
5 </entry>
6 </map>

Listing 13: A naming map

When a breakpoint declaration using adviceexecution() is
sent to NOIRIn, which reads the virtual advice name and
replaces it with the compiled name by using the naming
map. When this breakpoint is hit, a hitting message is pro-
duced. The creation of the message replaces the compiled
name with the virtual name.

4.4 User Interface
We implemented a dedicated user interface to manage and

set breakpoints. The snapshots are given in Figure 3. The
breakpoint view (Figure 3(a)) lists all the breakpoints and
it has five columns, which are for (de)activation, present-
ing the breakpoint names, giving the complete declarations,
showing whether a breakpoint is hit, and counting the hits
respectively.

The panel shown in Figure 3(c) is for creating or editing
a breakpoint. From top to bottom, it consists of four parts.
The message part is for showing error or warning messages.
The script part is for writing the breakpoint declaration.
The hit count part is for specifying the expected hit count.
The graph part is for presenting the reference relationships
to other breakpoints. The panel in Figure 3(c) constructs
a breakpoint which refers to breakpoints close and read in
its expected path. The corresponding graph shows their
hierarchical relationship. The declaration detail is shown
when hovering the mouse over a label in the graph. Each
label has a check box where programmers can (de)activate
the corresponding breakpoint. If the declaration refers to
breakpoint names which do not exist, as shown in Figure
3(d), an error message is shown on the message part and
names in the graph are labeled with “invalid name”.

Moreover, we provide functionalities to ease the burden of
typing static information, such as signatures and line loca-
tions. By using the context menu (Figure 3(b)) in the edi-
tor, text can be generated according to where the cursor is.
For example, if the programmer selects a method name, the
signature of the method can be generated. The generated
text is appended to the script part of the breakpoint panel.
Therefore, programmers do not have to manually type such
information and can further customize the generated texts,
such as replacing part of the text with wildcards.

4.5 Runtime Interactivity
We allow programmers to add, delete, and update break-

points at editing time and during the execution of the de-
buggee program. The addition, deletion, or update of a
breakpoint does not only changes itself but may also propa-
gate the effect to other breakpoints. A breakpoint is invalid
if its declaration contains invalid reference names. When
a composite breakpoint becomes invalid, it does not make
sense to keep its recorded history. Therefore, the runtime
changes may alter the behavior of breakpoints. Other op-
erations, such as additions and deactivations, do not affect
the validity of other breakpoints. In the following list, we
discuss these effects in detail.

• If a breakpoint is deleted, all breakpoints directly or
indirectly referring to it become invalid. An invalid
breakpoint discards the information it has recorded.
This effect propagates until no more valid breakpoint
can become invalid.

• The addition of a breakpoint triggers a re-compilation
of all invalid breakpoints. If the added breakpoint

151

(a) The breakpoint view

(b) The context menu (c) The breakpoint panel (d) The panel with invalid names

Figure 3: Snapshots of the user interface

matches the missing part in previously invalid break-
points, the invalid breakpoints become valid. This ef-
fect propagates until no more invalid breakpoint can
become valid.

• If the script of a breakpoint is updated, this can be
deemed as a deletion followed by an addition.

4.6 Performance
To get an indication of the runtime overhead imposed by

our proposed debugging approach, we performed prelimi-
nary micro benchmarks. For this purpose, we use an appli-
cation performing bubble sort and added a dummy aspect
to be able to use our adviceexecution and composition point-
cuts. We first executed this selected program on a plain
Java Virtual Machine; second, we added breakpoints which
use all the new features introduced in BPL and executed
this on NOIRIn+BPL. The program uses fields instead of
local variables for storing all temporary values, therefore
the join points are dense in the program execution, and
NOIRIn+BPL performs evaluation of breakpoints at each
join point. This represents the worst case of using our ap-
proach. To avoid measuring the time spent during the sus-
pensions, we change the infrastructural code to let break-
points only print a message when they are hit. Though
breakpoints do not cause any suspension throughout the
whole execution, the evaluations whether each breakpoint is
hit are actually performed. Comparing the execution times
on the plain Java Virtual Machine and on NOIRIn+BPL
with the breakpoints shows a slow-down of 20 times. For
very short running debug sessions such a slow-down is al-
ready acceptable. Since we have focused on the semantics
rather than on an efficient implementation, currently many
breakpoint evaluations are redundant. In future work, we
will also consider optimizations to avoid these redundant
evaluations.

We have not yet analyzed the memory overhead which
may especially be imposed by the path() pointcuts. Based on
preliminary experiments, nevertheless, we do not expect this
memory overhead to be limiting in typical, short-running
debugging sessions.

5. EXAMPLES

5.1 Debugging Action Compositions
In this example, we add a new requirement to the Sce-

nario 4, which is about recording execution history. A
closed stream can be re-opened before it reads data in the
context of the vital parts of the program. The around advice
(lines 3–11) in Listing 14 implements this new requirement.
Lines 13–17 contain a bug, which is reading data from a
closed stream. The ellipses mean that statements may not
be close to each other. We use the italic font for the variables
stream to indicate that they refer to the same object but may
use different names. The symptom of the bug is observed
at line 17 but the root cause is the premature close() at line
15. The purpose of debugging is to intentionally suspend
the program at the root cause. In the following paragraphs,
we describe how a typical debugging process is performed in
different solutions.

1 aspect SafeStream {
2 pointcut VitalPart() : ...;
3 Object around(Stream s) :
4 call(∗ Stream.read()) && target(s) &&
5 cflow(VitalPart()) {
6 if(s.isClosed()) {
7 s.open();
8 }
9 Object result = proceed();

10 return result;
11 }
12 }
13 Stream stream;
14 ...
15 stream.close(); // the root cause
16 ...
17 stream.read(); // an exception is thrown.

Listing 14: An aspect with an advice that checks
whether a Stream is closed and a program slice that
performs operations on a Stream

The traditional debugging
Before starting the debugging, the programmer should con-
sider where to put the breakpoints. Reading the exception

152

message, she knows that the root cause must be an invoca-
tion of close(). A natural thought is setting a breakpoint to
the call site of close(). However, there may be many invo-
cations of close() in the program and setting breakpoints to
each of them is troublesome. Therefore, putting the break-
point to the body of close() and then tracing back to its call
sites is more feasible.

1. Set two breakpoints to the body of methods close() and
read(). Start debugging.
2. When the program is suspended, note the hit count of
the breakpoint and the object identity of the Stream object.
Resume debugging.
3. Repeat step 2 until the exception occurs. The first de-
bugging session terminates.
4. Check the note and find out where the problematic Stream

was closed by comparing the object identity. Record the cor-
responding hit count of the breakpoint set in close().
5. Delete or deactivate the breakpoint set in read(). Use the
recorded hit count to restrain the breakpoint set in close().
Start debugging again.
6. When the program is suspended, it is in the execution
of close() invoked by the root cause. The source, which is
located at the second top stack frame in the stack trace, is
the root cause.

Besides finding appropriate places to set breakpoints, this
process spends significant effort on manually noting record
and searching history.

The program solution
In this solution, the programmer realizes that using the pro-
gram in Listing 6 will result in many false positives. The
around advice interrupts the matching of the trace pattern
“close read” because it calls Stream.open(). We see two ways
of handling this. First, Stream.open() can be considered in
the pattern. Second, and more straightforward, calls to
Stream.read() which are advised by the around advice can
be excluded. Suppose the programmer selects the latter
way, the desired condition should contain the negation of
the pointcut cflow(VitalPart()) (Listing 14, line 5).

1. Add the following aspect and tracematch to the pro-
gram. Replace the ellipsis on line 11 with the definition of
the pointcut VitalPart() (Listing 14, line 2). Set a breakpoint
at line 13. Start debugging.

1 Aspect debugging {
2 private int hitcount=0;
3 before() : execution(∗ Stream.close()) {
4 hitcount++;
5 print(hitcount);
6 }
7 }
8 tracematch(Stream s) {
9 sym close before : call(∗ Stream.close()) && this(s);

10 sym read before : call(∗ Stream.read()) && this(s)
11 && !(cflow(...));
12 close read {
13 // set a breakpoint on this line
14 }
15 }

2. When the program is suspended, read the printed hit
count produced by line 5. The first debugging session ter-
minates.

3. Delete or deactivate the set breakpoint. Use the recorded
hit count to set a breakpoint in the body of Stream.close().
Start debugging again.
4. When the program is suspended, it is in the execution
of close() invoked by the root cause. The method execution,
which is located at the second top stack frame in the stack
trace, is the root cause.

This process automates the manual work in the previ-
ous process. The most effort spent concentrates on writ-
ing the program, especially the condition that excludes the
around advice. Designing such a correct condition may be
non-trivial. For example, a condition requires to exclude or
include multiple advices.

The BPL solution
The programmer has the same flow of thought as she does
in the program solution. She needs to exclude the calls to
Stream.read() where the around advice is applied.

1. Name the around advice as “aroundAdvice” and define
the following five breakpoints. Line 6 shows how the around

advice is excluded. Method signature such as Stream.close()

can be generated by using the user interface. Activate only
close readNoAround. Start debugging.

1 close(Stream s) : call(∗ Stream.close()) && target(s);
2 read(Stream s) : call(∗ Stream.read()) && target(s);
3 aroundAdvice() :
4 adviceexecution(SafeConnection.aroundAdvice);
5 read NoAround(Stream s) :
6 composition(read, !aroundAdvice) &&
7 bind(read(s));
8 close readNoAround(Stream s) :
9 path(close read NoAround) &&

10 bind(read NoAround(s), close(s));

2. When the program is suspended, close readNoAround prints
the following information on the console. The first debug-
ging session terminates.

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ close readNoAround ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 matched path (close read NoAround)
3 close examples\StreamTest.java(line 10, hitcount 3)
4 read NoAround examples\MyLogger.java(line 30, hitcount 1)
5 −−read examples\MyLogger.java(line 30, hitcount 2)

3. Delete or deactivate close readNoAround. According to the
printed information, activate the breakpoint close and con-
figure the hit count with 3. Start debugging again.
4. When the program is suspended, the root cause is found.

This process overcomes the shortcomings of the previous
two processes. It not only automates manual works but
also constructs the condition in a straightforward way. The
composition() expression is an intuitive way for expressing a
certain action composition and it does not require a sophis-
ticated analysis.

5.2 Debugging Dereference Operations
JabRef is an open source bibliography reference manager.

We have scanned the commits in its subversion repository
to find all the revisions with reports containing the key-
word “bug”. Revision #25 reports a fixed null pointer bug.
Listing 15 and 16 show the buggy program and the revised
program. Line 4, which tests whether frame.basePanel() is

153

1 class SearchManager {
2 public void actionPerformed(ActionEvent e) {
3 if (e.getSource() == escape)
4

5 frame.basePanel().stopShowingSearchResults();
6 ...
7 }
8 }

1 class SearchManager {
2 public void actionPerformed(ActionEvent e) {
3 if (e.getSource() == escape)
4 if (frame.basePanel() != null)
5 frame.basePanel().stopShowingSearchResults();
6 ...
7 }
8 }

Listing 15: A buggy program Listing 16: A revised program

null, is added in the revised program. By reverse engineer-
ing, we can deduce that a NullPointerException is thrown
in the execution of line 5 of the buggy program. There are
two possible root causes, one is the field frame and another
is the expression frame.basePanel(). The exception occurs on
the line where frame is accessed the first time in method
actionPerformed. Therefore, the possibility that frame stores
a null value cannot be excluded. The programmer needs to
check both dereference operations during debugging.

The traditional debugging
1. Set a breakpoint on line 5. Start debugging.
2. When the program is suspended, inspect the value of the
field frame.
3. The frame is not null. Deduce that the expression
frame.basePanel() returns a null value.
4. The root cause is found. Terminate debugging.

In this process, most effort concentrates on finding the
expression that returns null. This effort increases with the
number of dereference operations on the same line. The pro-
grammer has to inspect each dereference operation until she
can decide which one is the root cause. There are usually
two ways of inspection. One is to copy and evaluate an ex-
pression. Another is to repeatedly perform “step into” and
“step return” and meanwhile note which dereference opera-
tion the debugger comes to.

Another solution is putting each problematic dereference
operation in a separate line and rerun the program. Then,
the line number from the error message indicates that the
dereference operation on that line is the cause. However, the
chopped format of code is not as readable as it was. After
the bug is fixed, the code fragments need to be put back
together. Similar to the other traditional solution, it does
not scale well when the number of dereference operations
increases. Besides, this option requires changing the source
code, which is not generally possible.

The program solution
1. Manually code the following aspect, add it to the de-
buggee project, and set a breakpoint at line 9 in the added
program. Start debugging.

1 public aspect ProgramSolutionAspect {
2 before(Object receiver) :
3 (call(∗ ∗.∗(..)) || get(∗ ∗.∗))
4 && target(receiver) && withincode(public void
5 SearchManager.actionPerformed(ActionEvent))
6 && if(receiver == null) {
7 int line = thisJoinPoint.getSourceLocation().getLine();
8 if(line == 5) {
9 // set a breakpoint on this line

10 }
11 }
12 }

2. When the program is suspended, inspect the variable
thisJoinPoint and find out the signature of the method call
or the field access.
3. The signature contains stopShowingSearchResults(). De-
duce that the expression frame.basePanel() returns a null value.
4. The root cause is found. Terminate debugging.

This process automates the task of finding the root cause
but complicates the way of setting breakpoints. The pro-
gram describes the task and constructs a place for setting
the breakpoint. It needs non-trivial designing and imple-
mentation effort.

The BPL solution
1. Set a breakpoint with the following breakpoint declara-
tion using the user interface to generate the location() ex-
pression. Start debugging.

1 bp() : checkNPE() && location(
2 ”net\sf\jabref”, ”SearchManager.java”, [5]);

2. When the program is suspended, the breakpoint prints
the following information on the console. Deduce that the
expression frame.basePanel() returns a null value.

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ bp ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Panel.stopShowingSearchResults() has a null receiver.

3. The root cause is found. Terminate debugging.

This process combines the advantages of the previous two
processes. It not only automatically detects the root cause,
but also requires only trivial effort for setting the breakpoint.
This comparison highlights the great convenience and effi-
ciency of using BPL.

6. RELATED WORK
We categorize the related work into three groups, which

are breakpoints, debuggers, and pointcut languages.

6.1 Breakpoints
Modern IDEs have developed some advanced breakpoints.

The IntelliJ Java debugger supports temporal dependency
between two breakpoints: If a breakpoint A depends on an-
other breakpoint B, then A cannot be hit until B is hit.
Visual Studio allows setting breakpoints on a specific call to
a function by using the stack trace. Such a breakpoint sus-
pends the program when the call stack is exactly the same as
the one it was set on. Nevertheless, these advanced break-
points are developed based on line breakpoints, which hardly
show why breakpoints are placed there. BPL uses programs
to specify breakpoints and the intention of using the break-
points, like suspending the program at method calls or field
accesses, are explicit.

154

Chern and De Volder [6] proposed the control-flow break-
point to suspend the program according to the state of the
stack trace. The control-flow breakpoint can specify that
an event should or should not occur in the control-flow of
another event. The breakpoint specification can be gradu-
ally refined at runtime until only the expected suspensions
occur. In our approach, control flow refinements result in a
breakpoint declaration which consists of multiple cflow ex-
pressions. In addition to the control flow, we also support
sequential execution pattern.

The stateful breakpoint [4] allows programmers to sus-
pend the program when some line breakpoints are hit in
an expected order and certain values at those hits are co-
incident. A stateful breakpoint consists of three parts: a
set of named line breakpoints, variables bound by the line
breakpoints, and an execution trace composed by the names
of the line breakpoints. Our composite breakpoint has two
main differences to the stateful breakpoint. First, we pro-
vide more flexible ways specifying conditions on the bound
variables by explicitly using if(). Second, a primitive break-
point in BPL, once it has been defined, can be referenced
by multiple composite ones. A primitive breakpoint is not
reusable in stateful breakpoints.

6.2 Debuggers
Bugdel [18] is an AO debugging system in which program-

mers can set AO breakpoints by using dedicated graphical
user interfaces. It can insert statements at a breakpoint to
specify what to do when the breakpoint is hit. Its break-
point model is join-point-shadow based, which is more fine-
grained than line breakpoints. However, breakpoints defined
in Bugdel are independent from each other. Thus, they can-
not be used to compose higher-level breakpoints.

JavaDD [10] is a declarative debugger on which program-
mers can perform queries over the recorded execution his-
tory. Like other query-based debuggers, JavaDD records all
the salient events, such as method calls, or field assignments,
at runtime. In our approach, the breakpoint declarations are
similar to queries but they are written before and applied to
the following execution. Our approach records only the in-
teresting values and, thus, programmers cannot query values
which were not recorded.

Ducassé [7] complained that line-based breakpoints do not
have semantics and, therefore, proposed Coca, which is a
debugger using only events related to source abstractions
as queries. Our approach does not throw away line-based
breakpoints, because they are sometimes easier to be speci-
fied and more straightforward than breakpoints using source
abstractions. Besides, Coca uses Prolog, which is completely
different from the language of the debuggee programs, as the
query language. Learning Prolog increases the cost of using
debugging facilities. Our approach aims at minimizing the
learning effort by using a pointcut language using abstrac-
tions that are natural to programmers of object-oriented and
aspect-oriented programs, namely one similar to AspectJ.

6.3 Pointcut Languages
Tracematch [1] uses regular expressions consisting of refer-

ences to primitive pointcuts to specify an expected execution
trace. It supports free variables in specifying a trace. There-
fore, a matched trace depends on not only the order of events
but also the associated variables of the events. The design
of the composite breakpoint in BPL is greatly inspired by

Tracematch. However, there are two fundamental differ-
ences. First, a tracematch is a standalone unit and other
tracematches cannot reuse its members including definitions
of primitive events. In BPL, a primitive breakpoint can be
referred by any number of other breakpoints. Second, there
are several event kinds, such as before and after returning,
in Tracematch. BPL is only interested in before because we
want to suspend the program before the interesting events
occur.

Oarta [16] extends AspectJ with features, which are simi-
lar to some of BPL. It supports named advices by putting a
name in the declaration of an advice. It also allows declar-
ing precedence at the advice level. Our approach does not
change the syntax of AspectJ and it names advices by us-
ing Java comments. Besides, our composition specification
targets finding advice compositions at runtime instead of
defining precedence rules for weaving.

7. CONCLUSION AND FUTURE WORK
In this paper, we identified five scenarios of using break-

points. These scenarios are frequently encountered but not
supported sufficiently by existing breakpoints. Program-
mers need to manually perform some repetitive tasks, thus
debugging efficiency is decreased.

Targeting all scenarios, we proposed a breakpoint lan-
guage (BPL) which models the breakpoint as a first-class
values. Breakpoints are named and they are defined by
AspectJ-like pointcuts which use comprehensible source-level
abstractions. We devised five completely new pointcut des-
ignators and improved two or AspectJ’s pointcut designa-
tors. In our language, primitive and composite breakpoints
are treated uniformly and the composition level can be infi-
nite. It is the first language to support selecting join points
with a specific advice composition.

We illustrate the usage of our approach by means of two
example walkthroughs. The examples show that BPL has
the following advantages over the traditional debugging and
the approach using other languages.

• It allows programmers to describe the logic relation-
ship between multiple breakpoints with succinct code.

• It allows using pointcut composition() to express an ad-
vice composition in a straightforward way.

• It automatically records and prints information, such
as the source location and the hit count, of a hit break-
point and its referenced breakpoints. The information
is helpful for localizing the root cause in an additional
debugging sessions.

The pointcut composition() can also be used for other pur-
poses. For example, it can verify whether a certain advice
composition exists or not in the program. Another exam-
ple is handling the fragile pointcut problem. Sometimes,
changes to a pointcut may unexpectedly exclude or include
some join points. Therefore, behavior occurring at these join
points becomes undesired. To find the join-point differences,
the following breakpoint declarations can be used.

1 oldOne() : adviceexecution(someAzpect.oldAdvice);
2 newOne() : adviceexecution(someAzpect.newAdvice);
3 inOldNotInNew() : composition(oldOne, !newOne);
4 inNewNotInOld() : composition(newOne, !oldOne);

155

Breakpoint inOldNotInNew is hit on the excluded join points
and breakpoint inNewNotInOld is hit on the newly included
ones. In this way, the program execution is suspended at the
join points which are (not) advised in both the old and the
new versions of the program. The two breakpoints narrow
down the potential places causing the undesired behavior.

The BPL is motivated by some ad hoc scenarios based
on our past experiences and observations. To standardize
their usage, a systematic requirement analysis is needed to
enhance BPL’s generality. Some language features can be
explored more in the future. For example, the path() ex-
pression should support more types of path patterns, the
runtime interactivity should be fault-tolerant in case of an
accidental update, etc. Also, we plan to build an omniscient
debugger for advanced-dispatching languages and our BPL
can be reused as part of the built-in queries.

8. ACKNOWLEDGEMENTS
This work is partly funded by the Chinese Scholarship

Council (CSC Scholarship No.2008613009).

9. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen,

L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to AspectJ.
SIGPLAN Not., 40(10):345–364, Oct. 2005.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible AspectJ compiler. In Proceedings of the 4th
AOSD, pages 87–98, New York, NY, USA, 2005. ACM.

[3] C. Bockisch, A. Sewe, H. Yin, M. Mezini, and
M. Aksit. An in-depth look at alia4j. Journal of Object
Technology, 11(1):7:1–28, Apr. 2012.

[4] E. Bodden. Stateful breakpoints: a practical approach
to defining parameterized runtime monitors. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, ESEC/FSE ’11, pages 492–495,
New York, NY, USA, 2011. ACM.

[5] E. Bodden, F. Chen, and G. Rosu. Dependent advice:
a general approach to optimizing history-based
aspects. In Proceedings of the 8th ACM international
conference on Aspect-oriented software development,
AOSD ’09, New York, NY, USA, 2009. ACM.

[6] R. Chern and K. De Volder. Debugging with
control-flow breakpoints. In Proceedings of the 6th
international conference on Aspect-oriented software
development, AOSD ’07, pages 96–106, New York, NY,
USA, 2007. ACM.

[7] M. Ducassé. Coca: an automated debugger for C. In
Proceedings of the 21st international conference on
Software engineering, ICSE ’99, pages 504–513, New
York, NY, USA, 1999. ACM.

[8] P. E. A. Dürr. Resource-based verification for robust
composition of aspects. PhD thesis, Enschede, June
2008.

[9] M. Eisenstadt. My hairiest bug war stories. Commun.
ACM, 40(4):30–37, Apr. 1997.

[10] H. Z. Girgis and B. Jayaraman. JavaDD: a declarative
debugger for java. Technical report, 2006.

[11] B. Hailpern and P. Santhanam. Software debugging,
testing, and verification. IBM Syst. J., Jan. 2002.

[12] A. Hannousse, R. Douence, and G. Ardourel. Static
analysis of aspect interaction and composition in
component models. In Proceedings of the 10th ACM
international conference on Generative programming
and component engineering, GPCE ’11, pages 43–52,
New York, NY, USA, 2011. ACM.

[13] E. Katz and S. Katz. Incremental analysis of
interference among aspects. In Proceedings of the 7th
workshop on Foundations of aspect-oriented languages,
FOAL ’08, New York, NY, USA, 2008. ACM.

[14] B. P. Lientz and E. B. Swanson. Software
Maintenance Management. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1980.

[15] A. Marot and R. Wuyts. Detecting unanticipated
aspect interferences at runtime with compositional
intentions. In Proceedings of the Workshop on AOP
and Meta-Data for Software Evolution, RAM-SE ’09,
New York, NY, USA, 2009. ACM.

[16] A. Marot and R. Wuyts. Composing aspects with
aspects. In Proceedings of the 9th International
Conference on Aspect-Oriented Software Development,
AOSD ’10, New York, NY, USA, 2010. ACM.

[17] I. Nagy. On the design of aspect-oriented composition
models for software evolution. PhD thesis, Enschede,
June 2006.

[18] Y. Usui and S. Chiba. Bugdel: An aspect-oriented
debugging system. In Proceedings of the 12th
Asia-Pacific Software Engineering Conference,
APSEC ’05, pages 790–795, Washington, DC, USA,
2005. IEEE Computer Society.

[19] H. Yin, C. Bockisch, and M. Aksit. A fine-grained
debugger for aspect-oriented programming. In
Proceedings of the 11th annual international
conference on Aspect-oriented Software Development,
AOSD ’12, New York, NY, USA, 2012. ACM.

156

