
Efficient Privacy-Enhanced Familiarity-Based
Recommender System

Arjan Jeckmans, Andreas Peter, Pieter Hartel

Distributed and Embedded Security Group, University of Twente
{a.j.p.jeckmans,a.peter,pieter.hartel}@utwente.nl

Abstract. Recommender systems can help users to find interesting con-
tent, often based on similarity with other users. However, studies have
shown that in some cases familiarity gives comparable results to similar-
ity. Using familiarity has the added bonus of increasing privacy between
users and utilizing a smaller dataset. In this paper, we propose an efficient
privacy-enhanced recommender system that is based on familiarity. It is
built on top of any given social network (without changing its behaviour)
that already has information about the social relations between users.
Using secure multi-party computation techniques and somewhat homo-
morphic encryption the privacy of the users can be ensured, assuming
honest-but-curious participants. Two different solutions are given, one
where all users are online, and another where most users are offline. Ini-
tial results on a prototype and a dataset of 50 familiar users and 1000
items show a recommendation time of four minutes for the solution with
online users and of five minutes for the solution with offline users.

1 Introduction

Recommender systems can help users to find interesting content, for example a
movie to watch, or books to buy. These recommender systems often rely on a
large database of information from a lot of different users. With such a database
the systems then recommend content based on similarity (agreement in rating
behaviour) between users. However, studies [11, 12, 17, 25] have shown that for
taste related domains, such as movies and books, familiarity (social closeness be-
tween users) gives comparable accuracy to using similarity. Familiarity captures
how well users know each other (and thus their preferences). Using familiarity
instead of similarity removes the information need from unknown users, thus
increasing privacy between users. Since no information from unknown users is
needed, a recommender system based on familiarity also works on a smaller
dataset, leading to a higher efficiency. In this paper we focus on the generation
of recommendations using only familiarity. We leave as future work, a recom-
mender system that combines both similarity and familiarity.

As a pre-requisite for a familiarity-based recommender system, a familiarity
network needs to be known to the recommendation provider. Since this familiar-
ity information is already present in online social networks, we can leverage these
networks to provide recommendations. Our aim is to build a recommendation

system on top of existing social networks (utilizing the familiarity relationship
that is present), while preventing the social network from learning the users’
taste preferences (not giving the social network any information that it does not
have already).

While the general tastes (and possibly some specific tastes) of friends are
known, the exact details of a friend’s complete taste are usually not known.
Revealing a specific taste to friends can be embarrassing [21] as it does not
conform to the group norm, or to the societal norm as a whole. For example,
if all friends of a person dislike ‘The Hunger Games’, but that person loves the
book, if the friends find out this could be embarrassing. As such, the privacy
of the user with regards to their taste needs to be protected from both friends
(specific taste) and the online social network (general and specific taste).

To ensure the privacy of the users, we make use of secure multi-party compu-
tation and a somewhat homomorphic encryption scheme. The motivation for a
somewhat homomorphic encryption scheme (we use [4]) is: 1) it allows us to do
a (bounded) number of additions and at least one multiplication on encrypted
data, and 2) the message space is pre-determined by public parameters and is
the same across keypairs. The latter property allows for blinding values under
one key and unblinding under another.

In constructing our solution, next to privacy, we focus on the efficiency of
the solution. Our contribution is the following: First, we look at the privacy
that the weighted average recommendation formula can give to the user and
friends. We observe that weighted average based on user supplied weights does
not provide enough privacy. Based on this, we propose an adjusted formula
that offers more privacy. Second, utilizing this adjusted formula, we construct a
protocol that computes the recommendation for a user, when all his friends are
online. However, users are not guaranteed to be online in a social network. Third,
as users can be offline, we also construct a protocol where the users friends are
offline, and the user works together with the social network server to compute
the recommendations. Not having to wait for all friends to have been online to do
their part in the protocol increases the efficiency of the solution. Both protocols
are secure, assuming honest-but-curious participants.

In this paper, we will use books as our running example for recommendations.
The paper is structured as follows: Section 2 details the state of the art and
related work. Section 3 gives the problem specification and details the adjusted
recommendation formula. Section 4 outlines the cryptographic primitives that
are used. Section 5 details the solution with online friends and the solution with
offline friends. Section 6 analyzes the solutions, both in terms of privacy and
efficiency. And Section 7 gives concluding remarks with regard to the solutions.

2 Related Work

In this section, we show related work in privacy protecting recommender systems
that protect privacy through the use of cryptography and multi-party compu-
tation. In 2002, Canny [5] proposed using additive homomorphic encryption

to privately compute intermediate values of the collaborative filtering process.
These intermediate values are made public and used in singular value decompo-
sition and factor analysis, which leads to recommendations. However, the pre-
sented approach suffers from a heavy computational and communication over-
head. Moreover, due to the nature of the used recommender system (singular
value decomposition), users cannot input their familiarity information.

Hoens et al. [14] designed a privacy preserving recommender system for social
networks that computes the weighted average rating for items. It gathers input
from friends and friends of friends and onwards by first defining a group of users
involved in the computation. Then a threshold homomorphic cryptosystem is
set up. This cryptosystem, together with multi-party computation, is used to
compute the weighted average. The weights are defined by the user for his friends,
and by the friends for the friends of friends, and so on. Privacy is achieved
through both cryptographic protocols as well as anonymity through multiple
participants. The downsides of this solution are the requirement that users are
online, the setup of a big group in advance, and the heavy computational load
in the order of hours. Hoens et al. [15] designed a private recommender system
for doctors, where patient ratings are aggregated. In this scenario, there is not
a predefined group of patients and no weights are given to individual ratings or
patients. Hoens et al. offer two solutions, one based on anonymized ratings, and
one based on cryptography and multi-party computation. Again, the timing of
the solution based on cryptography is in the order of hours.

Basu et al. [2] proposed a privacy preserving version of the slope one pre-
dictor, using a threshold additive homomorphic cryptosystem. In their scenario,
different parties hold different parts of the data. In a social network setting, this
means that each friend holds his own data. The parties pre-compute the devia-
tion and cardinality matrices under encryption and make the cardinality matrix
public. Then the prediction for a single item can be computed under encryption
and all parties collaborate to decrypt the result. Their timing information, in the
order of seconds, is based on a prediction for a single user and single book. This
is after pre-computation in the order of hours. There is no support for offline
users, nor for familiarity due to the way predictions are computed.

Erkin et al. [9] proposed a collaborative filtering algorithm based on addi-
tive homomorphic cryptosystems. This algorithm requires a second semi-trusted
server to allow for users to be offline. However, in practical scenarios such a
server is usually not available. The protocol of Erkin et al. does not give weights
to the ratings. Runtime is in the order of minutes for a dataset of 1000 items
and several thousand (variable) users.

Jeckmans et al. [16] proposed to use collaborative servers as a way to allow
for offline users. A user can choose a trusted server, that will preserve the pri-
vacy on his behalf. The trusted server knows the user’s ratings and thus the user
has no privacy from this server. This trusted server can then collaborate with
another server to increase the accuracy of the recommendations, without losing
the privacy of its users. However, this is not a desirable solution for every sce-
nario. In such a distributed setting, it becomes difficult for users to give weights

to friends, when friends are on different servers. The runtime of the protocol is
in the order of minutes, and does not involve any user interaction, including the
user for which the prediction is made.

3 The Problem Specification

We consider the following problem scenario: With an online social network as
a basis, how can users use/share the taste information from/with their friends,
without leading to undesired disclosure of specific tastes. The following subsec-
tions go into more detail about the entities and their relationship, the suggested
method of using the taste information, and what undesired disclosure is.

3.1 Architecture

The system consists of three entities:

– the user, for whom a prediction has to be generated,
– the online social network, also denoted as the server, acting as a gateway to

access the user’s friends and assisting in the prediction computation, and
– the friends of the user, giving their opinions as input for the book predictions.

Because of the nature of online social networks, not all friends will be on-
line when the request for book scores is made. Because the user is unlikely to
want to wait until all friends have come online, the online social network acts as
an intermediate for the user’s friends (while not learning information about the
friends’ preferences). As such, we distinguish two scenarios; book recommenda-
tion when the user’s friends are all online, and book recommendation when the
user’s friends are all offline. It is also possible that some friends of the user are
online, while some are offline. For simplicity we take this third scenario to be
equal to book recommendation when the user’s friends are all offline.

3.2 Recommendation Formula

Before predictions can be made, the familiarity between users has to be captured.
Towards this end, the user can score his friends on their familiarity (social close-
ness) and the expected overlap in reading habits. Scoring a friend essentially
gives that friend a weight that determines how heavy his opinion counts towards
a specific book recommendation. Based on the friends’ ratings for books and the
weight for each friend, the recommender system predicts a score for each book.
This helps the user to select the next book to read.

A book prediction is denoted by pu,b, for user u, 1 ≤ u ≤ U , of book b, 1 ≤
b ≤ B, where U is the total number of users and B is the total number of books.
The recommendation formula is as follows:

pu,b =

∑Fu

f=1 qf,b · rf,b · wu,f∑Fu

f=1 qf,b · wu,f

, (1)

where Fu is the number of friends of a user u, qf,b is 1 if friend f rated book b
and 0 otherwise, rf,b the rating of friend f for book b, and wu,f the weight given
by the user u to friend f . The indication, qf,b, if a book b has been rated a friend
f is either 0 or 1, qf,b ∈ {0, 1}. The range of the prediction, pu,b, is equal to the
range of the ratings given to a book, rf,b. For example, this range can be between
0 and 5 for a 0 to 5 star rating system. The weight given to a friend, wu,f , can be
in the range between 0 and 1 excluding 0, as 0 would indicate no friendship. This
formula has been used in previous research in similarity-based [13], familiarity-
based [11] and trust-based recommendation systems [26].

However, when looking at the inherent privacy this formula can give us, we
notice two things:

1. Due to the fact that the user u learns the predictions pu,b and determines the
weights wu,f , with two prediction requests the user can learn which books
are rated by one friend, i.e. learn qf,b. This is accomplished by changing the
weight wu,f for that specific friend. For example, suppose that the user has
three friends who have rated two books. The first friend rated the first book
with a 5, the second friend rated both books with a 4, and the third friend
rated the second book with a 3. When the user request a prediction with all
weights set to 1, he will receive a prediction of 4.5 for the first book and 3.5
for the second book. Next, the user requests a prediction with the weights
of the first and second friend set to 1, and the weight of the third friend
set to 0.5. He will receive a prediction of 4.5 for the first book and 3.67 for
the second book, thus he learns that the third friend rated the second book.
Given enough runs, the user can learn qf,b for all his friends.

2. Because the user knows pu,b, wu,f , and qf,b, the only unknown values are that
of rf,b. Given enough runs, the user can also compute rf,b and completely
breach the privacy of his friends.

Consequently, when using this formula, we cannot achieve privacy at all. In-
tuitively, the user has too much control, and the friends have no input beyond
their fixed ratings. This asymmetry in the formula leads to an asymmetrical
relationship between the user and his friends. As stated by Carley and Krack-
hardt [6], friendship is not necessarily symmetric, but tends in the direction of
symmetry. In general, long strong friendships are symmetric, and newly forged
friendships are not symmetric. As such, we aim to bring symmetry to the recom-
mendation formula and balance out the power in the relationship between the
user and his friends.

Since the weight from the user to his friends is asymmetrical, we propose to
make the weight, and thus the formula, symmetrical. This is accomplished by
taking the average of the weight from the user to his friend and the weight from
the friend to the user. This results in the following formula:

pu,b =

∑Fu

f=1 qf,b · rf,b · (
wu,f+wf,u

2)∑Fu

f=1 qf,b · (
wu,f+wf,u

2)
, (2)

where wf,u is the weight given by friend f to user u, with range between 0 and
1 excluding 0. Note that this also requires a bi-directional relationship between

the friends. When looking back to the two points made before in light of this
adjusted formula, we can say:

1. Since the user can still change the weights that are given to his friends wu,f ,

the user can influence the averaged weight,
wu,f+wf,u

2 . Based on the changed
weights and change in predictions, the user can still determine qf,b as before.

2. When the user knows pu,b, wu,f , and qf,b, the values for rf,b and wf,u remain
unknown. The fact that both the upper and lower part of the prediction
formula remain unknown greatly increases the difficulty of breaching privacy.

To prevent the user from learning qf,b, the user’s influence on the weight
can be removed. However, then this recommender system would lose the user’s
control and reduce the value of the predictions. Instead, we refer to profile aggre-
gation methods [24], methods that add random ratings [8, 20], or methods that
add randomness to the output [22]. These solutions can be applied independent
of our solution and will not be addressed in this paper.

Note that the impact on accuracy of this adjusted formula has not been
determined. As this paper focusses on privacy and efficiency, and a suitable
dataset to test accuracy could not be found, we leave this as future work.

3.3 Security Model

Both the user and his friends are considered to be honest-but-curious; they will
follow the protocol but try to learn the taste of their friends. More specifically,
the user u will try to learn rf,b and wf,u, while the friends of u will try to learn
wu,f .

We also assume that the social network server is honest-but-curious; the
server will follow the protocol, while trying to learn the tastes of users. The
server will try to learn qf,b, rf,b, wu,f , wf,u, and pu,b. We assume that the users
do not collude with the server, as they do not want to impact the privacy of
their friends too much.

4 Cryptographic Primitives

To build our solutions, we make use of the cryptographic primitives described in
this section. The primitives of additive secret sharing and proxy re-encryption
are only used in the solution with offline friends.

4.1 Somewhat Homomorphic Encryption

To protect information during the protocol, we use the somewhat homomorphic
encryption scheme of Brakerski and Vaikuntanathan [4]. Specifically, we use
that this somewhat homomorphic encryption scheme allows both addition and
multiplication of the encrypted messages (though a limited, but configurable
amount), and the fact that the message space is the same across multiple key
pairs (given the same public parameters).

In the setup phase of the encryption system, the public parameters are cho-
sen. Among others, these are: the message space (which equals Zt for some
prime number t), the encrypted messages (which are represented in the ring
Rq = Zq[x]/〈f(x)〉 of polynomials over Zq for some prime number q, where the
polynomial f(x) is cyclotomic and of degree n), and the degree D of allowed
homomorphism (which indicates the amount of multiplications that can occur
under encryption). The choice of the ring Rq in relation to the prime t and degree
of homomorphism D defines the security of the encryption system.

Each party can, based on these public parameters, create a key pair consisting
of the secret key SK and the public key PK. The secret key is randomly chosen
and the public key is based on the secret key and some randomness. The public
key of user u is denoted by PKu. Given an encryption of m under the public key
PKu, denoted by [m]u, the following homomorphic properties hold (until the
error overflows, typically when the degree D has been reached): [m1]u + m2 =
[m1 +m2]u, [m1]u +[m2]u = [m1 +m2]u, [m1]u ·m2 = [m1 ·m2]u, [m1]u · [m2]u =
[m1 ·m2]u.

This scheme is semantically secure under the polynomial learning with errors
assumption. For more details, we refer to the work of Brakerski and Vaikun-
tanathan [4].

4.2 Encrypted Division

Because the homomorphic encryption system can only encrypt integers, and thus
only operate on integers, division of encrypted values is not straightforward. For
example [5]/[2] 6= [2.5] as [2.5] cannot be represented as such. Given that the
message space Zt is known and the range of the predictions pu,b is also known
and significantly smaller, a lookup table can be constructed (and precomputed)
to quickly translate the integers after division into the actual fractions they
represent. The lookup table looks like this: given two integers x and y, with
gcd(x, y) = 1 and x/y as a possible result for pu,b, the index is x · y−1 mod t
and the resulting value x/y. For integers x′ and y′ with gcd(x′, y′) 6= 1, the
division result is the same as for x = x′/ gcd(x′, y′) and y = y′/ gcd(x′, y′). We
denote the set of possible integers for x, X, the set of possible integers for y,
Y , and the range of possible predictions pu,b, P . The lookup table then has size
|{x/y | gcd(x, y) = 1, x/y ∈ P, x ∈ X, y ∈ Y }|. The size of the lookup table is
upper bounded by the size of the message space Zt. As such, division can happen
under encryption and after decryption a table lookup retrieves the actual result.

4.3 Additive Secret Sharing

An alternate method to protect information from multiple parties, while still
providing operations on that information, is additive secret sharing [10]. Unlike
encryption, where only the party with the key can decrypt it, anybody with
enough shares can extract the information. Distribution of the shares prevents
extraction of the information, but still allows us to run a protocol to use the
information. When a party has a value x that it wants to protect, it creates a

random value r ∈R Zk, where k is a security parameter. The party then creates
s = x− r. It can give r to a second party, and s to a third. Together the second
and third party can reconstruct x by x = r + s.

It is also possible to secret share a vector of values, X, of length n. The secret
sharing algorithm is then applied to each element of X individually, resulting in
the two vectors R and S, both of length n. When combined the vectors R and
S sum up to the vector X, xi = ri + si, where 1 ≤ i ≤ n.

4.4 Proxy Re-encryption

To share information between two users of the social network without a direct
connection, we use proxy re-encryption [3]. Proxy re-encryption allows us to send
a (secret) message from one user to his friends through the social network. In
proxy re-encryption, based on the keys of two users a re-encryption key can be
derived. This re-encryption key is then given to the proxy (the social network
server). When given a message encrypted under the key of one user, using the
re-encryption key the proxy can translate the message, to a message encrypted
under the key of the second user. This way an offline user can store his in-
formation on the social network encrypted under his own key. When a friend
requires access to that information, the server can translate the information to
be encrypted under the key of the friend (provided a re-encryption key has been
setup). The friend can then decrypt and use the information left by the offline
user.

We require that the re-encryption scheme is unidirectional.In a unidirectional
scheme the users do not have to share their private keys to create a re-encryption
key. To create a re-encryption key from the user to a friend, only the user’s
private key and the friend’s public key are needed. We further require that the
re-encryption scheme is one-hop only, so that only friends of the user can read
his information. Some examples of schemes that satisfy these requirements are:
Ateniese et al. [1], Libert and Vergnaud [18], and Chow et al. [7]. The proxy re-
encryption scheme can be chosen independent of our protocol and is only used
to give the friends’ information to the user beforehand.

5 Proposed Solutions

In this section we provide the details of the protocols to compute the book rec-
ommendations. A protocol is given when all friends are online, and a protocol
is given when all friends are offline. For convenience, we make some small cos-
metic alterations to the prediction formula 2. We set the value of rf,b to 0 when
qf,b = 0, thus rf,b becomes equal to qf,b · rf,b. We also divide wu,f and wf,u by 2
before running the protocols (without renaming), remove the need to divide by 2
during the protocol.

User u Server Friends Fu
(PKu, SKu) (PKu) (PKu)
(wu,f , 1 ≤ f ≤ Fu) (Rf , Qf , wf,u)

∀f : 1 ≤ f ≤ Fu
1. [wu,f]u

[wu,f]u−−−−−→
[wu,f + wf,u]u = [wu,f]u + wf,u

∀b : 1 ≤ b ≤ B
2. [nf,b]u = [wu,f + wf,u]u · rf,b

[nf,b]u←−−−−
[nb]u =

∑Fu
f=1[nf,b]u

3. [df,b]u = [wu,f + wf,u]u · qf,b
[df,b]u←−−−−

[db]u =
∑Fu
f=1[df,b]u

4. ξb ∈r Z∗
t

[db · ξb]u = [db]u · ξb
[db·ξb]u←−−−−−

db · ξb
d−1
b · ξ

−1
b

[d−1
b · ξ

−1
b]u

[d−1
b

·ξ−1
b

]u−−−−−−−→
[d−1
b]u = [d−1

b · ξ
−1
b]u · ξb

[pu,b]u = [nb]u · [d−1
b]u

[pu,b]u←−−−−
5. pu,b

Fig. 1. Book Recommendation Protocol with Online Friends

5.1 Solution with Online Friends

Fig. 1 shows the recommendation protocol for user u with online friends. We
assume that, before the protocol is run, the user u has set up his keys for the
somewhat homomorphic encryption scheme, {PKu, SKu}, and distributed the
public key. The protocol works as follows:

1. Each friend f of the user u computes their weight wu,f +wf,u. To do this, the
user u encrypts wu,f for each friend under his own key, and sends [wu,f]u to
the corresponding friend f . The friends compute [wu,f +wf,u]u = [wu,f]u +
wf,u.

2. Given the encrypted weight, each friend computes the impact of his ratings,
(wu,f + wf,u) · rf,b, for each book. Recall that rf,b = 0, when the book
is unrated. The friends compute [nf,b]u = [wu,f + wf,u]u · rf,b, and send

[nf,b]u to the server. The server sums the values received by the friends into

[nb]u =
∑Fu

f=1[nf,b]u for each book.
3. In similar fashion, the normalization factor db is computed. The friends com-

pute [df,b]u = [wu,f +wf,u]u · qf,b, and send [df,b]u to the server. The server

sums the values received by the friends into [db]u =
∑Fu

f=1[df,b]u for each
book.

4. To compute the predictions pu,b, a division has to be performed. Towards this
end, the server selects random values ξb from the multiplicative domain of
the message space Z∗t and blinds db multiplicatively for each book, [db ·ξb]u =
[db]u · ξb. The resulting values [db · ξb]u are sent to the user u. The user u
decrypts to db · ξb and computes the inverse, d−1b · ξ

−1
b , for each book. These

inverses are encrypted again under the users key, [d−1b · ξ
−1
b]u, and sent to

the server. The server removes the blinding by multiplying with the random
values ξb again, [d−1b]u = [d−1b · ξ−1b]u · ξb. The server then divides nb by
db for each book to determine the predictions, [pu,b]u = [nb]u · [d−1b]u. The
encrypted predictions are then sent to the user u.

5. The user u decrypts the received predictions and uses the precomputed di-
vision lookup table to determine the actual predictions.

5.2 Solution with Offline Friends

Usage of Secret Sharing and Proxy Re-encryption Each friend f of the
user secret shares the rating vector Rf and weight wf,u. The rating vector Rf is
split into the vectors Sf and Tf following the secret sharing method. Similarly,
the weight wf,u is split into xf,u and yf,u. As the secrets will be reconstructed
under encryption, we set the security parameter k of the secret sharing scheme
equal to the message space t of the homomorphic encryption system. The friend
stores Sf and xf,u on the server. The vectors Tf and Qf as well as the value
yf,u will be distributed to the user u using proxy re-encryption. Therefore, these
values are stored under encryption at the server and the re-encryption key to
the user u is computed and also stored on the server.

Protocol Fig. 2 shows the recommendation protocol for user u with offline
friends. We assume that, before the protocol is run, the required secrets Tf , Qf ,
yf,u, 1 ≤ f ≤ Fu have been distributed and that both the user u and the
server have set up their keys for the somewhat homomorphic encryption scheme,
{PKu, SKu} and {PKs, SKs} respectively, and exchanged public keys. The pro-
tocol works as follows:

1. Both user u and the server compute the weight, wu,f +wf,u, for each friend
under one another’s public key. The weight is computed by wu,f + wf,u =
wu,f +yf,u+xf,u, where u holds wu,f and yf,u, and the server holds xf,u. The
user u computes [wu,f + yf,u]u and sends this to the server, while the server
computes and sends [xf,u]s. This allows the user to compute [wu,f + wf,u]s
and the server to compute [wu,f + wf,u]u.

User u Server
(PKu, SKu, PKs) (PKu, PKs, SKs)
(Tf , Qf , wu,f , yf,u, 1 ≤ f ≤ Fu) (Sf , xf,u, 1 ≤ f ≤ Fu)

∀f : 1 ≤ f ≤ Fu
1. [wu,f + yf,u]u [xf,u]s

[wu,f+yf,u]u−−−−−−−−−→
[xf,u]s←−−−−

[wu,f + wf,u]s = [xf,u]s + (wu,f + yf,u) [wu,f + wf,u]u = [wu,f + yf,u]u + xf,u

∀b : 1 ≤ b ≤ B
2. [zb]s =

∑Fu
f=1[wu,f + wf,u]s · tf,b [ab]u =

∑Fu
f=1[wu,f + wf,u]u · sf,b

ξ1,b ∈r Zt
[zb + ξ1,b]s = [zb]s + ξ1,b
[−ξ1,b]u

[zb+ξ1,b]s,[−ξ1,b]u−−−−−−−−−−−−→
3. [db]s =

∑Fu
f=1[wu,f + wf,u]s · qf,b zb + ξ1,b

ξ2,b ∈r Z∗
t [zb]u = [−ξ1,b]u + (zb + ξ1,b)

[db · ξ2,b]s = [db]s · ξ2,b [nb]u = [zb]u + [ab]u
[ξ2,b]u

[db·ξ2,b]s,[ξ2,b]u−−−−−−−−−−−→
4. db · ξ2,b

d−1
b · ξ

−1
2,b

[d−1
b]u = [ξ2,b]u · (d−1

b · ξ
−1
2,b)

[pu,b]u = [nb]u · [d−1
b]u

[pu,b]u←−−−−
5. pu,b

Fig. 2. Book Recommendation Protocol with Offline Friends

2. Given the encrypted weights, both the user u and the server can compute the
impact of the secret shared ratings rf,b = tf,b + sf,b for each book. The user

u computes [zb]s =
∑Fu

f=1[wu,f +wf,u]s · tf,b and the server computes [ab]u =∑Fu

f=1[wu,f +wf,u]u · sf,b. Together, this sums up (ignoring encryption for a

moment) to zb +ab =
∑Fu

f=1(wu,f +wf,u) · (tf,b +sf,b) =
∑Fu

f=1(wu,f +wf,u) ·
rf,b = nb. The user u selects random values ξ1,b from the domain of message
space Zt and uses them to blind [zb]s. The resulting encryptions, [zb + ξ1,b]s,
and the encryptions to remove the blinding, [−ξ1,b]u, are sent to the server.
Note that the server can only remove the blinding using encryptions under
the user’s public key.

3. The user u computes the combined weight to normalize the prediction using
[db]s =

∑Fu

f=1[wu,f + wf,u]s · qf,b for each book. These are blinded multi-
plicatively with random values ξ2,b, taken from the multiplicative domain

of the message space Z∗t . The resulting encryptions, [db · ξ2,b]s, and en-
cryptions to remove the blinding after inversion, [ξ2,b]u, are sent to the
server. Meanwhile, the server removes the blinding values ξ1,b and recon-
structs [nb]u = [zb]u + [ab]u.

4. The server decrypts the received encryptions, db · ξ2,b, and inverts them,
resulting in d−1b · ξ−12,b . Under the public key of u, the blinding values ξ2,b

are removed, resulting in the encryptions [d−1b]u. The server divides nb by
db under the public key of u, [pu,b]u = [nb]u · [d−1b]u, for each book. The
resulting encrypted predictions [pu,b]u are sent to the user u.

5. The user u decrypts the received predictions and uses the precomputed di-
vision lookup table to determine the actual predictions.

6 Analysis of the Solutions

In this section, we first look at the privacy that the two protocols offer in relation
to the security model. Then we look at the complexity (computational and com-
municational) of the protocols. Finally, we look at the performance (runtime) of
the protocols with different sized datasets.

6.1 Privacy

Recall from the security model that all parties are honest-but-curious. The user
u will try to learn rf,b and wf,u. Friends will try to learn wu,f . The server will
try to learn qf,b, rf,b, wu,f , wf,u, and pu,b. Given that the parties are honest-
but-curious, each party should not be able to distinguish between a protocol
execution and a simulation of the protocol based only on the party’s input and
output. However, only the user u has an output in the protocol. As such, for the
server and friends, each message they receive should be indistinguishable from
random messages. For the user, messages may depend on the output pu,b.

Online Friends In this protocol, the user’s friends only see encrypted values,
encrypted under the key of the user u. Given that the homomorphic encryption
scheme is semantically secure [4], the encrypted values are indistinguishable from
encryptions of random messages. As the friends also get no output from the
protocol, the protocol can easily be simulated and the friends learn nothing
from the protocol.

The server also only sees encrypted values. As the homomorphic encryption
scheme is semantically secure, the encrypted values are indistinguishable from
encryptions of random messages. The server receives no output from the pro-
tocol, and the protocol can easily be simulated. Thus the server learns nothing
from running the protocol.

After the user encrypts and sends wu,f , the user only receives db · ξb and
pu,b for all books. As pu,b is the output of the prediction formula 2, the user
should always learn this and does not constitute a breach of privacy. The other

value, db, is randomized multiplicatively over the full multiplicative domain by
ξb, and is thus indistinguishable from a value chosen at random from the domain.
Because this can also be easily simulated, the privacy of db is preserved. The only
exception to this is when db = 0, in this case db · ξb is also equal to 0. This only
happens when none of the users friends have given a rating for b, i.e. qf,b = 0
for 1 ≤ f ≤ Fu. This situation is deemed acceptable as qf,b is not required to be
private. By setting d−1b · ξ

−1
b to 0, the protocol can continue without the server

learning anything, resulting in the prediction pu,b = 0.

Offline Friends In the protocol with offline friends, the privacy of the user
towards his friends is not in danger, as they are not involved in the protocol. In
the other direction, each friend shares some information with both the user and
the server. The user receives through the proxy re-encryption Tf , Qf , and yf,u,
and the server receives Sf and xf,u. Except for Qf , all these values are additive
secret shares and hence indistinguishable from random values [10]. This means
that these values can be used as inputs to the protocol. Given that the proxy
re-encryption scheme is secure, and Qf is not required to be private from the
user u, the privacy of each friend is not breached.

During the protocol, next to encrypted values, the user only receives pu,b. As
the homomorphic encryption scheme is semantically secure, the encrypted values
are indistinguishable from encryptions of random messages. These messages can
thus be simulated. Furthermore, the user receives pu,b, as intended, as output
of the prediction function. Thus from the user’s perspective the protocol can be
completely simulated.

Next to encrypted values, which are indistinguishable from encryptions of
random values, the server only receives zb + ξ1,b and db · ξ2,b. The value of zb
is protected by additive blinding, using ξ1,b, and thus indistinguishable from a
random value and possible to simulate. For db, as in the protocol with online
friends, multiplicative blinding, using ξ2,b, is used. Thus db is indistinguishable
from a random value and can be simulated. Only in the case that db = 0, will
the server learn something about qf,b, which is a violation of the privacy of the
user’s friends. This can be avoided by setting [db · ξ2,b]s to [ξ2,b]s and [ξ2,b]u to
[0]u when db = 0. This is only the case when qf,b = 0, for 1 ≤ f ≤ Fu, which the
user knows. The server will receive ξ2,b instead of 0, which is a random value,
and be unable to decrypt [0]u as it is protected by the user’s key. The resulting
prediction pu,b will then still be 0.

6.2 Complexity

Table 1 shows the complexity of the computational (comp) and communicational
(comm) costs of each step in the protocol with online friends. The costs are given
in big-O notation and for each party. The first step shows a complexity related to
the number of friends for the user u, and constant for each friend. The second and
third step, where the friends contribution is calculated, shows a complexity in
the order of number of books for each friend, and in the order of both the number

of books and friends for the server. These steps have the largest complexity. The
fourth step shows a complexity in the order of number of books for both the user
and the server. The final step shows a complexity on the order of the number
of books for the user. All steps together it seems that the server has the most
work to do.

Table 1. Complexity of the protocol with online friends, Fu is the number of friends
and B the number of books

User u Server Friend
step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(1) O(1)
2. O(BFu) O(BFu) O(B) O(B)
3. O(BFu) O(BFu) O(B) O(B)
4. O(B) O(B) O(B) O(B)
5. O(B)

Table 2 shows the complexity of the protocol with offline friends. The notation
is the same as the previous table. The first step shows a complexity in the order
of number of friends for both the user u and the server. The second step shows a
complexity related to both the number of books and number of friends for both
the user and the server. This step has the greatest complexity in the protocol.
The third step shows a complexity in the order of number of books and number
of friends for the user, and a complexity in the order of number of books for the
server. The fourth step shows a complexity in the order of the number of books.
The final step shows a complexity in the order of number of books for the user.

Table 2. Complexity of the protocol with offline friends, Fu is the number of friends
and B the number of books

User u Server Friend
step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(Fu) O(Fu)
2. O(BFu) O(B) O(BFu) O(B)
3. O(BFu) O(B) O(B) O(B)
4. O(B) O(B) O(B)
5. O(B)

The complexity of the homomorphic operations on the ciphertexts depends
mainly on the degree of the used polynomials n. However, n also has an impact
on the ring Rq and thus on the security of the encryption scheme. As such,
there exist a trade-off between the complexity (and efficiency) of the individual
homomorphic operations and the security offered to the user. In the performance
section, we shall come back to this trade-off.

6.3 Performance

To analyze the performance of the two protocols, an implementation of the
somewhat homomorphic encryption scheme has been made in C++ based on
the FLINT library. Based on this implementation a prototype program of the
protocols has been constructed. The prototype is single threaded and computes
the different steps for each party sequentially on the same machine. As such,
network latency is not taken into account. All tests are carried out on an Intel
Xeon at 3GHz, with 2GB of RAM. As input data, a synthetic dataset has been
constructed, as there are no publicly available datasets that have explicit fine-
grained familiarity values. Some datasets have friendship links, but only as a
binary value. The synthetic dataset consists of either 50, 100, or 200 friends that
have each rated 25 books. The total number of books is either 500, 1000, or
2000. Note that it is not possible for 50 friends to rate 2000 books, with only 25
ratings per friend (denoted with n/a). This gives us performance information for
different numbers to observe how the solutions scale. A rating is a score between
1 and 100, and the weights between users, after division by 2, is between 1 and
50.

We set the parameters of the somewhat homomorphic encryption scheme to
the following, based on the suggestions of Naehrig et al. [23]. The message space
t is set to 5000011, to allow for protocol runs with a maximum of 500 friends.
For n we take 4096, resulting in a q of 84 bits and a logarithm of the attacker
runtime of 255 for the decoding attack [19]. Successfully running the decoding
attack breaks the security of the encryption scheme, therefore Naehrig et al. [23]
suggest an attacker runtime for the decoding attack of at least 128, giving an
equivalent of 128 bits security, or an attack complexity of 2128. Table 3 shows the
runtime performance of the prototype implementation with these parameters.

Table 3. Runtime of the prototype with attacker runtime logarithm of 255

online books offline books
friends 500 1000 2000 friends 500 1000 2000
50 113s 236s n/a 50 132s 282s n/a
100 149s 309s 706s 100 182s 387s 1021s
200 222s 456s 988s 200 282s 588s 1477s

As can be seen from the table, the prototype for the protocol with online
friends requires just under 2 minutes for the smallest dataset and over 16 minutes
for the largest dataset. As expected, the prototype for the protocol with offline
friends is slower. This prototype takes a little over 2 minutes for the smallest
dataset and over 24 minutes for the largest dataset. This protocol has the benefit
that friends need not be online, but requires more time to protect the information
of those friends. When looking at the running times for the different datasets,
we see a linear trend with respect to the number of books and a sub linear trend
with respect to the number of friends. When looking at the protocol complexity,

this is to be expected. Most operations have to be done per book and not per
friend, but computing the impact of each friend on each book is linear in both
(and the slowest step in the protocols).

We can lower the security of the somewhat homomorphic encryption scheme
in order to gain a speed increase of the protocols. This lowered security implies
that it is easier, but still very difficult, to break the semantic security of the
encryption scheme and recover encrypted messages. Should encrypted messages
be recovered, privacy is lost. Towards this end, we take for n 2048, resulting in
a q of 83 bits and a logarithm of the attacker runtime of 75. Table 4 shows the
runtime performance with these parameters offering lowered security, but more
speed.

Table 4. Runtime of the prototype with attacker runtime logarithm of 75

online books offline books
friends 500 1000 2000 friends 500 1000 2000
50 50s 102s n/a 50 59s 120s n/a
100 68s 137s 287s 100 85s 170s 442s
200 104s 209s 441s 200 134s 267s 617s

From the table we can see that these parameters result in runtimes that are
more than 2 times faster than the more secure parameters. As expected, the
running time relations between the different datasets remains the same. The
desired level of security has a large impact on the running time of the protocols,
but it does not change the basic properties of the protocols.

7 Conclusion

In this paper, we proposed an efficient privacy-enhanced familiarity-based recom-
mender system. We proposed an adjusted recommendation formula that provides
more privacy than weighted average with user supplied weights. Furthermore,
two different protocols have been given, one where all friends of the user are
online, and another where friends are offline. In both cases, a bi-directional
friendship is assumed. The privacy of these protocols has been analyzed, and
two edge cases have been found and fixed. The protocols achieve privacy in the
honest-but-curious model.

We have implemented the somewhat homomorphic encryption scheme of
Brakerski and Vaikuntanathan [4]. Based on this implementation, a prototype
of the two protocols has been built and the efficiency of them has been ana-
lyzed. The prototype is limited to a single machine and single thread, and does
not show the impact of latency. The prototype shows a runtime in the order of
minutes with a linear trend with regards to scaling of the input set. This is a
significant improvement over the work of Hoens et al. [14], the previous privacy-
enhanced recommender systems with user supplied weights, which also assumed

honest-but-curious participants and ran in the order of hours. Furthermore, not
all users need to be online at some or all stages of the protocol, which is required
by most related work. When we compare our work to the work of Erkin et al. [9],
which assumes honest-but-curious participants and allows for offline users, we
can see the difference in slowdown of the protocol when going from online to
offline. The slowdown caused by our protocol is less than 1.5 times, while the
slowdown of Erkin et al. is more than 6 times.

For future work, we would like to see if the efficiency of the protocols can
be improved further. Furthermore, given our implementation, we would like to
see the influence of somewhat homomorphic encryption, as opposed to additive
homomorphic encryption, on similar problems.

Acknowledgement This work is partially funded by the THeCS project as
part of the Dutch national program COMMIT.

References

1. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security, 9(1):1–30, Feb. 2006.

2. A. Basu, J. Vaidya, and H. Kikuchi. Efficient privacy-preserving collaborative
filtering based on the weighted slope one predictor. Journal of Internet Services
and Information Security (JISIS), 1(4):26–46, Nov. 2011.

3. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT’98,
volume 1403 of Lecture Notes in Computer Science, pages 127–144. Springer Berlin
/ Heidelberg, 1998.

4. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In Proceedings of the 31st annual confer-
ence on Advances in cryptology, CRYPTO’11, pages 505–524, Berlin, Heidelberg,
2011. Springer-Verlag.

5. J. F. Canny. Collaborative filtering with privacy. In IEEE Symposium on Security
and Privacy, pages 45–57, 2002.

6. K. M. Carley and D. Krackhardt. Cognitive inconsistencies and non-symmetric
friendship. Social Networks, 18(1):1–27, 1996.

7. S. S. M. Chow, J. Weng, Y. Yang, and R. H. Deng. Efficient unidirectional proxy
re-encryption. In Proceedings of the Third international conference on Cryptology
in Africa, AFRICACRYPT’10, pages 316–332, Berlin, Heidelberg, 2010. Springer-
Verlag.

8. N. Dokoohaki, C. Kaleli, H. Polat, and M. Matskin. Achieving optimal privacy in
trust-aware social recommender systems. In Proceedings of the Second international
conference on Social informatics, SocInfo’10, pages 62–79, Berlin, Heidelberg, 2010.
Springer-Verlag.

9. Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Generating private recom-
mendations efficiently using homomorphic encryption and data packing. IEEE
Transactions on Information Forensics and Security, 7(3):1053–1066, 2012.

10. O. Goldreich. Foundations of cryptography: a primer. Foundations and Trends in
Theoretical Computer Science, 1:1–116, Apr. 2005.

11. G. Groh and C. Ehmig. Recommendations in taste related domains: Collaborative
filtering vs. social filtering. In In Proc ACM Group07, pages 127–136, 2007.

12. I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman.
Personalized recommendation of social software items based on social relations. In
Proceedings of the third ACM conference on Recommender systems, RecSys ’09,
pages 53–60, New York, NY, USA, 2009. ACM.

13. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic frame-
work for performing collaborative filtering. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 230–237, 1999.

14. T. Hoens, M. Blanton, and N. Chawla. A private and reliable recommendation
system for social networks. In Social Computing (SocialCom), 2010 IEEE Second
International Conference on, pages 816–825, Aug. 2010.

15. T. R. Hoens, M. Blanton, and N. V. Chawla. Reliable medical recommendation
systems with patient privacy. In Proceedings of the 1st ACM International Health
Informatics Symposium, IHI ’10, pages 173–182, New York, NY, USA, 2010. ACM.

16. A. Jeckmans, Q. Tang, and P. Hartel. Privacy-preserving collaborative filtering
based on horizontally partitioned dataset. In Collaboration Technologies and Sys-
tems (CTS), 2012 International Conference on, pages 439–446, May 2012.

17. K. Lerman. Social networks and social information filtering on digg. Computing
Research Repository (CoRR), abs/cs/0612046:1–8, 2006.

18. B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In Proceedings of the Practice and theory in public key cryptography,
11th international conference on Public key cryptography, PKC’08, pages 360–379,
Berlin, Heidelberg, 2008. Springer-Verlag.

19. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In Proceedings of the 11th international conference on Topics in cryptology: CT-
RSA 2011, CT-RSA’11, pages 319–339, Berlin, Heidelberg, 2011. Springer-Verlag.

20. A. Machanavajjhala, A. Korolova, and A. D. Sarma. Personalized social recommen-
dations: accurate or private. Proceedings of the VLDB Endowment, 4(7):440–450,
Apr. 2011.

21. J. Masthoff and A. Gatt. In pursuit of satisfaction and the prevention of em-
barrassment: affective state in group recommender systems. User Modeling and
User-Adapted Interaction, 16:281–319, 2006.

22. F. McSherry and I. Mironov. Differentially private recommender systems: building
privacy into the netflix prize contenders. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 627–636,
2009.

23. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, CCSW ’11, pages 113–124, New York, NY, USA, 2011. ACM.

24. R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J.-P. Hubaux. Preserving
privacy in collaborative filtering through distributed aggregation of offline profiles.
In Proceedings of the third ACM conference on Recommender systems, RecSys ’09,
pages 157–164, New York, NY, USA, 2009. ACM.

25. R. Sinha and K. Swearingen. Comparing recommendations made by online systems
and friends. In In Proceedings of the DELOS-NSF Workshop on Personalization
and Recommender Systems in Digital Libraries, 2001.

26. P. Victor, M. Cock, and C. Cornelis. Trust and recommendations. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,
pages 645–675. Springer US, 2011.

