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Abstract—Operators use link dimensioning to provision net-
work links. In practice, traffic averages are obtained via SNMP
are used to roughly estimate required capacity. More accurate
solutions often require traffic statistics easily obtained from
packet captures, e.g. variance. However, packet capturing may
not be trivial in high-speed links. Aiming scalability, operators
often deploy packet sampling on monitoring, but little is known
how it affects link dimensioning. In this paper we assess the
feasibility of lightweight link dimensioning using sFlow, which is
a widely-deployed traffic monitoring tool. We implement sFlow
sampling algorithm and use a previously proposed and validated
dimensioning formula that needs traffic variance. We validate our
approach using packet captures from real networks. Results show
that the proposed procedure is successful for a range of sampling
rates and that, due to randomness of sampling algorithm, the
error introduced by scaling the traffic variance yields more
conservative results that cope with short-term traffic fluctuations.

Index Terms—Link dimensioning; packet sampling; sFlow.

I. INTRODUCTION

Link dimensioning is often used by network operators aim-
ing at optimal resources allocation in the network infrastruc-
ture or for network planning. Commonly, network operators
use traffic averages obtained by pulling SNMP MIBs (e.g.,
octet counter), with graphical support provided by tools such
as MRTG (Multi Router Traffic Grapher). These approaches,
often referred to as rules of thumb, simply add to the traffic
average a fixed amount of bandwidth as a safety margin.
This margin may depend on other factors such as time of
the day. Several alternatives to these simple rules of thumb
have been proposed in the past. Most of these require packet-
level measurements. Traffic statistics are computed at packet
level and applied to dimensioning formulas. For instance,
in [1], [2] the authors propose and validate a dimensioning
formula that requires traffic mean and traffic variance. Both
parameters can easily be obtained from packet traffic mea-
surements. However, due to increasing traffic rates, full packet
capturing in high-speed links may not be trivial. To avoid
measurements overload and still have packet-level granularity,
network operators commonly deploy packet sampling within
the traffic monitoring process. sFlow, for example, is a widely
deployed tool that has the goal of enabling packet-level traffic
monitoring in high-speed switched networks. sFlow provides
sampled packet measurements that could be used for link

dimensioning. However, little is known about the impact of
sampled data on link dimensioning procedures.

Contribution. In this paper we assess the feasibility of
lightweight link dimensioning using sFlow sampling algo-
rithm. We adopt the link dimensioning formula proposed in
[1], [2]. Such formula requires traffic statistics that may be
affected by packet sampling, namely mean rate and traffic
variance. We assess the impact of various sampling rates
on estimations of required link capacity. To validate our
experiments, we apply the sFlow sampling algorithm as found
in typically deployed sFlow tools to real network traffic traces
captured in several different locations around the globe. We
show that even with sampled data and simple procedures
for scaling traffic average and variance, the results from the
dimensioning formula are accurate when compared to an em-
pirically defined ground truth. It is important to highlight that
the evaluation and comparison of different packet sampling
strategies is not the focus of this paper and, hence, we only
implement the sampling approach as defined in [3].

Related work. To the best of our knowledge, works on
assessing the impact of sFlow sampling on link dimensioning
have not been done yet. However, previous works such as
[6] have proposed new sampling approaches, namely adaptive
sampling, in which they can estimate traffic load and variance
from sampled traces. Adaptive packet sampling was also
studied in [7] in the context of flow-level traffic measurements.
Our work differs from the previous ones in that we do not
aim at proposing a new sampling strategy, but to study the
potential of having a lightweight link dimensioning procedure
that uses sampled traffic data provided by a widely deployed
monitoring tool. We believe that gaining this understanding
can positively affect the deployment of advanced link dimen-
sioning procedures in operational networks. In addition, we
validate our study on a large and heterogeneous measurements
dataset consisted of real network traffic traces.

II. SFLOW SAMPLING

sFlow [3] is a monitoring technology that uses packet filter-
ing and sampling to provide scalable packet-based monitoring
in high-speed networks. The monitoring architecture of sFlow
consists of agents embedded in switches and routers and a
centralized collector. In the context of this work, we focus
on the sFlow packet sampling algorithm that is located within



the sFlow agents. According to [3], in sFlow a flow is defined
as the set of all packets that are received by an interface, go
through the switch or router and are sent to another interface.

In the context of link dimensioning we are interested in
the whole traffic aggregate and, therefore, we assume that
all observed packets undergo the sampling procedure (i.e.,
no packet filtering). Although different sampling algorithms
can be used, for this paper we consider the random sampling
strategy described in the documentation available at InMon
website1 and implemented by well-known sFlow tools, such
as pmacct2. In such algorithm, the decision of sampling a
packet is based on a randomly generated counter such that in
average 1 in N packets are sampled. This counter tells the
algorithm how many packets to skip before sampling one.
The counter is therefore progressively decremented for every
received packet until it triggers the sampling of a packet.
Typically, the random number generator yields uniformly
distributed numbers and is seeded with the system’s current
time. Note that implementations of the sampling algorithm
may vary from vendor to vendor. The study of the impact of
other sampling techniques on link dimensioning is planned as
future work.

III. LINK DIMENSIONING

The link dimensioning approach used in this paper was
originally proposed and validated for traffic measurements
without sampling in [1], [2]. Aiming at “link transparency”,
this approach provides dimensioning in which users almost
never perceive network performance degradations due to lack
of bandwidth. To statistically assure transparency to users, the
provided link capacity C should satisfy P{A(T ) ≥ CT} ≤ ε,
where A(T ) denotes the total amount of traffic arriving in
intervals of length T , and ε indicates the probability that the
traffic rate A(T )/T is exceeding C at the timescale T . In
[1], [2] a bandwidth provisioning formula is provided that
requires that traffic aggregates A(T ), at timescale T , are
Normal distributed and stationary. The link capacity C(T, ε)
needed to satisfy the condition above can be calculated by:

C(T, ε) = ρ+
1

T

√
−2 log (ε) · υ(T ) , (1)

where the mean traffic rate ρ is increased by a term that can
be seen as a “safety margin” depending on the variance υ(T )
of A(T ).

Relying on the variance υ(T ) this bandwidth provisioning
formula is able to take into account the impact of possible
traffic bursts on the required link capacity. In addition, it is
very flexible: network operators can choose T and ε according
to the QoS that they want to provide to their customers. For
example, while larger T (i.e., around 1s) would be enough to
provide good quality of experience to users on web browsing,
shorter T (i.e., milliseconds scale) should be chosen if real
time applications are predominant in the network. The value
for ε should be chosen in accordance to the desired QoS.

1http://www.inmon.com
2http://www.pmacct.net

Essentially, the lower ε the more importance is given to traffic
bursts of size T when computing the required link capacity.

Eq. (1) requires that a good estimation of the mean traffic
ρ and the variance υ(T ) is available. In order to apply the
equation to sampled traffic, we propose the following simple
procedure to estimate the original mean and the variance of the
original traffic (before sampling). Let Li(T ) be the amount of
sampled traffic (in bytes) observed in time interval i of length
T . The original amount of traffic Ai,est(T ) in that interval can
be estimated by:

Ai,est(T ) = r · Li(T ) ,

where r is the inverse of the sampling rate (e.g., r = 100
for 1: 100 sampling). The estimated mean ρest and variance
υest(T ) are given by, respectively:

r

nT

n∑
i=1

Li(T ) and
r2

n− 1

n∑
i=1

(Li(T )− ρs)2 ,

where n is the number of monitored intervals of duration T
and ρs is the mean traffic rate of the sampled traffic. As can be
seen, the mean and variance of the sampled traffic are scaled
by a factor of r and r2, respectively.

It should be noted that, while ρest is an unbiased estimator
of the mean traffic rate ρ, the variance may be overestimated
especially for small T and large r because the additional
variance introduced by the sampling process is not taken
into account. However, the scaling by r, respectively r2, is
easy to implement and does not require any modification in
the equipment nor any parameter tuning by the user. The
impact of the estimation error on the performance of the link
dimensioning formula is further studied in this paper. It might
be possible to obtain better estimators of traffic statistics.
For example, we could make use of the sample pool (i.e.,
packet counter) available in sFlow datagrams to calculate the
precise sampling rate on every datagram. Such investigation
is, however, envisioned as future work.

IV. EXPERIMENTS

A. Measurements Dataset

The dataset used in this paper consists of IP traffic captured
using tools such as tcpdump. Packet-level measurements
allow us to validate the experimental results against an em-
pirically defined ground truth. The dataset comprises 284 15-
minute traces3, totaling 71 hours of captures. These captures
were done in 6 different locations, from 2011 to 2012, and
account for a total of more than 11 billion packets.

In location A (2011), an aggregate link 2 × 1 Gb/s was
measured during 24 consecutive hours. This link connects
a building to the gateway of a university. Measurements of
location B (2012) and C (2012) took place at the gateway
of two universities. In B a 10 Gb/s link was measured for
15 minutes every hour during 24 consecutive hours. The link
comprises all incoming and outgoing traffic from the university

3Trace duration of 15 minutes has been chosen in accordance with [1], [2].
Longer time periods are generally not stationary due to the diurnal pattern.
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Fig. 1. (a) mean traffic; (b) average number of packets.

including student residences. In C an aggregate link (155 Mb/s
and 40 Mb/s) was measured. C’s traces are captures of the first
15 minutes of every full hour during several days. Traces from
locations D (2011) and E (2011–2012) come from the CAIDA
public repository4. These are 1-hour long traces measured in
different days. Two 10 Gb/s links, interconnecting two U.S.
cities, were measured at each location. Finally, traces from
location F (2012) come from the MAWI public repository. F
consists of traffic captures in a trans-pacific link. No additional
information on link capacity and load is provided by MAWI5.
For all captures directly performed by us (i.e., locations A,
B and C), no packet losses were observed. From the CAIDA
website we know that, for one link of the location D’s pair,
packet losses are likely to happen (but they do not keep record
of such losses). For traces from location F , no information on
packet loss is provided by MAWI.

Due to the nature of measured links, mean traffic is not
expected to be constant over the whole measurement period.
Fig. 1a shows the average, minimum and maximum traffic
rate per 15 minutes for each location. Locations with higher-
capacity links are the ones in which traffic varies most. In the
case of the 24-hour measurements from A and B, differences
between minimum and maximum rates are due to traffic
dissimilarities in diurnal and overnight periods. Fig. 1b shows
the average number of packets per 15-minute trace for each
location. From this figure, one can infer, for each location,
the average amount of packets after applying packet sampling
techniques with different rates.

In this work we focus on an offline sFlow operation due to
the fact that we need the raw packet data, i.e., the complete
packet traces, in the validation of the experimental results.
The sampling is, therefore, performed offline by applying the
algorithm described in Sec. II.

B. Traffic Gaussianity

Gaussianity of traffic is a key requirement of Eq. (1) and,
hence, it is an important part of the validation procedure to
assure that sampled traffic is still Gaussian. Let T be the
timescale of traffic aggregation and L1(T ), . . . , Ln(T ) the
amount of traffic observed in time periods 1, 2, . . . , n of length
T . For any T > 0, we want to know if L(T ) is Normal

4The CAIDA UCSD Anonymized Internet Traces 2011 and 2012. Available
at http://www.caida.org/

5Information on the link capacity provided on http://mawi.wide.ad.jp is not
consistent with the throughput observed in the traces.
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Fig. 2. CDF of γ for all traces at T = 1s: (a) complete and (b) 1: 100.

distributed, i.e., whether L(T ) ∼ N(µ, σ2). To quantify
Gaussianity fit we use the linear correlation coefficient [9],
which is defined by:

γ(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
,

where x is the inverse of the normal cumulative distribution
function of the sample and y is the ordered sample. One can
find more details on how γ is defined in [9]. It is important to
know that γ ≥ 0.9 supports the hypothesis that the underlying
distribution is normal. A sample is “perfectly Gaussian” when
γ = 1. Fig. 2 shows the CDF of γ for all traces per location.
Around 80% of all traces in our dataset is at least “fairly
Gaussian” even sampled at 1: 100. Most of the traces from A
that have γ < 0.9 were captured overnight when less users
are active resulting in reduced Gaussian fit due to smaller
traffic aggregate. The main take away of this figure is that
the Gaussian property of traffic remains even after sampling
with rate 1: 100. Clearly, by increasing the sampling rate
the Gaussian character diminishes. Fig. 2 only shows γ for
T = 1s. However, we have assessed Gaussian character of
our dataset and it persists over different T . A thorough study
on Gaussian properties of our dataset can be found in [8].

C. Impact of Sampling on Link Dimensioning

We assess impact of sampling on the accuracy of the
link dimensioning procedure by comparing estimations from
Eq. (1) using the complete data and using sampled data scaled
using the method described in Sec. III. Fig. 3 shows, for
an example trace per location, the average, minimum and
maximum relative deviation of the estimated required capacity,
computed over 10 runs of sFlow sampling, from the required
capacity computed over the complete trace. All calculations
were done with ε = 1% and at different timescales. The main
take away of Fig. 3 is that at shorter T the difference between
results from sampled and complete traces is likely to be higher
than for larger T . For example, the average difference of
around 13% for the trace from location E at T = 1ms drops
to 1% at T = 100ms and becomes around 0.14% at T = 1s.
The difference at larger T can be considered negligible. The
worst result at T = 1s is obtained for location C, where the
maximum value estimated from the sampled trace was around
0.55% higher than the estimation from the complete trace. The
higher overestimation at shorter T might be caused by our
simplistic scaling approach. While at larger T actual traffic
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fluctuations were faithfully reproduced by the used scaling
approach, at shorter T , such as T = 1ms, traffic peaks are
mistakenly created due to the random nature of the sampling.
These peaks resulted from scaling several successive packets
that were sampled in a very short period of time.

Given that the variation of the estimations over the 10 runs
is very small, for the results in Fig. 4 were obtained from
a single sampling run. Fig. 4 shows the average obtained
error of required capacity estimation. This is quantified by
comparing the obtained estimation with an empirical one,
which is the (1 − ε)th-quantile of the empirical distribution
of the throughput of the complete trace. That is, this value
represents the minimum capacity that should be allocated so
that in only a predefined amount of time intervals of size
T (i.e., ε) the throughput will be above the C(T, ε). The
empirical estimation is defined by:

Cemp(T, ε) := min {C : #{Ai | Ai > CT}/n ≤ ε} ,

where A1, . . . , An are the empirical traffic aggregates at T . To
verify whether the estimation was successful, we calculate the
amount of measured intervals in which the traffic aggregate
Ai exceeds C(T, ε) by:

ε̂ := #{Ai | Ai > CT}/n .

where if ε̂ ≤ ε the procedure yielded an acceptable estimation
by not underestimating the required capacity.

Fig. 4 shows the average ε̂ at T = 10ms and T = 1s for
all traces per location and sampled at various rates. Again one
can see that the shorter T and the higher the sampling rate, the
lower ε̂. That is, the error introduced by scaling the traffic rate
and variance resulted in overestimation of required capacity for
small timescales. This is also in line with results presented
in Fig. 3. For example, for B traces, sampled 1:100 and at
T = 10ms, the average estimation of required capacity mostly
overestimates Cemp. For the same location and sampling rate,
at T = 1s, more cases of underestimation were observed.
Finally, when sampling rate is set to 1:1000, the overestimation
becomes too large and for all locations ε̂ = 0 at T = 10ms.

V. CONCLUSIONS

In this paper we showed the feasibility of using sampled
data using sFlow algorithm for link dimensioning. For a
range of sampling rates the employed procedure successfully
estimated the link required capacity. Clearly, to avoid the
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loss of important traffic properties such as Gaussianity and,
consequently, inaccurate estimation of required capacity, an
appropriate sampling rate should be chosen, i.e. consistent
with the actual load of the monitored link. Our results also
show that due to the random nature of the sampling algorithm,
overestimation of traffic variance and required capacity is
likely to happen at short timescales. However, overestimation
within reasonable bounds is typically not crucial since it will
not negatively impact on the QoS.
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