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III. THE CONTROLLER+SUSPENSION SYSTEM

The controller is considered under strict dissipative

port Hamiltonian format, i.e. dynamic system of energy

Ec3(xc3) = 1
2xT

c3Qc3xc3 defined as
{

xc3 = (Jc3 − Rc3)
∂Ec3(xc3)

∂xc3
+ Bc3uc3

yc3 = BT
c3

∂Ec(xc3)
∂xc3

+ Dc3uc3

with Jc3 = −JT
c3, Rc3 = RT

c3 ≥ 0, Dc3 > 0. The

suspension system is modelled through a spring/damper

system of potential energy:

Es(xa) =
1

2
kx2

a

The interconnection of these two systems can be written

under port Hamiltonian format:
{

v̇a = (Ja − Ra) dEa

dva

+ gaua

ya = gT
a

dEa

dva

+ Saua

with va = (xa, xc3) and Ea(va) = Es(xa) + Ec3(xc3) the

energy of the system and:

Ja =

[

0 0
0 Jc3

]

, Ra =

[

1
Dc3+f

BT

c3

Dc3+f
BT

c3

Dc3+f
Rc +

Bc3BT

c3

Dc3+f

]

≥ 0

ga =

[

− 1
Dc3+f

−
BT

c3

Dc3+f

]

Sa =
1

Dc3 + f
> 0

IV. SYSTEMS INTERCONNECTION

In this section we are interested in the interconnection of

the infinite dimensional system with the finite dimensional

ones. First of all let us gather the two finite dimensional

systems as:
{

v̇ = (Jc − Rc)
∂Ec(v)

∂v
+ gcuc

yc = gT
c

∂Ec(v)
∂v

+ Dcuc

(6)

with v = (vb, va), uc = (ub, ua) = (F (b), T (b), F (a)), yc =
(yb, ya) = (v(b), ω(b), v(a)), Ec(v) = Eb(vb) + Ea(va) and

Jc = −JT
c =

[

Jb 0
0 Ja

]

, Rc = RT
c =

[

Rb 0
0 Ra

]

≥ 0

gc =

[

gb 0
0 ga

]

Sc =

[

Sb 0
0 Sa

]

> 0

The total energy can be written on the form: Ec(v) =
1
2vT Qcv with:

Qc = diag

(

k1, k2,
1

M
, k, Qc3

)

> 0

The interconnection with the infinite dimensional system is

done through the following relation:
[

u1

y1

]

=

[

1
0

]

r +

[

0 −1
1 0

] [

uc

yc

]

(7)

with the additional constraint:

u2 = ω(a) = 0 (8)

Remark 4.1: From the positivity of Rc and the strict

positivity of Sc the dynamic system defined by (6) is

exponentially stable and has all its eigenvalues in the left

hand side of the complex plane.

V. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM

The exponential stability of the closed loop system is

derived following two steps. The first one is concerned

with the existence of solutions of the interconneted systems

(finite+infinite dimensional systems). It aims at showing that

the interconnected system defines a contraction semigroup.

The second step consists in finding a Lyapunov function

with exponential decay rate. The fact that the closed loop

system defines a Boundary Control System with contraction

semigroup is derived in Theorem 5.1.

Theorem 5.1: Let the state of the open-loop BCS satisfy
1
2

d
dt
‖x(t)‖2

L
= u(t)y(t). Consider the LTI strictly passive

finite dimensional system (6) with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉Rm , Qc = Q⊤

c > 0 ∈ R
m × R

m. Then

the feedback interconnection (7) of the BCS and the finite

dimensional system is again a BCS on the extended state

space x̃ ∈ X̃ = X × V with inner product 〈x̃1, x̃2〉X̃ =
〈x1, x2〉L + 〈v1, Qcv2〉V . Furthermore, the operator Ae de-

fined by

Aex̃ =

[

JL 0
gcC Jc − Rc

] [

x

v

]

, Cx = IcW̃

[

f∂,Lx

e∂,Lx

]

with Ic =
[

I3 03,1

]

D(Ae) =
{

[

x

v

]

∈

[

X

V

]

∣

∣

∣
Lx ∈ HN (a, b; Rn),





f∂,Lx

e∂,Lx

v



 ∈ ker W̃D

}

,

where

W̃D =

[

W +

[

Sc 0
0 0

]

W̃

[

I

0

]

gT
c

]

generates a contraction semigroup on X̃ .

Proof: The proof is very similar to the one presented

in [10, Theorem 5.8, pp:120] and in [16] but we consider

here that the feedback is only applied in between u1 and y1

as stated in (7), u2 being freely chosen (equal to zero for the

stability analysis). The proof is performed by showing that

W̃D is full rank and by applying the Lumer-Phillips Theorem

[12, Theorem 6.1.7, pp:69], which is divided in two parts:

showing that Ae is a dissipative operator (i.e. Re〈Ax̃, x̃〉 ≤
0) and that ran(I − Ae) = X̃ = X × V . The fact that

W̃D is full rank is directly derived from the fact that

[

W

W̃

]

and

[

I 0 Sc 0
0 1 0 0

]

ar full rank. From the strict positivity

of Dc it is easy to show that Ae is dissipative using the

Kalman-Yakubovich-Popov (KYP) Lemma [19], [20]. The

second part of the proof, ran(I − Ae) = X̃ , follows if the

matrix (I − (Jc − Rc)) is non-singular. This is true as all

the eigenvalues of the matrix Ac are in the left half of the

complex plane as it is stated in Remark 4.1.

We are now going to prove the exponential stability of the

closed loop system by using the aforementioned contraction

properties and Lyapunov arguments. The stability results

from the strict dissipativity and the exponential stability

of the finite dimensional system and the fact that under
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actuation is only considered on the a side of the beam.

The Lyapunov candidate that we propose to use is the total

energy:

Ẽ = E + Ec

To prove the result we first need some technical Lemma (the

proofs are omitted here but can be found in [13] as they

not depend on the fact that the system is partially actuated).

These Lemma are concerned with the energy of the finite

dimensional system (6) and come from its strict dissipativity

and exponential stability properties. Lemma 5.2, 5.3 and

5.4 give bounds on Ec(τ) and
∫ τ

0
Ec(t)dt with respect to

‖uc(t)‖
2 and ‖yc(t)‖

2.

Lemma 5.2: [13] The energy of (6) satisfies for a positive

time τ :

Ec(τ) ≤ κ1Ec(0) + κ3

∫ τ

0

‖uc(t)‖
2dt (9)

where κ1 = κ4e
−κ2τ with κ2, κ3 and κ4 constants.

Lemma 5.3: [13] There exists positive constants ξ1, ξ2 and

τ0 such for all τ > τ0 the energy of (6) satisfies

∫ τ

0

Ec(t)dt ≤ξ1

∫ τ

0

v⊤(t)QcRcQcv(t)dt+ (10)

ξ2

∫ τ

0

‖uc(t)‖
2dt

Lemma 5.4: [13] For every δ1 > 0 there exists a δ2 > 0
such that for all τ > 0 the energy of (6) satisfies the relation

∫ τ

0

δ1Ec(t)+‖yc(t)‖
2dt ≤ δ2

∫ τ

0

Ec(t)+‖uc(t)‖
2dt. (11)

We are now going to give some bounds on the total energy

of the system in order to prove its exponential stability. For

that we mainly need the property (4) i.e:

‖u1‖
2 + ‖y1‖

2 ≥ ε‖Lx(b)‖2 (12)

It leads to Lemma 5.5.

Lemma 5.5: Consider a BCS as described in Theorem 5.1

with r(t) = 0, u2 = 0, for all t ≥ 0. Then, the energy of

the system Ẽ(t) = 1
2‖x(t)‖2

L
+ 1

2v(t)T Qcv(t) satisfies for τ

large enough

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2
R
dt + 2c(τ)

c1

∫ τ

0

Ec(t)dt,

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2
R
dt + 2c(τ)

c1

∫ τ

0

Ec(t)dt,

(13)

where c is a positive constant that only depends on τ and c1

a positive constant.

Proof: The proof is based on a multiplier technic and

follows the proof of [13][11]. It mainly uses the contraction

property of the semigroup and (4).

These Lemma allow to prove the exponential stability of the

closed loop system as stated in Theorem 5.6

Theorem 5.6: Consider the BCS defined by Theorem 5.1

with r(t) = 0, u2 = 0, for all t ≥ 0. Then the finite

dimensional system (6) exponentially stabilizes the BCS.

Proof: The time derivative of the total energy is given

by

˙̃
E = −v⊤QcRcQcv − u⊤

c Scuc

≤ −v⊤QcRcQcv − σu⊤

c uc, since Sc ≥ σI

= −v⊤QcRcQcv − σǫ1u
⊤

c uc − σǫ2u
⊤

c uc

= −v⊤QcRcQcv − σǫ1‖uc‖
2 − σǫ2‖y1‖

2

= −v⊤QcRcQcv − σǫ1‖uc‖
2 − σǫ2

(

‖y1‖
2 + ‖u1‖

2
)

+ σǫ2‖u1‖
2

with ǫ1 + ǫ2 = 1 and where we have used that uc = −y1.

Using (4)we have

˙̃
E ≤ −v⊤QcRcQcv

− σǫ1‖uc‖
2 − σǫ2ǫ‖Lx(t, b)‖2 + σǫ2‖yc‖

2. (14)

Integrating this equation on t ∈ [0, τ ] we have

Ẽ(τ) − Ẽ(0) ≤ −

∫ τ

0

v⊤(t)QcRcQcv(t)dt+

−

∫ τ

0

σǫ1‖uc(t)‖
2 + σǫ2ǫ‖Lx(t, b)‖2 − σǫ2‖yc(t)‖

2dt.

Next choose τ sufficiently large such that Lemmas 5.3 and

5.5 hold. Using the latter lemma we have

Ẽ(τ) − Ẽ(0) ≤ −

∫ τ

0

v⊤QcRcQcv + σǫ1‖uc‖
2dt

+
σǫ2ǫ

c(τ)

(

2c(τ)

c1

∫ τ

0

Ec(t)dt − Ẽ(τ)

)

+σǫ2

∫ τ

0

‖yc‖
2dt.

Grouping terms we have that

Ẽ(τ)

(

1 +
σǫ2ǫ

c(τ)

)

− Ẽ(0) ≤

−

∫ τ

0

v(t)⊤QcRcQcv(t)dt − σǫ1

∫ τ

0

‖uc(t)‖
2dt

+σǫ2

(
∫ τ

0

2ǫ

c1
Ec(t) + ‖yc(t)‖

2dt

)

.

Using Lemma 5.4 with δ1 = 2ǫ
c1

we have

Ẽ(τ)

(

1 +
σǫ2ǫ

c(τ)

)

− Ẽ(0) ≤ −

∫ τ

0

v(t)⊤QcRcQcv(t)dt

+ σǫ2δ2

∫ τ

0

Ec(t)dt + σ(ǫ2δ2 − ǫ1)

∫ τ

0

‖uc(t)‖
2dt. (15)

Now, using Lemma 5.3 we obtain

Ẽ(τ)

(

1 +
σǫ2ǫ

c(τ)

)

− Ẽ(0) ≤

(σǫ2δ2ξ1 − 1)

∫ τ

0

v(t)⊤QcRcQcv(t)dt+

σ(ǫ2δ2(1 + ξ2) − ǫ1)

∫ τ

0

‖uc(t)‖
2dt.

Since ǫ2 may be chosen to be arbitrarily small, i.e, ǫ2 ≪ 1
and since ǫ1 = 1 − ǫ2, we finally have that

Ẽ(τ) ≤ c2Ẽ(0) (16)
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with c2 = 1

(1+ σǫ2ǫ

c(τ) )
< 1 which proves the theorem.

Remark 5.7: An undamped Timoshenko beam has been

considered for the infinite dimensional part of the system. It

should be noticed however that the stability proof also holds

for a damped Timoshenko beam. Indeed, dissipation in the

infinite dimensional model makes the inequalities in Lemma

5.5 strict inequalities.

VI. CONCLUSION

The model of a DNA-manipulation process has been for-

mulated as a BCpHS. This has been achieved by modelling

the sub-systems of the process as port-Hamiltonian systems

and showing that the physically meaningful interconnection

of the sub-models defines a BCpHS. More specifically, the

flexible arm of the micro-gripper has been modelled as a

flexible beam (undamped Timoshenko beam) that is clamped

on one side, the DNA-bundle as a mass-spring-damper

system and the suspension/actuator mechanism as a mass-

spring system. In this model the flexible arm corresponds

to a infinite dimensional system, so the complete DNA

manipulation processes is the interconnection of an infinite

dimensional system and two finite dimensional systems,

where one of the input of the infinite dimensional system

being assigned to zero. The stabilization has been achieved

by interconnecting the suspension/actuator mechanism with

a port-Hamiltonian controller (with realistic sensing and

actuation variables). The complete process then remains a

BCpHS but with respect a new energy function due to the

contribution of the controller. We considered in this paper

that the controller has been designed using a dissipative port

Hamiltonian format. It has been assumed that no natural

damping is present on the infinite dimensional part of the

process, which makes the stability result more interesting,

since natural damping (which is physically present) adds

robustness to the closed-loop system.

Future work aims to include non-linear phenomena in the

suspension/actuator mechanism and DNA-bundle.
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