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Abstract—We propose a nested Dantzig–Wolfe decomposi-
tion, combined with dynamic programming, for the distributed
scheduling of a large heterogeneous fleet of residential appliances
with nonlinear behavior. A cascaded column generation approach
gives a scalable optimization strategy, provided that the problem
has a suitable structure. The presented approach extends the
TRIANA smart grid framework for predictive demand side
management; the main goal of this framework is peak shaving.
Simulations validate that the approach is effective, but also show
that the performance degrades for smaller group sizes.

Index Terms—Energy management, mathematical program-
ming, power system management, smart grids.

I. INTRODUCTION

The increasing use of electricity as an energy carrier,

combined with the advent of large scale renewable generation,

leads to a demand for new sources of flexibility in the

electric power industry. Since batteries will probably remain

expensive in the foreseeable future, researchers consider the

use of demand side flexibility as a possibly cheaper and more

efficient alternative. The electricity demand of some residential

appliances such as washing machines, electric vehicles and heat

pumps is to some extent shiftable in time. An aggregator may

shape their combined demand, for example to match demand

with supply, relieve grid congestion or operate on markets. This

approach is called demand side management (DSM) and is a

very popular topic in today’s smart grid research [1].
Demand side management approaches have to be scalable,

general, flexible and effective. Scalable means that solutions

have to be found in reasonable time using little computing

resources. General means that it can integrate appliances with

different characteristics and needs. Flexible means that it

can express various objectives, such as peak shaving and

economic optimization. Effective means that it gives good,

near-optimal solutions to the problem at hand. In practice, also

other requirements are important, such as security, reliability

and cost. While literature discusses approaches focusing on

various subsets of these requirements, we are not aware of any

approach that meets all of these requirements at the same time.
In earlier work, we presented a two-level optimization

approach and applied it to a large DSM problem [2]. Using

Dantzig–Wolfe decomposition [3], the DSM problem is par-

titioned into a master problem and a set of subproblems. In

contrast to other related work, we do not restrict subproblems to

linear models, as linear models are too restrictive to accurately

model several real devices. For example, a washing machine can

either be switched on or off; there are no in-between options.

As shown in [2], this optimization approach is very effective

in terms of objective performance. At first sight, it also appears

to be a scalable solution strategy: the subproblems can be

distributed and solved in parallel. However, the scalability of

the master problem is a serious concern. The master problem

can become very hard to solve with an increasing number

of subproblems; currently, it clearly dominates the solution

process, even when the subproblems are not distributed. Based

on these considerations, it is clear that the current method is

not practical for a large number of households or the combined

control of multiple neighborhoods.

The central idea of this work is that we can divide the master

problem itself in smaller parts, each of which can be solved and

combined far more efficiently than the original problem. We

can do this because the problem has very simple coupling

constraints; at each level, we only consider the aggregate

electricity demand of all subproblems (over time). All other

constraints and objectives (for example peak minimization)

are subsequently modeled with these aggregate demand levels.

Summarizing, there are only few and local coupling constraints

between the subproblems.

In this paper, we exploit this loose coupling within the

master problem described in [2]: we identify a Dantzig-Wolfe

structure, which can be solved by a column generation approach.

In turn, the resulting subproblems themselves have a similar

structure as the master problem. Provided that there are suitable

loose coupling constraints left, this process can be repeated as

many times as needed, resulting in a nested column generation

approach. For efficiency, we extend this to a cascaded approach.

The paper is structured as follows. In Section II, we provide

background on current demand side management approaches

and decomposition techniques; we address the TRIANA smart

grid framework in more detail. In Section III, we introduce

cascaded column generation in the context of TRIANA. We

follow up with simulations in Section IV. Section V evaluates

and discusses the results, as well as the approach in general.

We conclude this paper in Section VI.
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II. BACKGROUND

We present a short background on demand side management

for smart grids. In Section II-A, we discuss current DSM

approaches. Section II-B continues with a discussion on

decomposition. Finally, Section II-C ends with a more detailed

overview of the TRIANA framework.

A. Demand Side Management

A demand side management framework allows an aggregator

to treat a group of appliances as a part of the energy

infrastructure. These frameworks split up the smart grid control

problem both conceptually (to support more than one type of

device) and computationally (by partitioning the optimization

problem and allowing workload distribution). Decentralization

is essential for scalability. Also, coordination is necessary:

direct steering according to a shared signal (price, frequency,

voltage) may result in excessive demand response, because too

many devices respond to the signal.

We identify three DSM paradigms: transactive control, model

predictive control (MPC) and voltage/frequency control; we

address the first two paradigms, since these relate to this work.

1) Transactive Control: To overcome the problems of

direct steering, in transactive control the aggregator introduces

an arbiter. The arbiter determines which of the controlled

appliances may use the available resources, according to some

relative priority ordering. Each of the appliances specifies a

set of control options from which the arbiter can choose. To

account for the future, the priority ordering is in part determined

by an estimate of the future system state. The selection is

typically implemented with an on-line double-sided Walrasian

auction. Well-known transactive control implementations in-

clude GridWise [4], PowerMatcher [5] and Intelligator [6].

2) Model Predictive Control: MPC is a control engineering

technique which explicitly estimates the consequences of

control decisions. The behavior is scheduled using a system

model. For an example of MPC in an energy context, see [7].

This is more in line with conventional grid control models, see

for example [8]. For large scale MPC, decomposition techniques

are used (Section II-B); these generally assume linear models.

B. Decomposition

Decomposition provides a theoretical framework to partition

problems, which makes decentralization possible. Decompo-

sition schemes restate hard optimization problems as a set

of easier yet equivalent connected optimization problems.

The decomposition problem is studied in depth by both

the operation research and control engineering communities

[9]. This has resulted in numerous practical approaches with

different performance characteristics and assumptions on the

problem at hand. In the context of smart grids, several

decomposition algorithms have been considered, in particular

dual decomposition (e.g. [10]).

1) Dantzig–Wolfe Decomposition: Recently, Dantzig–Wolfe

decomposition [3] has received considerable attention in the

context of smart grids as an efficient alternative to dual

decomposition (e.g. [2], [11], [12], [13]). This decomposition
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Fig. 1: Dantzig–Wolfe angular block structure for linear

programs [3]. The top row represents the connecting constraints

(with coefficient submatrices Ai). The submatrices Ai represent

the corresponding subproblems. All blank parts of the matrix

are zero. I is the identity matrix.

approach imposes several constraints on the structure of the

problem. First, the problem should be linear. Second, the

coefficient matrix must have a block-angular structure as in

Fig. 1. By this, large parts of the matrix can be solved separately,

except for a set of complicating, connecting constraints. This

structure is quite common in optimization problems.

After decomposition, the problem is solved with a column

generation procedure. The problem is separated in a master

problem which represents the connecting constraints, and a

set of subproblems (one for each subblock Aixi = bi). The

general form of this procedure is as follows:

• Generate initial feasible set of columns

• While improving patterns exist:

– Solve master problem M
– Translate prices λ from shadow prices π of M
– Maximize subproblems with c = λ

∗ Add solution to pattern set if reduced cost > 0

• Recover solution

The procedure adds the relevant parts from the subproblems

to the master problem. The previous solution of the master

problem is used to determine which parts are relevant: the

shadow prices of the connecting constraints translate to

objective coefficients for the subproblems. The subproblems can

be solved in parallel. When no new parts can be found within

the subproblems, the master problem solution corresponds to

a globally optimal solution of the original problem.

2) Nested Decomposition: Column generation supports

large problems, but the master problem may still become

intractable when the problem is too large. Furthermore, in a

distributed context, the communication with all the subproblems

becomes an issue. Therefore, we want to further decompose the

problem. The subproblems resulting from the decomposition

are still linear programs. If the subproblems have a suitable

structure, these may again be decomposed with Dantzig–Wolfe

or a different decomposition scheme. Literature covers nested

decomposition for linear programs [14]; more considerations

should be taken into account for mixed integer programs [15].

Decomposition of the subproblems does not directly address

the size of the master problem. However, the decomposition

allows the subproblems to be larger; therefore, we can use

larger decomposition groupings at the central master problem.

Larger groupings reduce the size of the master problem. As

before, to be able to use the approach, these groupings need

to be loosely coupled.
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C. TRIANA Framework

TRIANA is a framework for large scale distributed demand

side management of households in smart grids [1]. The

framework combines concepts from transactive control and

model predictive control, and covers numerous demand side

management applications, ranging from the operation of a

fleet of microCHPs to refrigerator scheduling. The approach

accounts for both the global and the local problems in a

system. The predictive control process is divided in three stages:

forecasting [16], planning [17] and operational control [18].

For scalability, the problem is partitioned along its hierarchical

structure (Fig. 2). A feedback process iteratively refines the

solutions of the parts at subsequent levels.

Many energy control approaches use linear models, since

these models have interesting theoretical properties. However,

while linear models usually fit well conceptually, they often

fail to capture important practical considerations. The main

problem for DSM is that the linearity does not account for the

discrete switching behavior of individual devices.

The TRIANA framework allows nonlinear device models,

which avoids these problems. For planning, we only require

that these local problems must be able to optimize their demand

xi according to some price vector λi (minxᵀ
i λi subject to local

constraints). Most of these problems can be stated as mixed

integer programs (MIPs), but for efficiency reasons these are

often solved by specific dynamic programs (DP).

The work in [2] replaces the iterative search procedure of

[19] with a procedure based on Dantzig–Wolfe decomposition.

In this work, we use linear models to describe the electricity

infrastructure, and discrete models for the device problems at

the bottom of the problem structure. This scheduling approach

has substantially increased the quality of the found schedules.

Furthermore, the flexibility of the planning procedure has

improved. However, the presented approach is no longer

scalable, because it depends on a monolithic master problem:

the upper (global) part of the problem has not been partitioned.

A linear column generation approach can support very

large systems. However, to address the nonlinearity of the

subproblems, our column generation approach is not fully

linear. The interpolation of columns is no longer guaranteed

to find a valid solution: the linear column weighting problem

(yi,j ∈ [0, 1]) changes to a binary column selection problem

(yi,j ∈ {0, 1}), which is much harder to solve. The selection

MIP is the main bottleneck in the design, which makes us

consider nested decomposition for relatively small instances

(more than 100s rather than 10 000s of subproblems).

Fleet (aggregate electricity demand)

Subfleet (substation)

House

Device Device

House

Device Device

Subfleet (substation)

House

Device Device

House

Device Device

Price (λi) Pattern (xi)

Fig. 2: Partitioned optimization approach in TRIANA.

III. CASCADED COLUMN GENERATION IN TRIANA

A. Nested Decomposition Scheme

We start from the problem in [2] which is decomposed

according to the Dantzig–Wolfe scheme as in Fig. 1. Hereby,

we treat the device-level problems as if these were linear

(sub)problems of the form Ax = b, and we assume that the

local cost z = cᵀx is integrated as a variable in the decision

vector x (with objective coefficient cz = 1). It remains to show

how we can bring the original master problem (the top row of

Fig. 1) in a form which is suitable for nested decomposition.

The original master problem in TRIANA of [2] gives a linear

program which specifies the economic value and operational

constraints of an energy system. The program describes the

power balance equations and the corresponding power flow

over time. The balance equations are organized in a tree, which

corresponds to Fig. 2; every subproblem contributes to one

of the balance equations in this tree. Every balance equation

has a set of constraints over time xt =
∑

i xi,t, ∀t (or, more

compactly: x =
∑

i xi), which we rewrite to x−∑
i xi = 0.

The imbalance variables x describe the downward power flow

(or upward demand) in the tree structure.

In [2], we found that the complete imbalance tree can be

mapped to the structure of Fig. 1. In this paper, we consider the

nodes in the tree separately. The elements of the tree naturally

map to instances of the structure of Fig. 1: for every element,

the coefficients of x correspond to I; every balance subtree i
corresponds to an Ai, which describe the contribution −xi to

the master problem with coefficients −I . This process can be

repeated to arbitrary depth, until the bottom level problems Ai

are reached; these problems are decomposed as before. At this

point, we have a tree structure of problems, connected by the

balance constraints. Later in this section, we will solve this

hierarchical structure by column generation.

The work in [2] lumps all demand into a single central

balance equation. Since all subproblems are bound to the same

equation, the presented approach can not be used directly to

partition the problem. However, we can split off elements

of the equation to a new balance group: for example, x =
x1 + x2 + x3 + x4 can be rewritten as x = xa + xb with

xa = x1 + x2 and xb = x3 + x4; the assignment of xa and

xb become separate subproblems. Due to associativity and

commutativity, we can group the balance equation elements

arbitrarily, as long as the resulting problem is equivalent. By

repeated splitting, we can make trees of any depth. Similarly,

we can (re)group equations, but only if no extra constraints

have been imposed on its imbalance variables. We can decide

on the structure of the problem tree according to the needs of

the decomposition scheme.

In this nested decomposition scheme, the bottom subprob-

lems are still nonlinear. Consequently, we still need to treat

all ancestors in the problem tree as binary column selection

problems. However, since we only need to consider the direct

subproblems one level below each problem, the individual

column selection problems can be significantly smaller than

before; therefore, these problems should be much easier.
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B. Column Generation Algorithm

1) Overview and Notation: We first give an overview of

the column generation approach, and the used notational

conventions. Next, Algorithm 1 presents the general column

generation algorithm for the nested decomposition scheme

of Section III-A. For completeness, Algorithm 2 states the

behavior of the algorithm for the local device subproblems at

the bottom of the problem tree. We follow up with practical

improvements to the basic scheme.

We represent calls to the optimization algorithm by

i.solve(λi), where i is some problem and λi is a price vector.

The problems are nested: each master problem generates prices

for its subproblems, which in their turn generate prices for their

subproblems, and so on. The solve operation is polymorphic;

the implementation depends on the type of i. The vector x
represents abstract demand; by convention, the first entry of

x describes the local objective value (with weight 1), and the

remaining entries describe electricity demand over time. Each

call to solve should give the optimal assignment of x for the

given cost function coefficients c = λi (minimize cᵀx). Let I
represent the set of direct subproblems for the problem at hand,

M the local MIP optimization problem, and let Mr be the

LP relaxation of M. The solution to a problem M is denoted

by s (and sr for Mr). With sr.π(xi) we refer to the shadow

prices of the balance rows of xi in sr (i.e. the rows of (3) in

Section III-B2). For uniformity, we only consider minimization

problems; maximization problems are covered by negating the

objective. Finally, let Pi represent the active pattern set for

a subproblem i. These sets describe the patterns which are

considered in M and Mr; each Pi is a subset of the patterns

generated by i. Note that we do not explicitly describe the

updates to M after changes to Pi.

In Algorithm 2, we solve M for the local device problems

with DP instead of MIP for efficiency reasons (Section II-C).

By convention, the top level planning problem is solve(1|0).
The parameters kmax and kkr,max control the termination of

the outer and inner loop in Algorithm 1. Later in this paper,

we will vary these parameters by problem tree depth; we will

refer to the inner iteration count at depth d with k(d).
2) General Problem MIP: The MIP M is the central part

of the column generation procedure. We define M as:

min c ᵀ
xx (1)

s.t. x− x∗ −
∑
i∈I

xi = 0 (2)

xi −
∑
q∈Pi

yi,qq.x = 0 ∀i ∈ I (3)

yᵀ
i 1 = 1 ∀i ∈ I (4)

(application constraints) (5)

yi,q ∈ {0, 1} ∀i ∈ I, q ∈ Pi (6)

x,x∗,xi ∈ R
|cx| ∀i ∈ I (7)

Equation (1) gives the objective value of the problem as the

dot product of cost and the (abstract) demand pattern x. Next,

(2) states that x is equal to the elementwise sum of all demand.

The vector x∗ gives the demand of the master problem itself,

which we use to inject the ‘demand’ of the local objective.

The vectors xi give the selected demand for every subproblem

i ∈ I; the possible demand patterns from Pi are added to xi

in (3), weighted by a set of indicators yi,q (q ∈ Pi). These

indicators describe whether M chooses to use pattern q for

subproblem i. Equation (4) arranges the mutual exclusion of

these indicators for each subproblem; we omit this constraint

when Pi = ∅, because this leads to the contradiction 0 = 1.

The indicator variables are binaries (6), and the variables x
are real numbers (7).

Until here, all equations are application independent. Equa-

tion (5) describes the application-specific aspects of the

problem. Users may define auxiliary variables within these

constraints, and must define constraints on x∗ (e.g. x∗ = 0).

In this work, we reuse the application constraint set from [2].

3) General Problem Algorithm: We will now present the

column generation procedure which populates and uses M.

The procedure is more complicated than the one outlined in

Section II-B1, because our problem contains binary variables.

Algorithm 1 describes the modified procedure. For efficiency

reasons, we normally do not run the column generation up

to termination; the number of iterations is governed by kmax

and kkr,max. To keep M tractable, the work in [2] agressively

prunes inactive columns. As a consequence, we need to

perform column selection in every iteration. Minimizing M is

computationally expensive. We observe that there is no need to

generate a solution in every iteration, as the prices are derived

from Mr. Therefore, we can postpone the column selection

problem to the solution recovery phase. To keep the number

of binaries in M low, we limit the number of iterations which

can generate patterns to kkr,max (line 4); we also terminate the

inner loop when the reduced cost test (line 9) does not admit

any new patterns. Alternatively, we could also prune irrelevant

patterns based on the column weights yr,i in sr.

Algorithm 1 General group column generation

Input: Coefficients cx corresponding to x
Output: Set of patterns

1: P ← ∅, Pi ← ∅ for all i ∈ I
2: M.cx ← cx
3: for k = 1 to kmax do
4: for kr = 1 to kkr,max do
5: sr ← minimize Mr

6: for all i ∈ I do {in parallel}
7: λi ← sr.π(xi)
8: for all q ∈ i. solve(λi) do
9: Pi ← Pi ∪ {q} if (sr.xi − q.x)ᵀλi > 0

10: end for
11: end for
12: end for
13: s ← minimize M
14: P ← P ∪ {〈x = s.x〉}
15: Pi ← {Pi,q where s.yi,q = 1} for all i ∈ I
16: end for
17: return P
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Algorithm 2 Local problem

Input: Coefficients cx corresponding to x
Output: Set containing one pattern

1: M.cx ← cx
2: s ← minimize M
3: return {〈x = s.x〉}

Subsequently, M selects the best pattern set (line 13). We

use this pattern set as the basis for a new column generation

phase. The effect of this is twofold. First, the size of the

master problem is kept small. Second, the mismatch between

the integer and the relaxed solution is (temporarily) eliminated.

The disadvantage is that part of the column space has to be

re-explored in the inner loop; a less aggressive column pruning

strategy may be considered in future work.

C. Practical Improvements

1) Bootstrap Procedure: As in [2], we apply a bootstrap

procedure to improve the convergence rate. This procedure

modifies λi after line 7. This procedure exploits knowledge

on what the (approximate) desired profile is; typically, the

profile should be as flat as possible, and as close as possible

to 0. To reflect the different convergence behavior of the

column generation procedure in this work, we replace the

static bootstrap iteration limit of [2] with an adaptive limit.

The bootstrap pricing stops when the relative objective value

improvement per iteration of Mr falls below a prespecified

value; in the experiments in this paper, we have chosen 1%.

2) Nested Complexity: When we consider solving a problem

at some level in the tree as the basic operation, the presented

nested column generation algorithm has a computational

complexity of O(
∑dmax

d′=1

∏d′−1
d=1 n

(d)
g

∏d′

d=1 k
(d)): n

(d)
g is the

group size at level d, k(d) is the number of iterations at level d
(k(d) =

∑kmax

k=1 kkr,max) and dmax is the depth of the problem

tree. Due to massive parallelism in the subproblems, we can

ignore the product of n
(d)
g , and focus on the product of k(d).

This part means that the approach appears not to scale well.

However, the supported number of bottom subproblems also

scales exponentially, according to
∏dmax

d=1 n
(d)
g . If we are able

to keep k(d) and dmax small, the scaling behavior may be

acceptable.

Reducing dmax implies that we have to increase n
(d)
g . This

contrasts to the original intent to decrease the group size, such

that the column selection MIP becomes smaller. We consider to

avoid this problem by using something different than MIP for

column selection, which does not have this scalability problem;

we discuss this alternative approach later on.

To reduce k(d), we have to find solutions in very few

iterations. The bootstrap procedure addresses this in part. For

subproblems with a specific structure, we can reduce k(d) to 1
(see Section III-C4).

The column space generated in previous subproblem invo-

cations often serves as a good starting point for the following

search. Therefore, we do not clear the pattern set Pi before

every solve (Algorithm 1, line 1). Furthermore, column gener-

ation does not require subproblems to give an optimal solution

Algorithm 3 Homogeneous group problem

Input: Coefficients cx corresponding to x
Output: Set containing one pattern

1: Pi ← i. solve(cx) for all i ∈ I {in parallel}
2: qi = argminq∈Pi

(c ᵀ
x q.x) for all i ∈ I

3: return {〈x =
∑

i∈Iqi.x〉}

in every iteration; it is merely interested in improving solutions.

The procedure formally only requires an optimal solution in

the final iteration, which certifies that no further columns with

reduced costs exist. Combining column space reuse with the

use of suboptimal columns suggests a communicating cascaded

design: the master problem continually updates the prices, and

the subproblems supply improving columns according to these

prices. In this design, we can trade off between k(1) and k(d)

(d > 1), where k(1) can be interpreted as ‘sweeps’ over the

problem tree. Since k(d) can now be a lot smaller, the overall

effort can be reduced to an acceptable level.

3) Approximate Solutions: Next to reducing k(d), we can

also reduce the effort per iteration; due to the nested structure,

this is particularly useful for the lower problems. Only the

final iteration needs an optimal solution; the rest may use any

mechanism giving feasible patterns with positive reduced cost.

For the middle and top level problems, this means that

we can often avoid solving the column selection problem in

line 13 to optimality. We replace the MIP with a maximum-

weight selection on yr,i: for every i ∈ I, we define qr,i =
argmaxq∈Pi

yr,i,q . We use qr as a guess for the best integral

combination of patterns. For notational convenience, we denote

the problem of evaluating qr as Mqr
. In Section IV-C, we

show that Mqr can be used as a good starting approximation

of M.

4) Independent Subproblems: If the subproblems at some

depth do not interact, we can largely avoid the column

generation procedure, since the subproblem price vector will

not change. In particular, we consider the case where the

application constraints (5) in M only contain x∗ = 0, i.e. M
only adds up the found patterns with no extra constraints or

local costs. In that case, all subproblem price vectors λi will

be equal to cx. Therefore, we only need one column for each

subproblem. This column should be optimal for the original

price vector. The sum of these columns provides an optimal

assignment of x for this c. Because this case is very common

in TRIANA, we use a specialized procedure.

Algorithm 3 presents this specialized procedure. In line 1, we

send cx to all subproblems, and we gather the corresponding

subproblem solutions. The subproblems may also provide

supplementary solutions which are suboptimal with respect to

cx; therefore, we select the best solution qi for each i in line 2.

Finally, line 3 constructs and returns the solution from q. Note

that, for this special case, we do not need an iterative process,

nor do we need to generate prices.

Algorithm 3 can be used directly as the top level problem to

perform a simple price based optimization (cx = α|λ, where

α is the relative weight of the local objective), or to aggregate

separate problems (cx = 1|0).
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Fig. 3: Objective convergence of the top level problem, by group and iteration count.

IV. SIMULATION EXPERIMENTS

A. Experiment Setup

To evaluate the presented techniques, we use the 400–house

FLEX STREET scenario [20]. This scenario considers DSM using

many domestic appliances, including EVs, heat pumps, batteries

and washing machines. We use the same combined demand

peak and variation minimization objective as in [2].

As indicated in the previous section, we aim to reduce the

number of iterations k(d) used at each level. Therefore, we are

interested in the convergence behavior of the nested column

generation procedure, subject to different groupings. We are

also interested in the impact of the integrality constraints.

To have an interesting scenario without too much computa-

tional effort, we choose the start of the evening of the first day

as the period of interest for the experiments. This time period

gives sufficient time to avoid start-up problems, yet covers

a hard to schedule period: the demand profile must ramp up

from a mid-day PV supply valley to the evening heat demand

peak. To have an equal set up for all experiments, we always

run the simulation up to the start of the chosen period with a

baseline control method.

B. Group Size, Bootstrap Versus Convergence Behavior

As pointed out in Section III-C2, a low iteration count

is essential to make the problem scalable. Therefore, we

evaluate the convergence behavior; we run the algorithm until

it terminates (kmax = 1 and kr,max = ∞). To evaluate the

importance of group size, we make n
(1)
g groups of n

(2)
g = 400

n
(1)
g

houses. For this experiment, we apply the method described in

Section III-C4 at both the lower (d = 2) and the house level

(d = 3). For the results, we expect that a smaller number for

n
(1)
g makes the master MIP much easier, but we need to generate

more columns. The cases n
(1)
g ≤ 10 reflect the optimization of

the behavior of an individual house; the larger cases represent

the optimization of a neighborhood.

Fig. 3 presents the long term and short term convergence

behavior of the top level problem; it plots the objective value

of Mr against kr for various choices of n
(1)
g . As can be seen

from the graphs, the column generation procedure has a very

long tail with marginal improvement; therefore, we present the

long term and the short term behavior separately. The bootstrap

method presented in Section III-C1 has a dominant effect on

the short term convergence behavior. To illustrate this effect

clearly, Fig. 3a focuses on the case without bootstrap, whereas

Fig. 3b focuses on the case with bootstrap; in each graph,

semitransparent lines represent the other case.
Fig. 3a demonstrates that, without bootstrap, a large number

of subproblems n
(1)
g improves the convergence rate significantly.

The column generation procedure can consider the smaller

problems separately, which increases the flexibility of the

master problem. For smaller n
(1)
g , the master problem needs

to request a new column to combine the columns from a

lower level in a different way. Nevertheless, column generation

manages to find a good relaxed solution even when all houses

are lumped into a single group. With the bootstrap procedure,

the number of iterations to termination slightly decreases for

large n
(1)
g , and increases for small n

(1)
g ; a possible explanation

for this is that this procedure initially does not follow the

structure of the problem, which can be good or bad.
The short term results (Fig. 3b) look quite different. With

bootstrap, the difference is much smaller; for all considered

group sizes, the procedure already converges in 5–10 iterations.

At kr = 10, the objective difference between the smallest

and the largest group size is 6%. Regardless of group size,

subsequent iterations offer only marginal improvement; the

largest extra improvement is found for n
(1)
g ≥ 10. To make

this more clear, Fig. 3c considers the progress at specific

iterations in the process. Problems with a large n
(1)
g progress

towards the final result far more quickly; for small n
(1)
g , this

process is very slow.

C. Group Size Versus Integers
In Section IV-B, we found that already after kr = 10

iterations a good linear combination of patterns is found.

However, we need a good selection of patterns: of every

subproblem, exactly one pattern must be chosen. We expect that

the integrality constraint is harder for smaller groups, because

it may be more difficult to find a good selection of patterns

due to limited diversity.
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Fig. 4: Objective penalty resulting from integrality.

To investigate this, we present the objective value penalty

which results from the integrality constraint in Fig. 4a. For

smaller n
(1)
g , this penalty is very large; it becomes very small

for larger n
(1)
g . We observe the following trend (also depicted

in Fig. 4a): the objective penalty is almost equal to 1/2n(1)
g

for n
(1)
g ≥ 10, and around 1/n(1)

g for n
(1)
g < 10; a possible

explanation for the difference is that for small n
(1)
g the relaxed

solution has not yet settled.

Interestingly, the MIP becomes harder rather than easier with

a smaller number of subproblems. The number of columns

per subproblem increases: the number of iterations increases,

and the probability of adding a new column becomes larger.

Furthermore, the solver can no longer consider the smaller

problems separately, which reduces the flexibility of the master

problem. This makes it harder to meet the MIP gap limit (which

is set to 1%).

In Section III-B3, we consider to keep only the current

selected columns from one iteration of k to the next to eliminate

the mismatch between the linear and the integer solution. The

simulation results in Fig. 4b show that removing this mismatch

does not give any substantial improvement. We believe that no

price vector maps to a suitable profile when n
(1)
g is too small.

In Section III-C3, we furthermore propose to replace the

MIP with a maximum-weight selection. To avoid generating

the same problem over again, we limit k
(1)
r to 2 for k ≥ 2.

Fig. 4b includes the results of this approach (labeled Mqr
). At

k = 1, the objective value is a lot worse than for MIP: even for

large n
(1)
g , adding the highest-weight patterns together often

gives a poor solution. However, at k = 2, the method recovers

the patterns it should not have removed, which almost fully

eliminates the difference with M. This means that we can

practically choose not to use the MIP altogether; consequently,

the problem becomes much easier computationally. This trades

the effort on the master problem with extra subproblem effort.

D. Cascaded Column Generation

In a last series of experiments, we want to evaluate the

behavior of column generation with a cascaded problem con-

figuration, as described in Section III-C2. The main parameter

5 10 15 20
0

1

2

3

4

·109

1

z(2)

z(1)

k
(1)
r

M
r
.z

(b
y

so
u
rc

e)

kr,max =
1
2
3
4

Fig. 5: Joint objective convergence of the top level problems

and the subproblems by kr,max.

is k
(d)
r,max, which determines the branching per level; it should

be chosen as low as reasonably possible. We control the number

of iterations at the top level (k
(1)
r,max) separately. We partition the

group of 400 houses in 20 groups of 20 houses (n
(1)
g = 20),

and we take the same global objective as in Section IV-B.

For each of the 20 groups, we also use this objective, which

means that we account for local peaks and demand changes

in the network with the same weight. In this case, the local

objective clearly supports the global objective: we expect that

schedules which are good on a local scale are together also

good globally. The method does not depend on this support,

but it does improve the convergence speed.

Fig. 5 presents the results of these simulations. We break

down the objective value by source: the top curves correspond

to the sum of the subproblem objective values (denoted z(2)),
and the bottom curves represent the ‘top level’ objective value

(z(1) = Mr.z− z(2)). Due to reduced economy of scale at the

subproblem level, z(2) is greater than z(1). For reference, we

also include the results of Section IV-B corresponding to z(1)

for n
(1)
g = 20 and n

(1)
g = 400 with dotted lines.

The results show that kr,max = 1 gives very slow conver-

gence: the subproblems have little room to explore solutions

which are acceptable for both the master and the local objective.

For kr,max = 2 and higher values, the results are far better;

however, the complexity scales exponentially by depth. Despite

that the global and the local problems use the same objective,

there are conflicts between the interests of the master problem

and the subproblems; as a result, the values of z(1) and z(2)

are not monotonically decreasing. To further point out this

conflict, it should be noted that the value of z(1) in the found

solution is 5% higher than in Section IV-B.

We observe that the problem spends a lot of top level

iterations for the local optimization of its subproblems, which

the system can also solve independently. Therefore, it makes

sense to first optimize the system locally with for example

kr,max = 20 before doing the cascaded optimization with a low

kr,max. Fig. 5 includes the results for this with dashed lines. In

this case, the high-kr local optimization almost solves the top

level problem. In the following iterations, a diverse column

set is already available, so there is little need to generate new

columns in the subproblems; consequently, kr,max becomes

unimportant—even kr,max = 0 may work well, provided that

good columns are available for the problem at hand.
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V. EVALUATION

Column generation again proves to be a very effective and

flexible scheduling approach. However, to find solutions in a

reasonable number of iterations, several specific changes are

necessary; this paper extends the set of changes of [2] for

smaller groups and for hierarchical planning. Furthermore, we

removed the main bottleneck (the master MIP) which prevented

the use of the approach for larger problems; the results show

that now larger instances can be tackled, but as currently no

larger scenarios are available, we are not able to investigate

the upper limits in size.

A nested column generation approach gives a prohibitively

large problem, as the size of the problem grows exponentially

by the iteration count with the depth. Instead, we use a cascaded
column generation approach, which reuses earlier subproblem

solutions to reduce the iteration count. Furthermore, we can

locally combine solutions in a different way without consulting

other subproblems, which avoids the growth in complexity.

To be practical, the approach needs extra information,

especially for smaller groups. The bootstrap procedure defines

the start of the column generation search; a good entry

point can avoid a large part of the search. This procedure

exploits knowledge on what the (approximate) desired profile

is. Alternatively, the local problems can be provided with

more information about the global problem; this substantially

accelerates the solution process (Section IV-D).

The main problem of the column generation approach,

which makes the aforementioned changes necessary, is that the

approach fails to communicate its needs to the subproblems in

an effective way. Prices provide a convenient narrow interface,

but these only represent the currently active set of constraints,

and not the constraints which (may) become active in a

later iteration. Price optimization leads to excessive responses

(oscillating behavior), unless there are local incentives to

prevent this. As an alternative, it may be better to request

a desired profile rather than a price vector response; in the case

of Section IV-C, one may instruct the subproblems to generate

the solution of the relaxed problem.

VI. CONCLUSION

Cascaded column generation is a promising approach for

solving large scale energy scheduling problems. A hierarchical

structure results in a scalable approach. However, the group

size and iteration count at each level must be chosen with

care, because these affect the effectiveness of the approach.

The practical lower group size limit is approximately 10
subproblems; the upper limit has not been reached yet. A

large group size (≥ 100) makes the search easier, since the

problem has more freedom to combine solutions, but this can

also make the master problem harder.

An unexpected but very practical contribution of this work

is an iterative column selection method, which allows us to

remove the mixed integer program at the expense of extra work

in the subproblems. As a result, we can handle large groups

more easily than originally intended.

For future work, we propose several improvements. Instead

of sending prices, we may choose to communicate part of the

objective of the master problem more directly. For example,

the master problem can determine a target profile for the

subproblem, which the subproblem can schedule independently.

Also, subproblems may expose more than only the electricity

profile to make the scheduling problem easier.
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