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Abstract— In this paper, we define a new measure of node
centrality in social networks, the Harmonic Influence Centrality,
which emerges naturally in the study of social influence over
networks. Next, we introduce a distributed message passing
algorithm to compute the Harmonic Influence Centrality of
each node: its design is based on an intuitive analogy between
social and electrical networks. Although our convergence anal-
ysis assumes the networks to have no cycle, the algorithm can
be successfully applied on general graphs.

I. INTRODUCTION

A key issue in the study of networks is the identification
of their most important nodes: the definition of prominence
is based on a suitable function of the nodes, called centrality
measure. The appropriate notion of centrality measure of a
node depends on the nature of the interactions among the
nodes and on the decision and control objectives [2], [3],
[4], [5], [6], [7].

In this paper, we define a new measure of centrality, which
we call Harmonic Influence Centrality (HIC) and which
emerges naturally in the context of social influence. We
explain why in addition to being descriptively useful, this
measure answers questions related to the optimal placement
of different agents or opinions in a network with the pur-
pose of swaying average opinion. In large real-world social
networks, computation of centrality measures of all nodes
is a challenging task and distributed algorithms, which do
not require global information on the topology, are currently
sought [8], [9]. In this paper, we present a fully distributed
algorithm for computing the HIC of all nodes.

Our model of social influence builds on recent work [10],
which characterizes opinion dynamics in a network consist-
ing of two kind of nodes: stubborn agents, who hold a fixed
opinion equal to zero or one (i.e., type zero and type one
stubborn agents), and regular agents, who hold an opinion
xi ∈ [0, 1] and update it as a weighted average of their
opinion and those of their neighbors. We consider a special
case of this model where a fixed subset of the agents are
type zero stubborn agents and the rest are regular agents.

An extended account of this work is available as [1]. The authors wish
to thank the anonymous reviewers for their insightful comments.
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We define the HIC of node ` as the asymptotic value of
the average opinion when node ` switches from being a
regular agent to a type one stubborn agent. This measure
hence captures the long run influence of node ` on the
average opinion of the social network. The HIC measure
is also the precise answer to the following network decision
problem: suppose you would like to have the largest influence
on long run average opinion in the network and you have
the capacity to change one agent from regular to type one
stubborn. Which agent should be picked for this conversion?
This question has a precise answer in terms of HIC: the agent
with the highest HIC should be picked.

The HIC measure is intuitive, but its computation [11] in a
large network would be challenging because it requires com-
plete knowledge about the network topology and the location
of the stubborn agents. We thus propose here a distributed
algorithm whereby each agent computes its own HIC based
on local information. The construction of our algorithm uses
a novel analogy between social and electrical networks by
relating the Laplace equation resulting from social influence
dynamics to the governing equations of electrical networks.
Under this analogy, the asymptotic opinion of regular agent
i can be interpreted as the voltage of node i when type zero
stubborn agents are kept at voltage zero and type one agents
are kept at voltage one. This interpretation allows us to use
tricks of electrical circuits and provide a recursive charac-
terization of HIC in trees. Using this characterization, we
develop a message passing [12] algorithm that computes the
HIC. Our algorithm can effectively be employed in general
networks, although the convergence analysis presented here
is only valid for trees.

We conclude this introduction with a brief outline of the
paper. In Section II we define our model of opinion dy-
namics with stubborn agents and our problem of interest. In
Section III we review basic notions of electrical circuits and
explain theirs connection with social networks: Section IV
is devoted to apply this electrical analogy on tree graphs.
In Section V we describe the message passing algorithm to
compute the optimal solution on trees, while in Section VI
we consider its extension to general graphs. Simulations and
final remarks are given in Section VII.

Notation

To avoid possible ambiguities, we briefly recall some
notation and a few basic notions of graph theory. The
cardinality of a (finite) set E is denoted by |E| and when
E ⊂ F we define its complement as Ec = {f ∈ F | f /∈ E}.
A square matrix P is said to be nonnegative when its entries
Pij are nonnegative, substochastic when it is nonnegative
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and
∑

j Pij ≤ 1 for every row i, and stochastic when it is
nonnegative and

∑
j Pij = 1 for every i. We denote by 1

a vector whose entries are all 1. An (undirected) graph G
is a pair (I, E) where I is a finite set of nodes and E is a
set of unordered pairs of nodes called edges. The neighbor
set of a node i ∈ I is defined as Ni := {j ∈ I|{i, j} ∈ E}
and its cardinality di := |Ni| is said to be the degree of
node i. A path in G is a sequence of nodes γ = (j1, . . . js)
such that {jt, jt+1} ∈ E for every t = 1, . . . , s − 1. The
path γ is said to connect j1 and js. The path γ is said to be
simple if jh 6= jk for h 6= k. A graph is connected if any
pair of distinct nodes can be connected by a path (which
can be chosen to be simple). The length of the shortest
path between two nodes i and j is said to be the distance
between them, and is denoted as dst(i, j). Consequently, the
diameter of a connected graph is defined to be diam(G) :=
maxi,j∈I{dst(i, j)}. A tree is a connected graph such that
for any pair of distinct nodes there is just one simple path
connecting them. Finally, given a graph G = (I, E) and
a subset J ⊆ I , the subgraph induced by J is defined as
G|J = (J,E|J) where E|J = {{i, j} ∈ E | i, j ∈ J}.

II. OPINION DYNAMICS AND STUBBORN AGENT
PLACEMENT

Consider a connected graph G = (I, E). Nodes in I will
be thought as agents who can exchange information through
the available edges {i, j} ∈ E. Each agent i ∈ I has an
opinion xi(t) ∈ R possibly changing in time t ∈ N. We
assume a splitting I = S ∪ R with the understanding that
agents in S are stubborn agents not changing their opinions
while those in R are regular agents whose opinions modify
in time according to the consensus dynamics

xi(t+ 1) =
∑
j∈I

Qijxj(t) , ∀i ∈ R

where Qij ≥ 0 for all i ∈ R and for all j ∈ I and
∑

j Qij=1
for all i ∈ R. The scalar Qij represents the relative weight
that agent i places on agent j’s opinion. We will assume that
Q only uses the available edges in G, more precisely, our
standing assumption will be that

Qij = 0 ⇔ {i, j} 6∈ E (1)

A basic example is obtained by choosing for each regular
agent uniform weights along the edges incident to it, i.e.,
Qij = d−1

i for all i ∈ R and {i, j} ∈ E. Assembling
opinions of regular and stubborn agents in vectors, denoted
by xR(t) and xS(t), we can rewrite the dynamics in a more
compact form as

xR(t+ 1) = Q11xR(t) +Q12xS(t)
xS(t+ 1) = xS(t)

where the matrices Q11 and Q12 are nonnegative matrices
of appropriate dimensions.

Using the adaptivity assumption (1), it is standard to show
that Q11 is a substochastic asymptotically stable matrix (e.g.

spectral radius < 1). Henceforth, xR(t) → xR(∞) for t →
+∞ with the limit opinions satisfying the relation

xR(∞) = Q11xR(∞) +Q12xS(0) (2)

which is equivalent to

xR(∞) = (I −Q11)−1Q12xS(0) (3)

Notice that [(I − Q11)−1Q12]hk = [
∑

n(Q11)nQ12]hk is
always non negative and is nonzero if and only if there
exists a path in G connecting the regular agent h to the
stubborn agent k and not touching other stubborn agents.
Moreover, the fact that P is stochastic easily implies that∑

k[(I − Q11)−1Q12]hk = 1 for all h ∈ R: asymptotic
opinions of regular agents are thus convex combinations of
the opinions of stubborn agents.

In this paper we will focus on the situation when S =
S0∪{`} and R = I\S assuming that xi(0) = 0 for all i ∈ S0

while x`(0) = 1, i.e., there are two types of stubborn agents:
one type consisting of those in set S0 that have opinion
0 and the other type consisting of the single agent ` that
has opinion 1. We investigate how to choose ` in I \ S0

in such a way to maximize the influence of opinion 1 on
the limit opinions. More precisely, let us denote as xR,`

i (∞)
the asymptotic opinion of the regular agent i ∈ R under
the above stubborn configuration, and define the objective
function.

H(`) :=
∑
i∈R

xR,`
i (∞) (4)

In order to use the electrical circuit analogy, we need to
make an extra “reciprocity” assumption on the weights Qij

assuming that they can be represented through a symmetric
matrix C ∈ RI×I (called conductance matrix) with non
negative elements and Cij > 0 iff {i, j} ∈ E by posing

Qij =
Cij∑
j Cij

, i ∈ I , j ∈ I (5)

The value Cij = Cji can be interpreted as a measure of the
“strength” of the relation between i and j. For two regular
nodes connected by an edge, the interpretation is a sort of
reciprocity in the way the nodes trust each other. Notice that
Cij when i ∈ S is not used in defining the weights, but is
anyhow completely determined by the symmetry assumption.
Finally, the terms Qij when i, j ∈ S do not play any
role in the sequel and for simplicity we can assume they
are all equal to 0. By the definition (5) and from matrix
C we are actually defining a square matrix Q ∈ RI×I .
Compactly, if we consider the diagonal matrix DC1 ∈ RI×I

defined by (DC1)ii = (C1)i, where 1 is all ones vector
with appropriate dimension, the extension is obtained by
putting Q = D−1

C1C. The matrix Q is said to be a time-
reversible stochastic matrix in the probability jargon. The
special case of uniform weights considered before fits in this
framework, by simply choosing C = AG, where AG is the
adjacency matrix of the graph. In this case all edges have
equal strengths and the resulting time-reversible stochastic
matrix Q is known as the simple random walk (SRW) on G.
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III. THE ELECTRICAL NETWORK ANALOGY

In this section we briefly recall the basic notions of elec-
trical circuits and we illustrate the relation with our problem.
A connected graph G = (I, E) together with a conductance
matrix C ∈ RI×I can be interpreted as an electrical circuit
where an edge {i, j} has electrical conductance Cij = Cji

(and thus resistance Rij = C−1
ij ). The pair (G,C) will be

called an electrical network from now on.
An incidence matrix on G is any matrix B ∈

{0,+1,−1}E×I such that B1 = 0 and Bei 6= 0 iff i ∈ e.
It is immediate to see that given e = {i, j}, the e-th
row of B has all zeroes except Bei and Bej : necessarily
one of them will be +1 and the other one −1 and this
will be interpreted as choosing a direction in e from the
node corresponding to +1 to the one corresponding to −1.
Define DC ∈ RE×E to be the diagonal matrix such that
(DC)ee = Cij = Cji if e = {i, j}. A standard computation
shows that B∗DCB = DC1 − C.

On the electrical network (G,C) we now introduce current
flows. Consider a vector η ∈ RI such that η∗1 = 0: we
interpret ηi as the input current injected at node i (if negative
being an outgoing current). Given C and η, we can define
the voltage W ∈ RI and the current flow Φ ∈ RE in such a
way that the usual Kirchoff and Ohm’s law are satisfied on
the network. Compactly, they can be expressed as{

B∗Φ = η
DCBW = Φ

Notice that Φe is the current flowing on edge e and sign is
positive iff flow is along the conventional direction individu-
ated by B on edge e. Coupling the two equations we obtain
(DC1 − C)W = η which can be rewritten as

L(Q)W = D−1
C1η (6)

where L(Q) := I − Q is the so called Laplacian of Q.
Since the graph is connected, L(Q) has rank |I| − 1 and
L(Q)1 = 0. This shows that (6) determines W up to
translations. Notice that (L(Q)W )i = 0 for every i ∈ I
such that ηi = 0. For this reason, in analogy with the
Laplacian equation in continuous spaces, W is said to be
harmonic on {i ∈ I | ηi = 0}. Clearly, given a subset
S ⊆ I and a W ∈ RI which is harmonic on Sc, we can
always interpret W as a voltage with input currents given
by η = DC1L(Q)W which will necessarily be supported on
S. W is actually the only voltage harmonic on Sc and with
assigned values on S.

It is often possible to replace an electrical network by a
simplified one without changing certain quantities of interest.
An useful operation is gluing: if we merge vertices having
the same voltage into a single one, while keeping all existing
edges, voltages and currents are unchanged, because current
never flows between vertices with the same voltage. Another
useful operation is replacing a portion of the electrical net-
work connecting two nodes h, k by an equivalent resistance,
a single resistance denoted as Reff

hk which keeps the difference
of voltage W (h)−W (k) unchanged. Two basic cases consist
in deleting degree two nodes by adding resistances (series

law) and replacing multiple edges between two nodes with
a single one having conductance equal to the sum of the
various conductances (parallel law). These techniques will
be heavily used in deriving our algorithm.

Social networks as electrical networks

We are now ready to state the relationship between so-
cial and electrical networks. Consider a connected graph
G = (I, E), a subset of stubborn agents S ⊆ I , and
a stochastic time-reversible matrix Q having conductance
matrix C. Notice that relation (2) can also be written as

L(Q)

(
xR,`(∞)
xS(0)

)
=

(
0
θ

)
(7)

for some suitable vector θ ∈ RS (where θ represents the
initial opinions of the stubborn agents). Comparing with (6),
it follows that xR,`(∞) can be interpreted as the voltage at
the regular agents when stubborn agents have fixed voltage
xS(0) or, equivalently, when input currents DC1θ are applied
to the stubborn agents. Because of equation (7), the vector
xR,`(∞) is called the harmonic extension of xS(0) and the
function H defined in (4) the Harmonic Influence Centrality
(HIC).

Thanks to the electrical analogy we can compute the
asymptotic opinion of the agents by computing the voltages
in the graph seen as an electrical network. From now on, we
will stick to this equivalence and we will exclusively talk
about an electrical network (G,C) with a subset S0 ⊆ I of
nodes at voltage 0. For any ` ∈ I \ S0, W (`) denotes the
voltage on I such that W (`)(i) = 0 for every i ∈ S0 and
W (`)(`) = 1. Using this notation and the association between
limiting opinions and electric voltages provided in Eqs. (6)
and (7), we can express the Harmonic Influence Centrality
of node ` as

H(`) =
∑

i∈I,i6=`

W (`)(i).

The following result, which is an immediate consequence
of (7), provides a formula that is useful in computing the
voltages.

Lemma 1 (Voltage scaling): Consider the electrical net-
work (G,C) and a subset S0 ⊆ I . Let W (`) be the voltage
which is 0 on S0 and 1 on `. Let W be another voltage such
that W (s) = w0 if s ∈ S0 and W (`) = w1. Then, for every
node i ∈ I it holds

W (i) = w0 + (w1 − w0)W (`)(i) (8)

IV. THE ELECTRICAL ANALOGY ON TREES

The case when the graph G is a tree is very important
to us. In the foregoing, we assume to have fixed a tree
T = (I, E), a conductance matrix C and the subset S0 ⊆ I
of 0 voltage nodes. We next define subsets of nodes of
the given tree, which enable us to isolate the effects of the
upstream and downstream neighbors of a node in computing
its harmonic centrality and its voltage. Given a pair of distinct
nodes i, j ∈ I , we let I<ij denote the subset of nodes that
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Fig. 1. An example of tree presenting the notation of the subsets of I .
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s2
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Rij

effR<ij
eff

Fig. 2. A subtree equivalently represented as a line graph.

form the subtree rooted at node i that does not contain node
j. Formally,

I<ij := {h ∈ I | the simple path from h to j goes through i}.

We also define Iij> := I<ji, Iij< := (Iij>)c∪{j}, I>ij :=
Iji<, and Ii<j := Iij< ∩ I>ij . Figure 1 illustrates these
definitions.

The induced subtrees is denoted using the same apex T<ij

and so on; similarly the HIC of the nodes on each of the trees
above is denoted as H<ij(·) and so on. Finally, we use the
notation Reff

<ij to denote the effective resistance inside T<ij

between S0 ∩ I<ij (considered as a unique collapsed node)
and node i. We will conventionally interpret this resistance
as infinite in case S0 ∩ I<ij = ∅. Analogously, we define
Reff

ij> := Reff
<ji.

Given a pair of distinct nodes i, j ∈ I , consider the two
voltages W (i) and W (j). If we restrict them to T<ij , we
may interpret them as two voltages on T<ij which are 0 on
S0 and take values in node i, respectively, W (i)(i) = 1 and
W (j)(i). It follows by applying Lemma 1 that

W (j)(`) = W (j)(i)W (i)(`) ∀` ∈ I<ij (9)

Moreover, W (j)(i) can be computed through effective resis-
tances replacing the circuit determined by the subtree T<ij ,
by an equivalent circuit represented by a line graph with three
nodes S0, i, and j as in Figure 2. We recall that collapsing
all nodes of S0 in a single node is possible since they all
have the same voltage. Moreover, by definition, the edge
{S0, i} has resistance Reff

<ij , while {i, j} has resistance Reff
ij .

Therefore, since the current flowing along the two edges is
the same, Ohm’s law yields

W (j)(j)

Reff
<ij +Reff

ij

=
W (j)(i)

Reff
<ij

yielding

W (j)(i) =
Reff

<ij

Reff
<ij +Reff

ij

(10)

(equal to 1 in case S0 ∩ I<ij = ∅). From relations (9)
and (10), later on we will derive iterative equations for the
computation of voltages on a tree.

The absence of cycles has the important consequence
that nodes in S0 break the computation of the HIC into
separate non-interacting components. Indeed, the induced
subgraph T|I\S0

is a forest composed of subtrees {Th =
(Jh, Eh)}h∈{1,...,n}. For every h ∈ {1, . . . , n}, define the set
S0
h as the set of type 0 stubborn nodes that are adjacent to

nodes in Jh in the graph G, that is,

S0
h := {i ∈ S0|∃j ∈ Jh : {i, j} ∈ E}.

Then, define the tree T̂h = G|S0
h∪Ih , which is therefore the

tree Th augmented with its type 0 stubborn neighbors in the
original graph G. An example of this procedure is shown in
Figure 3. It is then immediate to see that it is sufficient to
compute the HIC on the subtrees T̂h: consequently, we will
assume from now on that stubborn agents are located in the
leaves, without any loss of generality.

V. MESSAGE PASSING ON TREES

In this section, we design a message passing algorithm
(MPA), which computes the HIC of every node of a tree in
a distributed way. We begin by outlining the structure of a
general message passing algorithm on a tree. Preliminarily,
define any node i in the graph as the root. In the first phase,
messages are passed inwards: starting at the leaves, each
node passes a message along the unique edge towards the
root node. The tree structure guarantees that it is possible to
obtain messages from all other neighbor nodes before passing
the message on. This process continues until the root i has
obtained messages from all its neighbors. The second phase
involves passing the messages back out: starting at the root,
messages are passed in the reverse direction. The algorithm
is completed when all leaves have received their messages.

Next, we show how this approach can be effective in our
problem. Take a generic root node i ∈ I\S0 and, for every
j ∈ Ni, notice the following iterative structure of the subtree
rooted in i and not containing j:

I<ij =
⋃

k∈Ni\{j}

I<ki ∪ {i}

This, together with relation (9), yields

H<ij(i) =
∑

k∈Ni\{j}

∑
`∈T<ki

W (i)(`) + 1

=
∑

k∈Ni\{j}

W (i)(k)H<ki(k) + 1. (11)

Forthermore, (10) yields

W (i)(k) =
Reff

<ki

Reff
<ki +Rik

(12)
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Fig. 3. A tree with type 0 stubborn nodes in blue, together with its decomposition according to Proposition ??.

where we conventionally assume that Reff
<ki = ∞ and

W (i)(k) = 1 if S0 ∩ I<ki = ∅. On the other hand, also
effective resistances Reff

<ki admit an iterative representation.
Indeed, replace T<ij with the equivalent circuit consisting
of nodes: S0, i, j, and all the nodes k ∈ Ni \ {j}. Between
S0 and i there are |Ni| − 1 parallel (length 2) paths each
passing through a different k ∈ Ni\{j} and having resistance
Reff

<ki +Rik. Therefore, using the parallel law for resistances
we obtain

Reff
<ij =

 ∑
k∈Ni\{j}

1

Reff
<ki +Rik

−1

(13)

The three relations (11), (12), and (13) determine an iterative
algorithm to compute H(i) at every node i starting from
leaves and propagating to the rest of the graph. More
precisely, define Hi→j := H<ij(i), and W i→j := W (i)(j)
to be thought as messages sent by node i to node j along
the edge {i, j}. From (11), (12), and (13), we easily obtain
the following iterative relations

Hi→j =
∑

k∈Ni\{j}
W k→iHk→i + 1

W i→j =

(
1 +Rij

∑
k∈Ni\{j}

1−W k→i

Rik

)−1 (14)

Notice that a node i can only send messages to a neighbor
j, once he has received messages Hk→i and W k→i from all
its neighbors k but j. Iteration can start at leaves (having
just one neighbor) with the following initialization step

Hi→j = 1i6∈S0

W i→j = 1i6∈S0
(15)

where we denote by 1i 6∈S0 a vector indexed in I which has
entry 1 if i 6∈ S0 and entry 0 elsewhere. Notice that each
regular agent i can finally compute H(i) by the formula

H(i) =
∑
k∈Ni

W k→iHk→i + 1

Hence, the algorithm converges in a number of steps not
larger than the diameter of the tree. Furthermore, it can easily
be shown that the needed number of operations for the whole
network is O(

∑
i∈I\S0 d2

i ).
A centralized algorithm to compute the HIC in any

connected network was proposed in [11]: its computa-
tional complexity is O((|I| − |S0|)3). Since

∑
i∈I\S0 d2

i ≤
|I \ S0| d 2

max, on graphs with bounded degrees the MPA has
a much smaller complexity O(|I| − |S0|).

VI. MESSAGE PASSING ON GENERAL GRAPHS

The MPA presented above is limitated to trees. Message
passing algorithms are commonly designed on trees, but also
implemented with some modification over general graphs. In
many cases, the application is just empirical, without a proof
of convergence. We will see in this section how to apply the
MPA to every graph, with suitable modifications in order to
manage the new issues. Namely, we design an “iterative”
version of the message passing algorithm of Section V,
which can run on every network, regardless of the presence
of cycles.

We let the nodes send their messages at every time step,
so that we denote them as W i→j(t) and Hi→j(t) for all
t ≥ 0. The dynamics of messages are

Hi→j(t+ 1) =
∑

k∈Ni\{j}

W k→i(t)Hk→i(t) + 1 (16a)

W i→j(t+ 1) =

1 +Rij

∑
k∈Ni\{j}

1−W k→i(t)

Rik

−1

(16b)

if i /∈ S0 and

Hi→j(t+ 1) = 0 (17a)

W i→j(t+ 1) = 0 (17b)

otherwise. The initialization is

Hi→j(0) = 1i 6∈S0 W i→j(0) = 1i 6∈S0 (18)

By these definitions of messages we have defined the mes-
sage passing algorithm for general graphs. We should choose
a termination criterion: for instance, the algorithm may stop
after a number of steps which is chosen a priori. At every
time t, each agent i can compute an approximate H(i)(t) by
the formula

H(i)(t) =
∑
k∈Ni

W k→i(t)Hk→i(t) + 1

In order to illustrate how this algorithm is affected by the
presence of cycles, we can use the so called computation
trees, which we construct in the following way. Given a graph
G, we focus on a ‘root’ node, and for all t ∈ N we let the
nodes at distance t from the root (the level t of the tree) be
the nodes whose messages reach the root after t iterations
of the message-passing algorithm. Note that if the graph G
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Fig. 4. A graph (a) and computation trees of increasing depth (b)-(c)-(d)-(e) of a MPA from root 1.

is a tree, the computation tree is just equal to G; otherwise,
it has a number of nodes which diverges when t goes to
infinity. As an example, Figure 4 shows the first 4 levels of
a computation tree. In our MPA, each node i is computing its
own Harmonic Influence Centrality in the computation tree
instead than on the original graph. As the number of levels
of the computation tree diverges, the computation procedure
may not converge, and –if converging– may not converge
to the harmonic influence in the original graph. Sufficient
conditions for convergence are given in [1].

VII. SIMULATIONS AND FINAL REMARKS

We have performed extensive simulations of our algorithm
on well-known families of random graphs such as Erdős-
Rényi and Watts-Strogatz, obtaining very encouraging re-
sults. First, the algorithm is convergent in every test. Second,
in many cases the computed values of HIC are very close to
the correct values, which we can obtain by the benchmark
algorithm in [11].

In this note, we limit ourselves to a small example for
the sake of illustration: a more extended set of simulations
is reported in [1]. We simulate an Erdős-Rényi random
graph [13] with n = 15 and edge probability p = 0.2 and
we set S0 = {1, 2, 3}. In spite of the presence of several
cycles, we see in see Figure 5 that the algorithm finds the
maximum of the HIC correctly: in fact, the three nodes
with highest HIC are identified and the HIC profile is well
approximated. The same diagram compares the HIC with
some heuristics that can be computed in a distributed way:
the degree centrality (i.e., the number of neighbors ) and the
eigenvector centrality. We clearly see that these measures are
inadequate to our problem. Indeed, both the degree centrality
and the eigenvector centrality evaluate the influence of a node
within a network, but they do not consider the different role
of stubborn nodes, treating them as normal nodes.

Further research will be devoted to an extensive exper-
imental analysis of the proposed algorithms on real-world
networks and to extending the analysis of the algorithm
beyond the scope of the current assumptions to include
general networks with cycles and directed edges.

Fig. 5. Values of H computed by the MPA, compared with the actual
values and to the degree centrality and the (rescaled) eigenvector centrality,
in a graph with 15 nodes.
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