
Accuracy Improvement of Dataflow Analysis for
Cyclic Stream Processing Applications Scheduled by

Static Priority Preemptive Schedulers

Philip S. Wilmanns∗
philip.wilmanns@utwente.nl

Joost P.H.M. Hausmans∗
joost.hausmans@utwente.nl

Stefan J. Geuns∗
stefan.geuns@utwente.nl

Marco J.G. Bekooij∗‡
marco.bekooij@nxp.com

∗University of Twente, Enschede, The Netherlands ‡NXP Semiconductors, Eindhoven, The Netherlands

Abstract—Stream processing applications executed on em-
bedded multiprocessor systems regularly contain cyclic data
dependencies due to the presence of feedback loops and bounded
FIFO buffers. Dataflow modeling is suitable for the temporal
analysis of such applications. However, the accuracy can be
unsatisfactory as existing temporal analysis techniques ignore
that cyclic data dependencies limit interference between tasks
executed on shared processors.

This paper presents a dataflow analysis approach that in-
creases the analysis accuracy by taking into account that cyclic
data dependencies limit interference between tasks. It is shown
that the approach is applicable for single-rate stream processing
applications that are executed on multiprocessor systems using
static priority preemptive schedulers.

The improvement of accuracy is demonstrated in a case
study employing a WLAN 802.11p transceiver application that is
executed on a multiprocessor system with shared processors.

I. INTRODUCTION

Real-time stream processing applications such as Software
Defined Radios (SDRs) are usually executed on embedded
multiprocessor systems in a data-driven fashion. A number
of dataflow analysis techniques exist which can be used to
verify whether throughput and latency constraints can be
satisfied [1], [2]. These analysis techniques are also used for
the computation of required buffer capacities [3], scheduler
settings [4] and a suitable task-to-processor assignment [5].
Furthermore, they also form the basis for synchronization
overhead minimization techniques such as task clustering [6]
and resynchronization [7].

In particular, dataflow analysis is suitable for the analysis of
stream processing applications with cyclic data dependencies
as well as modal behavior [8], [9]. Cyclic data dependencies
are regularly found in models of SDRs due to the pres-
ence of feedback loops and bounded First-In-First-Out (FIFO)
buffers used for inter-task communication. Examples of modes
in receiver applications are acquisition, synchronization and
decoding, with each mode activating different parts of the
application.

Dataflow analysis techniques in the context of data-driven
systems were until recently only applicable for systems with
starvation-free schedulers such as Time Division Multiplex
(TDM) [2]. In [10] it has been shown that dataflow analysis
techniques can also be used for the broader class of non-
starvation-free schedulers such as static priority preemptive.

Figure 1 depicts two tasks with a cyclic data dependency
that are scheduled by such a static priority preemptive sched-
uler. As task τj has a higher priority than task τi, its executions

LP HPτjτi

Fig. 1. Two tasks with a cyclic data dependency that are scheduled by a
static priority preemptive scheduler.

can preempt and delay executions of task τi. This interference
has to be incorporated into the response time of task τi in
order to obtain temporally conservative analysis results.

By definition, the interference of tasks scheduled with non-
starvation-free schedulers can be only limited in the analysis
model if it can be derived how often these tasks are maximally
enabled per time interval. In [10] it is shown that such an
enabling characterization can be calculated using the periods
and jitters of interfering tasks.

However, existing analysis techniques do not capture that
cyclic data dependencies limit interference as well, which can
lead to an unsatisfactory accuracy of analysis results. This
relation can be illustrated with the cyclic data dependency
in the given example. The execution of a task begins with
the consumption of one token from all its incoming edges
and finishes with the production of one token on all its
outgoing edges. This implies that a task cannot be executed
if there are no tokens on one of its incoming edges. The
presented cyclic data dependency contains two tokens, for
instance corresponding to a FIFO buffer with two containers.
One of the two tokens is always held by task τi during each
of its executions, as an execution cannot begin without a
consumption of one token and a production cannot happen
before the end of an execution. Therefore at most one token
can be available on the incoming edge of task τj during each
execution of task τi. This in turn allows for only one execution
of task τj per execution of task τi, which effectively limits
interference between the tasks.

In this paper we present a dataflow analysis approach for
single-rate real-time stream processing applications that real-
izes an accuracy improvement compared to existing temporal
analysis techniques by taking into account that cyclic data
dependencies limit interference. This is incorporated into the
temporal analysis by the derivation of maximum response time
equations that are not only parameterized in periods and jitters,
but also in the number of tokens on cyclic data dependencies
between interfering tasks. We show that the presented analysis
approach, which has an exponential time-complexity, is ap-
plicable for systems with static priority preemptive schedulers
and can be used for the verification of temporal constraints as
well as a calculation of sufficient buffer capacities.

2014 17th Euromicro Conference on Digital System Design

978-1-4799-5793-4/14 $31.00 © 2014 IEEE

DOI 10.1109/DSD.2014.69

623

The remainder of this paper is structured as follows.
Section II presents related work. In Section III we present our
analysis flow and derive the maximum response time equations
which capture that cyclic data dependencies limit interference.
Section IV shows the improvement of analysis accuracy in a
case study and Section V states the conclusions.

II. RELATED WORK

In [2] it has been shown that dataflow analysis can be
used to derive the minimum throughput of applications that are
executed on multiprocessor systems in a data-driven fashion.
This approach is restricted to systems that employ starvation-
free schedulers, for which the minimum service of a task can
be determined independently of the enabling characterization
of other tasks. Recently, a dataflow analysis approach has been
introduced in [10], which takes the enabling characterization of
tasks into account. This approach extends the scope of dataflow
analysis techniques by allowing an analysis for systems with
non-starvation-free schedulers as well, at the cost of an expo-
nential time-complexity. Moreover, the usage of an enabling
characterization of tasks enables an accuracy improvement for
starvation-free schedulers. However, it is not considered that
cyclic data dependencies limit interference, which causes a
lower accuracy of analysis results compared to our approach.

The SymTA/S approach [11] uses an iterative procedure of
traffic characterization and response time calculation. However,
the employed traffic characterization is derived in the time-
interval domain. Therefore the correlation between streams
cannot be captured accurately, which can lead to an unsatis-
factory accuracy of analysis results. Moreover, it is not taken
into account that cyclic data dependencies limit interference.

Modular Performance Analysis (MPA) [12] is based on
Real-Time Calculus (RTC) [13] and, as SymTA/S, derives its
traffic characterization in the time-interval domain. In [14] it
has been shown how (potentially cyclic) data dependencies
can be handled in a modified MPA framework. The main
difference between the modified MPA framework and the one
presented in [12] is that the traffic characterization is not
derived in the time-interval, but in the time domain, which
allows for an accurate capturing of correlated streams and
hence for more accurate analysis results. However, the effect
that cyclic data dependencies limit interference between tasks
of the same application is not discussed, the combination of
cyclic data and resource dependencies is not considered at all.
Cyclic resource dependencies in the original MPA framework
from [12] are discussed in [15], but not in combination with
cyclic data dependencies. This combination is difficult due to
the requirement of an accurate translation between a traffic
characterization in the time domain and the resulting resource
usage characterization in the time-interval domain.

Time offsets on the executions of tasks make use of
data dependencies to limit interference between tasks as
well. Employing time offsets to limit interference was firstly
proposed in [16]. This approach makes use of static time
offsets, which only allow for the correct characterization of
systems with strictly periodic schedules. Therefore, multiple
generalizations of this approach were introduced, e.g. [17],
[18], [19], extending the applicability of time offsets to systems
with data-driven schedulers. However, none of these methods
is applicable for arbitrary (cyclic) task graphs. In contrast, our
approach does not only allow for cyclic data dependencies,
but exploits the presence of cyclic data dependencies for an
accuracy improvement of analysis results.

δji

δji

τjτi

vjvi

δij

δij

Fig. 2. One-to-one relation between HSDF model and task graph.

III. TEMPORAL ANALYSIS

In this section we explain our temporal analysis approach.
Section III-A describes the analysis model and Section III-B
the analysis flow. In Section III-C we present equations for the
calculation of an upper bound on the response time of tasks
that consider the effect of cyclic data dependencies limiting in-
terference. The employed interference limitation due to cyclic
data dependencies is detailed in Section III-D. Section III-E
presents Linear Program (LP) algorithms that are used to derive
upper and lower bounds on the start times of tasks, as well as
upper bounds on their jitters, and Section III-F describes a
technique for determining sufficient buffer capacities.

In the remainder of this paper we will refer to the upper
(lower) bounds on the response times of tasks as maximum
(minimum) response times. Analogously, we will call the upper
(lower) bounds on start times maximum (minimum) start times
and upper bounds on jitters maximum jitters, respectively.

A. Analysis Model
We make use of Homogeneous Synchronous Dataflow

(HSDF) graphs to calculate lower bounds on the best-case
and upper bounds on the worst-case schedule of an analyzed
application. These schedules are used for the verification of
temporal constraints, the derivation of maximum jitters and a
calculation of sufficient buffer capacities.

An HSDF graph is a directed graph G = (V,E, δ, ρ) that
consists of a set of actors V and a set of directed edges E
connecting these actors. Actors vi ∈ V communicate by pro-
ducing tokens on and consuming tokens from the edges, which
represent unbounded queues. An edge eij = (vi, vj) ∈ E
initially contains δ(eij) tokens. An actor vi is enabled to
fire if a token is available on each of its incoming edges.
Furthermore, the firing duration ρi specifies the difference
between the start and finish time of a firing of an actor vi.
At the start of a firing an actor consumes one token from all
its incoming edges and when it finishes it produces one token
on each of its outgoing edges.

With our temporal analysis approach we analyze applica-
tions that can be described by one or more task graphs. We
specify a task graph as a weakly connected directed graph,
with its vertices representing tasks and its directed edges
representing FIFO buffers. Each task graph is single-rate and
has a single, strictly periodic source τs enabling all other
tasks in the task graph. Write operations on FIFO buffers are
characterized by an acquisition of space, followed by the actual
writing of data and finalized by a release of data. Analogously,
read operations are described by an acquisition of data, the
reading of data and a release of space.

As depicted in Figure 2, we model each task of a task graph
as a single HSDF actor. Such a one-to-one relation between
tasks and actors can be maintained if it is ensured that all
acquisition operations of a task happen at the beginning and
all release operations at the end of its execution. This behavior
can be guaranteed by a scheduler that performs the required
acquire operations when a task is started and the corresponding
release operations when a task finishes.

624

Compute response times1

Adapt actor firing durations2

Collect application
characteristics

0

Compute schedules
and derive jitter

3

Check convergence or
violation of constraints

4

Determine buffer capacities5

Fig. 3. Overview of the analysis flow.

Exchanging data between tasks over a FIFO buffer can
then be modeled by a directed cycle in an HSDF graph as
depicted in Figure 2, with the number of initial tokens δij on
the edge from actor vi to actor vj being equal to the number of
initially full containers in the corresponding FIFO buffer and
the number of initial tokens δji on the edge from actor vj to
actor vi being equal to the number of initially free containers.
The consumption of a token by actor vi then corresponds to
an acquisition of space, whereas a token production by that
actor corresponds to a release of data on the modeled FIFO
buffer. Analogously, the consumption of a token by actor vj
corresponds to an acquisition of data and the production of a
token to a release of space.

In the following, we will derive such HSDF graphs from
task graphs to compute minimum and maximum start times
of actors, which are bounds on the start times of the corre-
sponding tasks. The minimum start times hence form a lower
bound on the best-case schedule of a task graph, whereas the
maximum start times determine an upper bound on the worst-
case schedule. A schedule is called admissible if no task in
the schedule is started before it is enabled. The start times of
an admissible schedule therefore do not violate any temporal
constraints.

B. Analysis Flow
Figure 3 depicts the flow of our temporal analysis approach.

We use this analysis flow for the verification of throughput con-
straints and for the calculation of sufficient buffer capacities.

In step 0, application characteristics are collected, which
form the input of our analysis. These characteristics include a
task graph as specified in the previous section, a fixed task-to-
processor mapping, a specification of scheduler settings and a
set of temporal constraints, which are usually derived from the
period of the source. Based on these characteristics, minimum
and maximum response times of tasks are derived in step 1.
This step makes use of the maximum response time equations
which take into account that cyclic data dependencies limit
interference.

Step 2 makes use of an HSDF graph corresponding to the
analyzed task graph, with the minimum and maximum firing
durations of the actors set to the minimum and maximum
response times of the corresponding tasks. Given this HSDF
graph, two periodic schedules are computed in step 3, the first a
lower bound on the best-case schedule and the second an upper
bound on the worst-case schedule. Using these schedules,
the maximum jitters of tasks are derived. In step 4, the two
schedules are checked against the temporal constraints and it
is verified whether all maximum jitters have converged, i.e.

have not changed since the previous iteration of the algorithm.
If a constraint is violated then the algorithm stops. Otherwise,
depending on whether the maximum jitters have converged,
the algorithm either continues with step 5, or repeats the steps
1 to 4 until either maximum jitter convergence or constraint
violation is observed.

If buffer capacities are given then they are considered
in both maximum response times and maximum start time
calculations, using the correspondence depicted in Figure 2.
However, our approach can also be used to determine sufficient
buffer capacities, which is done in step 5 of the analysis flow.

C. Maximum Response Times of Tasks
In this section we will include the effect that cyclic data de-

pendencies limit interference into equations for the calculation
of maximum response times of tasks.

Let Pj be the period of a task τj and Jj its maximum jitter.
The maximum number of enablings a task τj can have during
a time interval Δt can then be determined as follows [20]:

η̂j(Δt) =

⌈
Jj +Δt

Pj

⌉
(1)

Using this enabling characterization, the response time of a
task scheduled by a static priority preemptive scheduler can
be bounded from above with the following maximum response
time equations [21]:

wi(q) = q · Ci +
∑

j∈hp(i)
η̂j(wi(q)) · Cj (2)

R̂i = max
1≤q

(wi(q)− (q − 1) · Pi) (3)

The busy period wi(q) is an upper bound on the maximum
amount of time required to finish q consecutive executions of
a task τi, Ci is the Worst-Case Execution Time (WCET) of
one firing of task τi and the set hp(i) contains all tasks τj
with a higher priority than task τi. Besides q = 1, only values
of q > 1 for which wi(q − 1) > (q − 1) · Pi holds need to be
considered [21].

In order to include the effect that cyclic data dependencies
limit interference into the maximum response time equations,
we introduce a new upper bound on the maximum number
of enablings a task τj can have during a time interval Δt in
which a task τi is executed q consecutive times:

η̂′j→i(Δt, q) = min(η̂j(Δt), γj→i(q)) (4)

The first term of the minimum function denotes the maximum
interference of a task τj on a task τi, given that their enablings
are independent of each other. This term ensures that the
maximum response time of a task τi cannot become more
pessimistic than by applying Equation 1. The function γj→i(q),
which will be derived in the next section, represents an upper
bound on the maximum number of enablings a task τj can
have during q consecutive executions of a task τi due to
cyclic data dependencies between the tasks. As both terms
of the minimum function are upper bounds on the number of
enablings of a task τj , η̂′j→i(Δt, q) can be used to reduce
the busy period calculated with Equation 2, leading to the
following maximum response time equations:

w′i(q) = q · Ci +
∑

j∈hp(i)
η̂′j→i(wi(q), q) · Cj (5)

R̂′i = max
1≤q

(w′i(q)− (q − 1) · Pi) (6)

625

We require the maximum response time calculated with Equa-
tion 6 to be conservative and to be more accurate than the
maximum response time calculated with Equation 3. This is
the case if the same holds for the reduced busy period w′i(q).
Hence we have to prove the following lemma:

Lemma 1: Let w∗i (q) be the actual, and thus in general
unknown, maximum amount of time required to finish q
consecutive executions of a task τi scheduled by a static
priority preemptive scheduler. Then it holds that the reduced
busy period w′i(q) is an upper bound on w∗i (q) and that w′i(q) is
a tighter upper bound than wi(q), i.e. w∗i (q) ≤ w′i(q) ≤ wi(q).

Proof: At first we prove that w′i(q) ≤ wi(q). From the
relation ∀x,y : min(x, y) ≤ x it directly follows that
∀Δt,q : η̂′j→i(Δt, q) ≤ η̂j(Δt). Therefore it also holds that:

w′i(q) = q · Ci +
∑

j∈hp(i)
η̂′j→i(wi(q), q) · Cj

≤ q · Ci +
∑

j∈hp(i)
η̂j(wi(q)) · Cj = wi(q)

For the proof of w∗i (q) ≤ w′i(q) we firstly define η̂∗j→i(Δt, q)
as the actual maximum number of enablings a task τj can
have during a time interval Δt and q consecutive executions
of a task τi. As both terms in the minimum function in
η̂′j→i(Δt, q) are upper bounds on the number of enablings of
a task τj it holds that ∀Δt,q : η̂∗j→i(Δt, q) ≤ η̂′j→i(Δt, q).
Furthermore, η̂′j→i(Δt, q) is monotonically increasing in Δt,
due to the monotonicity of the ceiling and minimum functions
in Equations 1 and 4. With wi(q) ≥ w∗i (q) it then follows:

η̂′j→i(wi(q), q) ≥ η̂′j→i(w
∗
i (q), q) ≥ η̂∗j→i(w

∗
i (q), q)

Using this relation it follows for the reduced busy period w′i(q):

w′i(q) = q · Ci +
∑

j∈hp(i)
η̂′j→i(wi(q), q) · Cj (7)

≥ q · Ci +
∑

j∈hp(i)
η̂∗j→i(w

∗
i (q), q) · Cj

For static priority preemptive schedulers, the last term is an
overapproximation of w∗i (q) since no other components than
the time required for q executions of task τi and the time
required for η̂∗j→i(w

∗
i (q), q) executions of all tasks τj ∈ hp(i)

can contribute to w∗i (q). Thus it holds that w∗i (q) ≤ w′i(q).

D. Limiting Interference with Cyclic Data Dependencies
In this section we will derive the function γj→i(q) that

calculates the maximum number of enablings a task τj can
have during q consecutive executions of a task τi, based on
cyclic data dependencies between the tasks. We will make use
of HSDF modeling in this derivation. Hence we will not refer
to tasks in the remainder of this section, but to HSDF actors
corresponding to tasks, according to Figure 2. We employ
precedence constraints on firings of actors in the derivation
of γj→i(q), which are defined as follows:

Definition 1: We define vj(n) as firing n of an actor vj . If a
firing vj(n) of an actor vj cannot start before a firing vi(m)
of an actor vi has finished, then we say that vi(m) precedes
vj(n) and denote this relation as vj(n) � vi(m). The firing
number m is defined in a sequential manner such that a firing
n > m of an actor vj cannot start before its firing m has
started. vj(0) denotes the first firing of an actor vj .

vl vjvk
∞

vi

Fig. 4. Paths in a cyclic HSDF graph.

According to the definition of an HSDF graph an actor can
only fire if there is at least one token on all its incoming
edges. When an actor completes its firing it produces one token
on each of its outgoing edges. If an edge eij contains δ(eij)
initial tokens then actor vj can fire δ(eij) times before it must
get enabled by a completed firing of actor vi for a subsequent
firing. This implies that firing m of actor vj cannot start before
firing m − δ(eij) of actor vi has finished, which is captured
by the following precedence constraint:

∀m≥δ(eij) : vj(m) � vi(m− δ(eij)) (8)

Definition 2: A directed path on an HSDF graph G is defined
as a sequence of edges:

p = 〈e0, e1, e2, . . . , e|p|−1〉
with ek = (vk, vk+1) ∈ E and |p| the number of edges on the
path. We speak of a path from an actor vi to an actor vj if
e0 = (vi, v1) and e|p|−1 = (v|p|−1, vj). The set Pij contains
all paths from an actor vi to an actor vj .

Definition 3: The number of initial tokens on a path p is
defined as the sum of initial tokens on its edges:

δ(p) =

|p|−1∑
k=0

δ(ek)

Using this definition we define the minimum number of initial
tokens on a path from an actor vi to an actor vj as:

δ(Pij) =

{
minp∈Pij δ(p) if Pij
= ∅
∞ otherwise

(9)

The relation between edges and paths is illustrated by the
HSDF graph depicted in Figure 4, which contains one path
from actor vi to actor vj and two paths from actor vj to actor
vi. The minimum number of initial tokens on paths from actor
vi to actor vj is δ(Pij) = 0, due to δ(eil)+δ(elj) = 0, whereas
the minimum number of initial tokens on paths from actor vj
to actor vi equals to δ(Pji) = min(δ(ejl)+δ(eli), δ(eji)) = 2.

Consider the dotted edge eik from actor vi to actor vk. As
δ(eik) = ∞, there are always sufficient tokens on this edge
for actor vk to fire, independent of firings of actor vi. Due to
this independence of firings, an edge with an infinite number
of initial tokens can be considered equivalent to the absence
of that edge. Consequently, a non-existent path between two
actors can also be considered equivalent to a path containing
a single edge with an infinite number of initial tokens. This
equivalence is reflected by the definition of δ(Pij) = ∞ for
Pij = ∅.

The Floyd-Warshall Algorithm [22] can be used to compute
minimum distances between all pairs of vertices of a weighted
directed graph. We apply this algorithm on HSDF graphs,
considering actors as vertices, using the same edges between
vertices as between actors and setting the required edge
weights to numbers of initial tokens. The resulting minimum
distances between all pairs of vertices then just equal to δ(Pij)
for all pairs of actors in the HSDF graph. Note that in our
case edge weights cannot be negative, as an HSDF graph
cannot contain edges with negative numbers of initial tokens.
Therefore there also cannot be negative cycles in the graph

626

processed by the Floyd-Warshall Algorithm, guaranteeing that
the correct δ(Pij) can be always obtained.

Until now we have only defined precedence constraints for
single edges. Proving the following lemma allows us to use
precedence constraints for paths as well.

Lemma 2: For two actors vi, vj ∈ V it holds that the following
precedence constraint is the tightest precedence constraint
imposed by a path from actor vi to actor vj :

∀m≥δ(Pij) : vj(m) � vi(m− δ(Pij))

Proof: All edges of a path p ∈ Pij from an actor vi to an actor
vj impose precedence constraints as defined in Equation 8. By
recursively substituting the firing numbers of the actors on such
a path we derive the following relation:

vj(m) = v|p|(m) � v|p|−1(m− δ(e|p|−1)) (10)

� v|p|−2(m− δ(e|p|−1)− δ(e|p|−2))

� . . .

� v0(m−
|p|−1∑
k=0

δ(ek)) = vi(m− δ(p))

Due to the definition of δ(Pij), there must be a path p ∈ Pij

with δ(p) = δ(Pij). As ∀p∈Pij
: δ(Pij) ≤ δ(p), it holds

that no path from an actor vi can impose a tighter precedence
constraint on the firings of actor vj than a path p ∈ Pij with
δ(p) = δ(Pij). By substituting δ(p) in Equation 10 with δ(Pij)
we obtain the precedence constraint from Lemma 2.

Based on Definition 3 and the definition of HSDF graphs we
define sets of firings of actors that can overlap in time with a
single firing of an actor vi.

Definition 4: The outgoing interference set I out
vj→vi(m) con-

tains all firings of an actor vj that can overlap in time with
firing m of an actor vi, despite the precedence constraints
imposed by the paths from actor vi to actor vj .

From Lemma 2 we derive:

∀m≥δ(Pij) : vj(m) � vi(m− δ(Pij))
⇔ ∀m≥0 : vj(m+ δ(Pij)) � vi(m)

which implies together with the sequentiality of actor firings
that only firings vj(n) with n < m+ δ(Pij) can occur before
the end of firing vi(m). With this observation we can formalize
Definition 4 as follows:

I out
vj→vi(m) = {vj(n) |n < m+ δ(Pij)}

Analogous to the outgoing interference set we define an
interference set for incoming paths of actor vi:

Definition 5: The incoming interference set I in
vj→vi(m) con-

tains all firings of an actor vj that can take place during one
firing m of an actor vi, despite the precedence constraints
imposed by the paths from actor vj to actor vi.

By using Lemma 2 we obtain:

∀m≥δ(Pji) : vi(m) � vj(m− δ(Pji))

From this it follows with the sequentiality of actor firings that
only firings vj(n) with n > m−δ(Pji) can occur after the start
of firing vi(m). This leads to the formalization of I in

vj→vi(m):

I in
vj→vi(m) = {vj(n) |n > m− δ(Pji)}

Algorithm 1

Minimize
∑
vi∈V

ši

Subject to: šs = 0

∀eij∈E′ : šj − ši ≥ ρ̌i

with E′ = {e | e ∈ E ∧ δ(e) = 0}

As we are not only interested in the firings of an actor vj that
can take place during a single firing of an actor vi, but the
firings that can take place during q consecutive firings of an
actor vi, we derive interference sets for q consecutive firings
as the union of interference sets for single firings:

I out
vj→{vi(m),...,vi(m+q−1)} =

m+q−1⋃
k=m

I out
vj→vi(k)

= {vj(n) |n < m+ q − 1 + δ(Pij)}

I in
vj→{vi(m),...,vi(m+q−1)} =

m+q−1⋃
k=m

I in
vj→vi(k)

= {vj(n) |n > m− δ(Pji)}
To derive all firings of an actor vj that can take place during
q consecutive firings of an actor vi, we draw the intersection
between outgoing and incoming interference sets:

Ivj→{vi(m),...,vi(m+q−1)}
= I out

vj→{vi(m),...,vi(m+q−1)} ∩ I in
vj→{vi(m),...,vi(m+q−1)}

= {vj(n) |m− δ(Pji) < n < m+ q − 1 + δ(Pij)}
The number of firings of actor vj that can interfere with q
consecutive firings of actor vi then equals to the number of ele-
ments in Ivj→{vi(m),...,vi(m+q−1)} (with δ◦ij = δ(Pij)+δ(Pji)
a shorthand notation):

γj→i(q) =
∣∣Ivj→{vi(m),...,vi(m+q−1)}

∣∣ = δ◦ij + q − 2

Considering Equation 4 it follows that η̂′j→i(wi(q), q) is equal
to η̂j(wi(q)) if there is no directed cycle containing both actors
vi and vj , as then either δ(Pij), δ(Pji) or both are infinite.
However, if the actors vi and vj are both part of a single
directed cycle then γj→i(q) is finite, which can lead to a tighter
upper bound on the response time of actor vi. Note that a
cycle does not necessarily have to be a simple cycle, as it
is illustrated by the cycle in Figure 4 consisting of the paths
{eil, elj} and {ejl, eli}.

E. Start Times and Maximum Jitters
In [10] it has been shown that a lower bound on the best-

case schedule for a given task graph can be computed by
solving the LP presented in Algorithm 1. In a similar fashion,
an upper bound on the worst-case schedule can be computed by
solving the LP presented in Algorithm 2. We set the minimum
firing durations ρ̌i in Algorithm 1 to the Best-Case Execution
Times (BCETs) of the corresponding tasks and the maximum
firing durations ρ̂i in Algorithm 2 to the maximum response
times obtained by Equation 6. The minimum and maximum
start times obtained by solving the LPs then just form the
bounds on the best-case and worst-case schedules, respectively.

Given that both bounds on best-case and worst-case sched-
ules are admissible, the maximum jitters of tasks can be
conservatively bounded by Ji = ŝi − ši.

627

Algorithm 2

Minimize
∑
vi∈V

ŝi

Subject to: ŝs = 0

∀eij∈E : ŝj − ŝi ≥ ρ̂i − δ(eij) · Pi

F. Sufficient Buffer Capacities
Our temporal analysis approach can handle FIFO buffers

of given capacities, due to the correspondence between
FIFO buffers and cyclic data dependencies presented in Sec-
tion III-A. Moreover, the approach can be also used to deter-
mine sufficiently large buffer capacities.

As in [10], we assume unknown buffer capacities to be
infinite in the steps 2 to 4 of our analysis flow, which
corresponds to setting δ(eji) =∞ in Figure 2. Moreover, we
also set unknown buffer capacities to infinite in the maximum
response time calculations of step 1. If for this scenario all
maximum jitters converge without a violation of temporal
constraints, we obtain two admissible schedules, one a lower
bound on the best-case and the other an upper bound on
the worst-case schedule. Based on these results we can then
determine sufficient δ(eji) such that both schedules remain
admissible.

The lower bound on the best-case schedule computed with
Algorithm 1 is not dependent on buffer capacities, as it only
considers the subset of edges that do not contain any initial
tokens. However, the upper bound on the worst-case schedule
computed with Algorithm 2 can become inadmissible if too
small buffer capacities are chosen. Directly following from the
constraints in Algorithm 2 we conclude that a buffer capacity
is sufficiently large to keep the upper bound on the worst-
case schedule admissible, if it is chosen larger or equal to the
smallest integer that satisfies:

δ(eji) ≥ ρ̂j + ŝj − ŝi
Pj

(11)

Note that the relation between tokens and maximum response
times does not have to be taken into account in the calcula-
tion of sufficient buffer capacities, which is due to the fact
that lower buffer capacities cannot lead to larger maximum
response times, and that smaller maximum response times
cannot lead to larger maximum start times. However, we will
demonstrate in Section IV that assuming buffer capacities to
be smaller than infinite during analysis can be used to reduce
the jitters of tasks, such that previously unsatisfiable temporal
constraints become satisfiable.

IV. CASE STUDY

In this section we illustrate with a practical example that
a consideration of cyclic data dependencies in the maximum
response time calculations leads to an improved accuracy of
temporal analysis results. Furthermore, we will demonstrate
the counter-intuitive effect that a reduction of buffer capacities
to smaller than infinite can lead to previously unsatisfiable
constraints becoming satisfiable.

We analyze the task graph of a WLAN 802.11p trans-
ceiver [23]. This application has several modes and is executed
on a multiprocessor system for performance reasons. We will
consider only the part of the task graph that is active during
packet decoding mode.

An HSDF model corresponding to a realistic task graph
of the packet decoding mode is shown in Figure 5. The

FIL
TER

4μs 1μs

1μs 1μs4μs[0.5..1.5]μs

FFTSRC

125kHz

1

EQ DE
MAP

DE
INT

212

CH
EST

RE
ENC VIT

4 3

1μs

1μs

Fig. 5. HSDF graph of the packet decoder of a WLAN 802.11p transceiver.

unit of all times in the remainder of this section is 1μs. A
periodic source with a frequency of 125kHz models the input
of this dataflow graph, which corresponds to a source period
of PSRC = 8. All received symbols are firstly processed by a
hardware filter with a variable WCET and then processed by
an FFT. The hardware filter and the FFT communicate via a
FIFO buffer of the capacity one, which is represented by the
leftmost cyclic data dependency. For the other tasks we will
use our analysis flow to determine sufficient buffer capacities.
The backward edges, whose numbers of initial tokens are set
to infinity before buffer capacities are determined, are omitted
in Figure 5. This is allowed due to the correspondence between
edges with an infinite number of initial tokens and non-existent
edges. In addition, the dataflow graph contains a feedback
loop, as the settings of the channel equalizer (EQ) for the
reception of symbol i are based on an estimate of the channel
(CHEST) during the reception of symbol i− 2. This estimate
of the channel is based on the received symbol i− 2 and the
reencoded symbol i− 2, which is obtained by reencoding the
error corrected bits of symbol i − 2 produced by the viterbi
channel decoder (VIT).

We assume all software tasks (all tasks except source and
hardware filter) being mapped to three different processors,
which is indicated by the different colors of the actors in the
dataflow graph. If multiple tasks are mapped to a shared pro-
cessor, then they are scheduled by a static priority preemptive
scheduler, with their priorities denoted in the upper parts of
the corresponding actors. For instance, the tasks τFFT and τEQ

share a processor, with task τEQ having a higher priority than
task τFFT.

In the following, we will apply the original analysis flow
that calculates maximum response times without consideration
of cyclic data dependencies and then compare its results to the
results obtained by an application of our accuracy-improved
analysis flow. Before applying the analysis flows we resolve
the inequalities from the LPs in Algorithms 1 and 2 such
that we get compact formulations of maximum start times and
maximum jitters.

At first, we iteratively substitute the inequalities from
Algorithm 2 for each cycle in Figure 5 to derive the temporal
constraints that must be met for an admissible upper bound on
the worst-case schedule. The tasks τFILTER, τEQ, τCHEST and τREENC

either have the highest priorities on their shared processors
or are executed on separate processors. Therefore they do not
experience any interference from other tasks and the maximum
firing durations of the corresponding actors are equal to their
WCETs. This lets us derive the following constraint from the
cycle between the actors vFILTER and vFFT:

ŝFFT − ŝFILTER ≥ ρ̂FILTER ∧ ŝFILTER − ŝFFT ≥ ρ̂FFT − 1 · PSRC

⇔ ρ̂FILTER + ρ̂FFT ≤ 1 · PSRC ⇔ ρ̂FFT ≤ 1 · 8− 1.5 = 6.5

Analogously, we derive the temporal constraint from the right-
most cycle:

ρ̂DEMAP + ρ̂DEINT + ρ̂VIT ≤ 10 (12)

By making use of the maximum jitter equation from Sec-
tion III-E we derive dependencies between maximum jitters

628

and maximum response times. For instance, the maximum
jitter of task τEQ is defined as JEQ = ŝEQ−šEQ. With Algorithm 1
it follows for the minimum start time of actor vEQ:

šEQ ≥ šFFT + ρ̌FFT ≥ ρ̌FILTER + ρ̌FFT = 4.5 (13)

Note that the edge eCHEST,EQ is not considered in Algorithm 1
as it contains initial tokens. From Algorithm 2 we obtain the
following constraints on the maximum start time of actor vEQ:

ŝEQ ≥ ŝFFT + ρ̂FFT ≥ ρ̂FILTER + ρ̂FFT = ρ̂FFT + 1.5 (14)

ŝEQ ≥ ŝCHEST + ρ̂CHEST − 2 · PSRC (15)

≥ ŝFFT + ρ̂FFT + ρ̂CHEST − 2 · PSRC

≥ 1.5 + ρ̂FFT + 1− 2 · 8 = ρ̂FFT − 13.5

ŝEQ ≥ ŝCHEST + ρ̂CHEST − 2 · PSRC ≥ . . . (16)

≥ ŝEQ + ρ̂EQ + ρ̂DEMAP + ρ̂DEINT

+ ρ̂VIT + ρ̂REENC + ρ̂CHEST − 2 · PSRC

= ŝEQ + ρ̂DEMAP + ρ̂DEINT + ρ̂VIT − 10

Equation 14 imposes a tighter constraint on ŝEQ than Equa-
tion 15 and Equation 16 equals to the temporal constraint in
Equation 12, which must be true for an admissible schedule.
Therefore šEQ is only constrained by Equation 13 and ŝEQ only
by Equation 14. The LPs in Algorithm 1 and Algorithm 2 both
minimize start times and as the Equations 13 and 14 are the
only constraints that have to be considered, we can replace the
inequalities in these constraints by equalities. This leads to the
following maximum jitter of actor vEQ:

JEQ = ŝEQ − šEQ = ρ̂FFT + 1.5− 4.5 = ρ̂FFT − 3

Analogously, we derive for the other maximum jitters:

JFILTER = 0, JFFT = 1, JEQ = JDEMAP = ρ̂FFT − 3

JDEINT = ρ̂FFT + ρ̂DEMAP − 4, JVIT = ρ̂FFT + ρ̂DEMAP + ρ̂DEINT − 5

JREENC = JCHEST = ρ̂FFT + ρ̂DEMAP + ρ̂DEINT + ρ̂VIT − 6

Taking these temporal constraints and maximum jitters into ac-
count we now apply the original analysis flow which does not
consider that cyclic data dependencies limit interference. The
analysis flow is applied by iteratively calculating maximum
response times and maximum jitters until either all maximum
jitters converge or constraints are violated. For the first iteration
of the analysis flow we initialize all maximum jitters to zero.
For task τDEINT it follows with Equations 1 to 3:

wDEINT(1) = 1 · CDEINT +

⌈
JVIT + wDEINT(1)

PSRC

⌉
· CVIT

+

⌈
JCHEST + wDEINT(1)

PSRC

⌉
· CCHEST

= 1 · 1 +
⌈
0 + 1

8

⌉
· 1 +

⌈
0 + 1

8

⌉
· 1 = 3

wDEINT(1) = 1 · 1 +
⌈
0 + 3

8

⌉
· 1 +

⌈
0 + 3

8

⌉
· 1 = 3

Hence we can conclude that the fixed point of the busy period
wDEINT(1) is three. As wDEINT(1) ≤ 1 · PSRC we do not have to

consider q > 1, resulting in R̂DEINT = 3.
Similarly we calculate the maximum response times for

all other actors, which can be found in the first column of
Table I. Based on these maximum response times we derive
the maximum jitters in the second column. It can be verified
that no maximum response time of the first iteration violates
any of the temporal constraints. Therefore we calculate the

Original Accuracy-Improved
Analysis Flow Analysis Flow

1st iteration 2nd iteration 1st iteration 2nd iteration

x R̂x Jx R̂x Jx R̂′
x Jx R̂′

x Jx

vFILTER 1.5 0 1.5 0 1.5 0 1.5 0

vFFT 5 1 5 1 5 1 5 1

vEQ 1 2 1 2 1 2 1 2

vDEMAP 4 2 7 2 4 2 4 2

vDEINT 3 5 5 8 3 5 3 5

vVIT 2 7 3 12 2 7 2 7

vREENC 4 8 4 14 4 8 4 8

vCHEST 1 8 1 14 1 8 1 8

TABLE I. TEMPORAL ANALYSIS RESULTS FOR FIGURE 5.

maximum response times and maximum jitters in the second
iteration, considering the maximum jitters calculated in the
first. However, the maximum response times in the second
iteration, which are presented in the third column of Table I,
lead to a violation of the temporal constraint in Equation 12:

ρ̂DEMAP + ρ̂DEINT + ρ̂VIT = 7 + 5 + 3 = 15 > 10

Now we apply our accuracy-improved analysis flow which
takes into account that cyclic data dependencies limit inter-
ference. Using the maximum response time equations from
Equation 4 to 6 results in the maximum response times and
maximum jitters presented in the fifth and sixth column of
Table I. These are just the same as in the first iteration of the
original analysis flow. However, the results are different in the
second iteration. For instance, the maximum response time of
task τVIT in the second iteration is calculated as follows:

wVIT(1) = 1 +

⌈
JCHEST + wVIT(1)

PSRC

⌉
· CCHEST = · · · = 3

w′
VIT
(1) = 1 +max(

⌈
JCHEST + wVIT(1)

PSRC

⌉
, δ◦VIT,

CHEST

− 1) · CCHEST

= 1 +max(

⌈
8 + 3

8

⌉
, 1) · 1 = 2

As w′
VIT
(1) ≤ 1 · PSRC it follows that R̂′

VIT
= 2. The number

of tokens on the cycle between the actors vVIT and vCHEST

effectively limits interference, which results in the same max-
imum response time of task τVIT as in the first iteration. The
same happens to all other maximum response times in our
example as well, resulting in the maximum response times and
maximum jitters of the second iteration being equal to those of
the first. Hence we conclude a convergence of maximum jitters
without a violation of temporal constraints after the second
iteration of our accuracy-improved analysis flow.

Based on these results we can now also determine sufficient
FIFO buffer capacities. This is done by inserting edges in the
reverse direction wherever two actors are connected by a single
edge. For those edges we can then calculate sufficient numbers
of initial tokens using Equation 11. For this calculation we
require the maximum start times of all actors which define
the upper bound on the worst-case schedule. The maximum
start times can be calculated by adding up maximum response
times on the path from actor vSRC to actor vCHEST over the
rightmost cycle. For instance, the sufficient number of initial
tokens on the inserted edge from actor vCHEST to actor vFFT can
be calculated as the smallest integer that satisfies:

δ(eCHEST,FFT) ≥ ρCHEST + ŝCHEST − ŝFFT

PSRC

=
1 + 20.5− 1.5

8
= 2.5

Therefore it can be concluded that the sufficient buffer capacity
for a FIFO buffer between the tasks τFFT and τCHEST is three. The
sufficient numbers of initial tokens for the other additional

629

EQFIL
TER

4μs[0.5..3]μs

FFTSRC

125kHz
4μs 1μs

1μs 1μs

DE
MAP

DE
INT

21

CH
EST

RE
ENC VIT

4 3

1μs

1μs
1 2

Fig. 6. Modification of the HSDF graph from Figure 5.

edges are all one, except for the edge eEQ,CHEST, on which zero
initial tokens suffice. Note that the FIFO buffer between the
tasks τCHEST and τEQ must contain at least 0+2 = 2 containers,
as the number of initial tokens on the edge eCHEST,EQ is two,
corresponding to two initially full containers.

Now consider that we replace the hardware filter by another
implementation with a higher WCET. This modification is
depicted in Figure 6. The larger maximum jitter coming from
the filter does not increase the maximum response times of the
actors on the rightmost cycle, as these are already limited by
the number of tokens on that cycle. However, the maximum
response time of task τFFT would increase to R̂FFT = 6. In
addition, the temporal constraint imposed by the leftmost cycle
would become ρ̂FFT ≤ 5, due to the higher WCET of task
τFILTER. Altogether, this would lead to a violation of the temporal
constraint imposed by the cycle between the tasks τFILTER and
τFFT.

However, setting the capacity of the FIFO buffer between
the tasks τFFT and τEQ to two containers, as indicated by the
additional edge eEQ,FFT with two initial tokens in Figure 6,
leads to a different conclusion. This additional cyclic data
dependency limits the interference of task τEQ on task τFFT,

resulting in a maximum response time of R̂FFT = 5. This max-
imum response time would not violate the temporal constraint
coming from the cycle between the tasks τFILTER and τFFT, which
demonstrates that a reduction of buffer capacities to smaller
than infinity can result in previously unsatisfiable temporal
constraints becoming satisfiable.

V. CONCLUSION

In this paper a dataflow analysis approach is presented for
single-rate real-time stream processing applications executed
on multiprocessor systems with shared processors. The pre-
sented approach improves the accuracy compared to state-of-
the-art by taking into account that cyclic data dependencies
limit interference between tasks sharing a processor. The
accuracy improvement results from the usage of enhanced
maximum response time equations which take into account
that the numbers of tokens on cyclic data dependencies limit
interference. These maximum response time equations are
embedded into an iterative analysis flow with an exponential
time-complexity that is applicable for systems employing static
priority preemptive schedulers and that can be used for the
verification of temporal constraints, as well as a calculation of
sufficient buffer capacities.

A WLAN 802.11p transceiver application containing cyclic
data dependencies is used to illustrate that by applying our
approach an accuracy improvement can be obtained for realis-
tic applications, such that satisfaction of temporal constraints
can be concluded where existing approaches would indicate a
constraint violation. Furthermore, we demonstrate for the same
application that a reduction of buffer capacities can lead to a
reduction of jitters, making previously unsatisfiable temporal
constraints satisfiable. We intend to develop a more systematic
buffer sizing approach that exploits this counter-intuitive effect.
Moreover, we plan to extend the applicability of our approach
to a broader set of schedulers than static priority preemptive.

REFERENCES

[1] O. Moreira and M. Bekooij, “Self-timed scheduling analysis for real-
time applications,” EURASIP Journal on Advances in Signal Process-
ing, no. 1, 2007.

[2] M. Wiggers, M. Bekooij, and G. Smit, “Monotonicity and run-time
scheduling,” in ACM Int’l Conf. on Embedded Software (EMSOFT),
2009, pp. 177–186.

[3] ——, “Computation of buffer capacities for throughput constrained and
data dependent inter-task communication,” in Design, Automation and
Test in Europe (DATE), 2008, pp. 640–645.

[4] M. Wiggers, M. Bekooij, M. Geilen, and T. Basten, “Simultaneous
budget and buffer size computation for throughput-constrained task
graphs,” in Design, Automation and Test in Europe (DATE), 2010, pp.
1669–1672.

[5] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, “Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs,” in Design Automation Conf. (DAC), 2007, pp. 777–782.

[6] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. Bhattacharyya, “A
generalized static data flow clustering algorithm for MPSoC scheduling
of multimedia applications,” in ACM Int’l Conf. on Embedded Software
(EMSOFT), 2008, pp. 189–198.

[7] J. Hausmans, M. Bekooij, and H. Corporaal, “Resynchronization of
cyclo-static dataflow graphs,” in Design, Automation and Test in Europe
(DATE), 2011, pp. 1–6.

[8] S. Geuns, J. Hausmans, and M. Bekooij, “Automatic dataflow model
extraction from modal real-time stream processing applications,” in
Conf. on Languages, Compilers and Tools for Embedded Systems
(LCTES), 2013, pp. 143–152.

[9] B. Theelen et al., “A scenario-aware data flow model for combined
long-run average and worst-case performance analysis,” in Int’l Conf.
on Formal Methods and Models for Codesign (MEMOCODE), 2006,
pp. 185–194.

[10] J. Hausmans, M. Wiggers, S. Geuns, and M. Bekooij, “Dataflow anal-
ysis for multiprocessor systems with non-starvation-free schedulers,”
in Int’l Workshop on Software and Compilers for Embedded Systems
(SCOPES), 2013, pp. 13–22.

[11] R. Henia et al., “System level performance analysis – the SymTA/S
approach,” IEE Proc. of Computers and Digital Techniques, vol. 152,
no. 2, pp. 148–166, 2005.

[12] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System archi-
tecture evaluation using modular performance analysis: A case study,”
Int’l Journal on Software Tools for Technology Transfer, vol. 8, no. 6,
pp. 649–667, 2006.

[13] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in IEEE Int’l Symp. on Circuits
and Systems (ISCAS), vol. 4, 2000, pp. 101–104.

[14] L. Thiele and N. Stoimenov, “Modular performance analysis of cyclic
dataflow graphs,” in ACM Int’l Conf. on Embedded Software (EM-
SOFT), 2009, pp. 127–136.

[15] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic dependencies
in modular performance analysis,” in ACM Int’l Conf. on Embedded
Software (EMSOFT), 2008, pp. 179–188.

[16] K. Tindell, Adding time-offsets to schedulability analysis. University
of York, Department of Computer Science, 1994.

[17] J. Palencia and M. Gonzalez Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in IEEE Real-Time Systems Symp.
(RTSS), 1998, pp. 26–37.

[18] T.-Y. Yen and W. Wolf, “Performance estimation for real-time dis-
tributed embedded systems,” IEEE Trans. on Parallel and Distributed
Systems, vol. 9, no. 11, pp. 1125–1136, 1998.

[19] J. Kim, H. Oh, J. Choi, H. Ha, and S. Ha, “A novel analytical method for
worst case response time estimation of distributed embedded systems,”
in Design Automation Conf. (DAC), 2013, pp. 129:1–129:10.

[20] K. Richter, R. Racu, and R. Ernst, “Scheduling analysis integration for
heterogeneous multiprocessor SoC,” in IEEE Real-Time Systems Symp.
(RTSS), 2003, pp. 236–245.

[21] K. Tindell, A. Burns, and A. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.

[22] R. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[23] P. Alexander, D. Haley, and A. Grant, “Outdoor mobile broadband
access with 802.11,” IEEE Communications Magazine, vol. 45, no. 11,
pp. 108–114, 2007.

630

