
Indicators of Malicious SSL Connections

Riccardo Bortolameotti1, Andreas Peter1, Maarten H. Everts1,2, and
Damiano Bolzoni1,3

1 University of Twente, Enschede, NL
{r.bortolameotti,a.peter}@utwente.nl

2 Netherlands Organisation for Applied Scientific Research (TNO), Groningen, NL
maarten.everts@tno.nl

3 SecurityMatters, Eindhoven, NL
damiano.bolzoni@secmatters.com

Abstract. Internet applications use SSL to provide data confidential-
ity to communicating entities. The use of encryption in SSL makes it
impossible to distinguish between benign and malicious connections as
the content cannot be inspected. Therefore, we propose and evaluate a
set of indicators for malicious SSL connections, which is based on the
unencrypted part of SSL (i.e., the SSL handshake protocol). We provide
strong evidence for the strength of our indicators to identify malicious
connections by cross-checking on blacklists from professional services.
Besides the confirmation of prior research results through our indicators,
we also found indications for a potential (not yet blacklisted) botnet on
SSL. We consider the analysis of such SSL threats as highly relevant
and hope that our findings stimulate the research community to further
study this direction.

Keywords: SSL, Malicious Connection Indicators, Handshake Analysis

1 Introduction

The Transport Layer Security (TLS) and its predecessor the Secure Socket Layer
(SSL) are the de-facto standard protocols for secure communication over the In-
ternet.1 They provide end-to-end security that guarantees data confidentiality,
integrity and authenticity to the communicating entities. In particular, they
provide protection against possible active Man-in-the-Middle (MitM) attacks,
where the attacker has the control over the entire network. Most of the services
that handle sensitive data use SSL to protect the confidentiality of their users’
data. In the past years, many papers have been published on SSL that assess
its reliability and identify potential vulnerabilities. Some general analyses on
characteristics of SSL traffic have shown several practical problems related to
its infrastructure. Holz et al. [1] report issues regarding the usage of X.509 cer-
tificates: errors within certificate chains, absence of certificate subjects, common

1 For the remaining of the paper, we refer to both as SSL



2 Riccardo Bortolameotti et al.

usage of expired certificates, etc. Amman et al. [2] have highlighted the complex-
ity of the entire SSL infrastructure by stating that many specifications are left
to interpretation while features aiming to improve weaknesses are still poorly
implemented. Other works instead focused more on the security vulnerabilities
of SSL. For instance, Amman et al. [3] analyze SSL traffic to understand the
trust relationships among Certificate Authorities (CA) and to detect transpar-
ent MitM attacks. In such attacks, the attacker tries to compromise CAs with
the goal of being able to generate a valid certificate for any domain and to start
a MitM attack. The authors conclude their work stating that the certificate
structure does not give enough information to be able to distinguish between
malicious and benign certificates. Georgiev et al. [4] present a security analy-
sis on SSL library implementations for non-browser software, identifying several
vulnerabilities that make many applications vulnerable to MitM attacks. In [5],
Fahl et al. introduce MalloDroid, a tool for Android apps used to detect SSL
implementation vulnerabilities to MitM attacks, identifying more than 1000 po-
tentially vulnerable apps. Although the SSL protocol (its most recent version,
TLS 1.2) is considered to be secure from a theoretical perspective, it still shows
several practical issues. In response to such problems, researchers started to pro-
pose security enhancements, which are not yet widely implemented in current
applications [10]. Conti et al. developed MITHYS [6], a proxy for Android ap-
plications that addresses the SSL vulnerabilities examined in [5] and [4], and
that guarantees MitM protection against rogue access points. Bates et al. [8]
propose CERTSHIM, a lightweight retrofit that patches SSL implementations
against several SSL vulnerabilities, including those highlighted in [4]. Holz et
al. [9] suggest Crossbear, a system that detects MitM attacks on SSL/TLS over
the Internet, collecting data in a centralized system from several online probes,
which works on browsers.

In contrast to all existing works, we investigate SSL with a focus on mali-
cious connections. Previous works have analyzed SSL connections assuming the
client is benign. We define a connection as malicious when both end points of
the communication are controlled by the attacker. A possible scenario is data ex-
filtration, where a compromised machine communicates with an external server,
owned by the attacker, over an SSL channel in order to bypass security mea-
sures and to camouflage within normal traffic. Botnets are an example of such
a scenario.

Our main contributions are the following: (1) we present an initial study on
malicious connections within SSL network traffic, by looking at the SSL hand-
shake protocol, (2) we found good indicators for malicious connections using
unencrypted information exchanged during the SSL handshake, (3) we verify
prior research findings [1, 3, 4, 10] with our newly found indicators, and (4) we
discovered the presence of malicious connections examining our indicators within
the network traffic of an international university and of an international financial
corporation. Within the IT infrastructure of the university we found 34 connec-
tions that show the same communication patterns (e.g., expired certificates),
where 10 of the associated IP addresses are blacklisted by a professional ser-



Indicators of Malicious SSL Connections 3

vice, called ThreatStop [16]. Furthermore, analyzing the network traffic of the
financial corporation we found two other malicious connections, also blacklisted.
Moreover, we found one of these analyzed malicious connections (i.e., the IP ad-
dress of the server) way before ThreatStop itself and four of them are marked as
potential botnets. We consider this a significant result as it shows the strength
of our indicators. We hope that our work stimulates the research community to
further study these new findings.

2 Our Approach and Assumptions

Our goal is to identify a set of features based on the SSL handshake protocol
that could indicate the presence of malicious connections within SSL traffic. In
our approach, we first select a set of features to analyze within SSL traffic that
we think can help us to indicate connection misbehaviors. After an evaluation
of this set of features on real data, we identify those that are more promising as
maliciousness indicators. Our approach is based on two assumptions:

1. The encrypted part of the SSL protocol is assumed to be secure, meaning
that we cannot inspect it.

2. Malware authors have complete control over the client and server applica-
tions, therefore they can easily avoid following the SSL standards, and make
their “own rules” creating broken SSL connections (e.g., do not properly
authenticate application connections).

The first assumption has two positive side-effects: whatever analysis we do,
it will (1) respect data confidentiality, and (2) be lightweight as we only focus on
the initialization of the SSL connection (i.e., in the SSL handshake) and because
we do not have to use complex algorithm to analyze our features. The negative
side-effect of assumption (1) is that it is not possible to examine the content of the
payload message in order to verify the maliciousness of a connection. The second
assumption implies an enforcement of authentication checks on SSL connections
at network level. This is done because browsers do not check the validity of SSL
connections generated by applications running on the background. The drawback
of the second assumption is that malicious connections would not be identified
whenever they follow correctly the specifications of the protocol.

Selecting features from the handshake protocol is not a novel approach. In
2014, Pukkawanna et al. [7] proposed different classifiers to automatically assess
the security of SSL servers, analyzing handshake protocol features. However,
their work focuses only on the security parameters of the server and not on the
parameters of the client. The authors use information from the Server Hello
and Certificate messages of the protocol. To achieve our goal, we consider also
characteristics of the Client Hello message (e.g., server name) and we relate
them with those from other messages (e.g., fourth feature in Section 2) in order
to evaluate the behaviour of both communicating parties.



4 Riccardo Bortolameotti et al.

Selected Set of Features. The first feature that we have selected is the valid-
ity of the X.509 certificates. With this feature, we want to check if the certificate
is valid, self-signed, revocated, etc. The validity of the certificate can help us
to detect misbehaviors, because for normal benign traffic we do not expect to
see expired certificates during the authentication phase, neither we expect to
see facebook.com to use a self-signed certificate. This feature is commonly used
by researchers when analyzing the security of SSL. For instance, self-signed cer-
tificates are used in [6] to identify vulnerable applications to MitM attacks.
However, in our case we do not restrict our attention to self-signed certificates,
because malicious connections can also be authenticated with expired, valid or
revocated certificates.

Our second feature is the release date of the certificate, especially for self-
signed certificates. This feature is appropriate in the context of malicious soft-
ware, where the lifetime of web domains is short. Therefore, we assume that
criminals could generate new self-signed certificates either for each connection
or for a short period of time (e.g., one day). We focus on self-signed certificates
because they are easy and cheap (i.e., free) to generate and seem more suitable
considering the lifetime of domains, unlike expensive commercial certificates.

Our third feature is the existence of mutual-authentication. SSL provides the
option for a server to require client authentication (e.g., CertificateRequest and
CertificateVerify messages). This feature can be leveraged by criminals in the
context of a peer-to-peer botnet, in order to avoid external peers to infiltrate
within their system.

Our fourth feature is the relation between the SSL extension server name,
which is included in the Client Hello message, and the subjects (i.e., Subject
and subjectAltName X.509 certificate fields) of the X.509 certificate. This is the
typical browser authentication check that verifies whether the certificate is valid
for the domain requested by the client or not. Whenever there is a mismatch, the
connection should be considered untrusted, and potentially vulnerable to MitM
attacks (e.g., in the case of DNS poisoning [4], where the attacker can redirect
a user from a website to another).

Our fifth feature is the Levenshtein distance between the server name and
a list of the 100 most visited websites, whenever a self-signed certificate is
encountered during the handshake. When a user connects to a server (e.g.,
www.google.com) he should expect to receive a valid certificate, and not a self-
signed certificate valid for a similar domain (e.g., www.gogle.com), otherwise it
could be a symptom of a MitM attack.

The sixth feature is the structure of the server name string. A current trend in
botnets is to use Domain Generation Algorithms (DGAs)[11] to generate many
random domain names that can be exploited as rendezvous point with botnet
servers. Therefore, we want to check whether these strings can be identified as
random-looking domains or not. This feature is not new in literature and it has
been previously used in the context of HTTP [14].

Finally, our seventh feature is the format of the server name string, which
should have a DNS hostname format as described in the specifications of the



Indicators of Malicious SSL Connections 5

Our System

Logs
BRO

+
Our

Script Pc
ap

st
or

ag
e

Pa
ck

et
A
n
al

yz
er

Network
packets

Fig. 1. System Architecture

SSL extensions [15]. This protocol field represents the domain the client wants
to connect to, therefore we do not expect to see weird values or strings that could
represent an exchange of messages, perhaps used by criminals as commands.

A summarized description of the features is shown in Table 1.

3 Architecture and Implementation

The architecture of our system is shown in Figure 1. The system takes as input
the network traffic and first filters it through a packet analyzer module that
recognizes the SSL traffic and stores it on the disk as pcap (packet capture)
files. Those files are then given as input to Bro [12], an open source network
analysis framework that we use to analyze the traffic. This analysis on SSL
connections is based on our own Bro scripts that implement the aforementioned
set of features. Once Bro has analyzed the whole traffic, it outputs a set of log
containing the connections that, according to our features, might indicate the
presence of malicious behavior.

In our implementation we use tcpdump [17] as packet analyzer. We filter the
traffic on port 443 (i.e., we analyze on HTTPS in our implementation). Once
the data is stored on the disk, we run an offline analysis over captured data
using Bro. The first feature (see Table 1) uses an already existing script for the
Bro’s framework, called validate-certs.bro [2], which uses the Mozilla root store
as trusted base. All the other features are implemented by us through Bro’s
scripting language, except for the sixth feature related to DGA domains, which
uses an n-gram technique [13] to determine the level of randomness of a string.

4 Analysis of Selected Features

The selection of features is based on our assumptions (see Section 2), therefore
we analyze them to see whether they can be useful as indicators of malicious



6 Riccardo Bortolameotti et al.

connections or not. In a second step, we discuss the findings of our analyzed
features on the SSL network traffic. We ran two different analysis. The first is
done on 300 GB of SSL traffic. The goal of this analysis is to define which of the
proposed features are helpful to determine the presence of malicious connections.
The second evaluation is tailored to the outcomes of the previous analysis and
is applied to a different dataset of 1 TB of SSL traffic. The set of features in
the second evaluation is smaller as it only includes those features that we have
identified as good indicators. In both analyses, our implementation examines
only SSL connections that successfully completed the handshake protocol (i.e.,
the Finished message is sent [18]). A connection represents a unique instance of
a successful handshake. Therefore, connections are not unique for each pair of
hosts.

Datasets. We ran our first analysis on the network traffic of an international
university2. This analysis is done by mirroring the whole traffic of the gateway
of the university network to our own server. The traffic is then filtered and
analyzed by our system. Our analyzed dataset is collected at the end of May
2014 (from 26th to 29th of May) and consists of 300 GB of SSL traffic. The
second dataset, of 1 TB of traffic has been collected between the 8th and the
28th of July 2014. The goal of this second analysis is to further investigate the
malicious connections previously identified.

4.1 Insignificant Features

Our first analysis on 300 GB of SSL traffic has shown that the release date of the
certificate (F2), the existence of mutual authentication (F3) and the Levensthein
distance for self-signed certificates (F5) do not seem to indicate the presence of
malicious connections. Feature F2 has not shown any evidence of malicious con-
nections. We have identified several certificates with a release date close to the
establishment of the connections (e.g., less than 10 minutes), but they were all
related to TOR connections, because the certificate subjects matches a typical
pattern for TOR certificates (see Section 4.3), therefore they cannot be con-
sidered malicious. We found 262 certificates generated 10 minutes before the
connection was established, 276 released within 1 day before the connection and
6589 generated more than 1 day before the connection. We found 198 connec-
tions, unrelated to TOR, that provided certificates with a release date of less
than 1 day, however none of these connections had further indications that they
could be considered malicious. Therefore, we consider this feature not relevant
for our purposes. Mutual authentication (F3) is not commonly used within SSL
communications. Analyzing our dataset of 891110 SSL connections, just 0.38%
(i.e., 3386 connections) use CertificateRequest and CertificateVerify messages
during the SSL handshake. 78.8% of such connections are authenticated with a
valid certificate and the large majority of them are generated by the Apple Push

2 The university has approximately 12.000 students and employees (combined).



Indicators of Malicious SSL Connections 7

Notification Service. None of these connections that are using mutual authenti-
cation are malicious, therefore we mark also this feature as insignificant. Lastly,
we did not find any connection authenticated with a self-signed certificate where
the Levensthein distance between the subject and the 100 most visited websites
indicate a similar domains. Thus, we consider the Levensthein distance as an
insignificant feature as well.

4.2 Indicating Features

In our analysis, we have found that the certificate chain validation (F1), the
relation between server name and certificate subject (F4), the structure of the
server name string (F6) and its format (F7) seem to be indicators for malicious
connections. During our first analysis we have found 5 different malicious con-
nections, and all these features can be potential indicators. In addition, we found
one of these IP addresses before the professional service ThreatStop [16] marked
it as malicious. This fact shows the strength of our identified indicators of ma-
licious connections. The certificate chain validation (F1) has shown that 71% of
the certificates in our dataset is properly verified as a valid certificate. 21.5%
of the certificates instead do not provide their issuer. The amount of self-signed
certificates (including those having self-signed certificates in chain) is equiva-
lent to 0.8%. The amount of expired certificates we have encountered is 0.01%,
while the rest 6.7% of the certificates was not validated by the Bro script (i.e.,
validate-certs.bro [2]). We consider this feature to be a possible indicator because
in the malicious connections we have found, none of them use a properly vali-
dated certificate, as shown in Figure 2. In particular, 3 of these connections use
an expired certificate from Amazon. Considering the small amount of expired
certificates we have found in all our dataset, and the patterns of these malicious
communications, we think this feature could be a helpful indicator.

The second indicating feature is the relation between server name and cer-
tificate subject (F4). If it is not properly enforced it can lead to a connection
vulnerable to MitM attacks. In our entire dataset, 83.2% of the connections
use the TLS Server name extension. 98% of these connections provide a proper
certificate for the requested domain by the client. This is never true for TOR
connections, where the server name never matches (100% of the cases) the certifi-
cate subject. Nonetheless, we consider this feature as a potential maliciousness
indicator because, as shown in Figure 2, all the malicious connections we found
present a mismatch between server name and certificate subject.

The third indicator is the structure of the server name string. TOR connec-
tions have shown a clear pattern of random second level domain (SLD), also
confirmed by [2]. Two of the malicious connections we analyzed have a ran-
dom server name (see Figure 2). These are outgoing connections from a TOR
node within the university network. We think this feature can be helpful as an
indicator.

Lastly, the fourth indicator is the format of the server name string. 0.02% of
SSL connections in our dataset have a server name with a format different from
the DNS hostname, which is the standard defined by the RFC6066 [15]. 156



8 Riccardo Bortolameotti et al.

connections have the IP address of the server, as a server name value. While 111
connections have random values (e.g., 01cf645e.32fa6d90). Considering that 3
malicious connections out of 5 have a server name string that does not follow the
standard (e.g., they have IP addresses as server name), we include this feature
in our set of indicators (see Figure 2).

We give to our features a different level of strength, which depends on how
many times they are encountered within the set of malicious connections. As
shown in Table 1, F1 and F4 have a value 5/5, which means that in all the 5
malicious connections these features were present. F6 and F7 have a lower level
of strength since they are present just in 2 and 3 cases ,respectively, within the
malicious connections. A more detailed representation is depicted in Figure 2.

F# Feature Description
Malic.
Indic.

Indicator
Strength

F1
Certificate chain

validation
Typical validation chain

of X.509 certificates
X 5/5

F2
Certificate time

generation
Check the time from certificate

generation and connection
- 0/5

F3
Certificate request
& Certificate verify

Check if mutual authentication
has been requested

- 0/5

F4
Server name belong to

certificate subject
Check if the certificate is correct

for the requested server name
X 5/5

F5
Levensthein distance for

self-signed certificate
Check if famous domains provide

self signed certificates
- 0/5

F6
Random generated server

name domain
Check whether the server domain

is random or not
X 2/5

F7
Format of server name

domain
Check whether the server domain

follow the DNS hostname standard
X 3/5

Table 1. Descriptive summary of the selected features. The features used as malicious
indicators and their level of strength are identified.

F1 Certificate Validation Chain

expired
self_signed

not_validated

no_issuer

ok_cert

0.01%
0.8%

6.7%

21.5%

71%

(3)
(2)

(0)

(0)

(0)

Total (5)

F4

sn_not_implemented

Relation between server name
and certificate subject

sn_not_contained

sn_contained

16.80%

1.66%

81.54%

(0)

(5)

(0)

(5)

F6 Structure of server name string

random_sn

non_random_sn99.99%

0.00001%

(5)

(3)

(2)

F7 Format of server name string

sn_not_dns

sn_dns99.98%

0.02% (3)

(2)

(5)

Fig. 2. Detailed representation of the analyzed indicating features with format: [% of
dataset], [feature value], ([found in x-many malicious connections]).



Indicators of Malicious SSL Connections 9

4.3 Application

Malicious Connections. We identified 5 malicious connections within the
SSL traffic. We verified their maliciousness using the public blacklist service
offered by ThreatStop [16], a professional service that provides a blacklist of
known criminal addresses. If the IP addresses are not blacklisted, we do not
consider the connection as malicious. The connections have been analyzed using
ThreatStop few days after the traffic has been captured, and this verification
process has been done only once. Therefore, it is possible that our indicators
would have identified more malicious connections, whose IP addresses were not
yet blacklisted. We have chosen ThreatStop for two main reasons: (1) it is a
professional service, meaning that the blacklist is always updated and properly
maintained and (2) it focuses on threats that match our scenario such as criminal
malware or botnets, which can be used for data exfiltration.

Two of these connections have IP addresses linked to SPAM activities (TOR
connection), but do not share any pattern. The other three connections instead
show exactly the same patterns: the servers use an expired certificate of Amazon
to authenticate themselves (valid for the following domains www.amazon.com,
uedata.amazon.com, amazon.com, amzn.com, www.amzn.com), and they have
their destination IP address as server name field. Additionally, in the same
dataset 3 other connections have been found using these same communication
patterns. However, the IP addresses are not blacklisted, thus we cannot consider
them to be malicious, although they seem very likely to be malicious due to the
exact same characteristics.

We have ran a second analysis with a new dataset of 1TB of SSL traffic to
investigate the malicious connections that we have found. In this analysis, we
found another 28 connections that have the same patterns, but different IPs.
In total, we have observed 34 connections over 14 different countries, where 10
of them have IPs labeled as malicious by ThreatStop [16] and all connections
with the same source (i.e., a host inside the university network). Additionally, all
these IP addresses, few weeks after being identified, were not reachable anymore
on their port 443, as if the service was shutdown. Considering the following facts:
(1) an expired certificate of Amazon.com has been used by several blacklisted
IPs, (2) the location of these servers was spread all over Europe, and (3) the short
lifetime of their services, we believe that what we have found can be considered
a (not yet blacklisted) botnet. Another fact is that two of these IP addresses
are also marked by ThreatStop as potential botnet. It is interesting to note
that only 10 out of 34 IPs are blacklisted, although they share the same traffic
characteristics. These connections have been identified due to the presence of
features F1, F4 and F7. F1 identified that the certificate used by the server was
expired. F7 showed that the format of the server name field was not following
the DNS standard but was using an IP address. Finally, F4 showed that the
server name and subject were not matching.

Looking at the features, it seems that the server name field plays an important
role in identifying malicious connections. Not only the format of the domain, but
also its relation with the subject of the certificate, which we believe is the main



10 Riccardo Bortolameotti et al.

part of authentication of the server because it shows whether the answer of
the server (i.e. certificate) matches the request of the client (i.e., server name).
The randomness of the domain name seems also to be useful. Perhaps, using
a more sophisticated technique to detect random domains could improve its
impact as an indicator. Not surprisingly, also the validity of the certificate seems
to be relevant. Malicious connections use certificates that are either expired or
self-signed. Therefore, identifying connections that are not identified by proper
validated certificates, can be an indicator.

Therefore, we believe our indicators analyze malicious traffic from a new and
different perspective. During this second analysis, we have also found three other
malicious connections (i.e., blacklisted by ThreatStop [16]) coming from the TOR
exit node. Therefore, considering the two TOR malicious connections identified
in the 300 GB of SSL traffic, we found a total of 5 malicious connections within
TOR network traffic. The features present in these connections were F1, F4 and
F6. In these cases the certificates were self-signed, therefore F1 was triggered.
F6 identified them as malicious connections due to their ”random looking” SLD.
Lastly, F4 showed that the provided certificate was not valid to authenticate the
requested server name.

Connections Vulnerable to MitM Attacks. Although our analysis focuses
on malicious connections, the selected features allowed us to identify other mis-
behaviours, which weaken the security of SSL connections. We identified 5326
connections (0.6% of the entire dataset) that are potentially vulnerable to MitM
attacks, due to a bad implementation of the authentication mechanism (i.e., the
requested domain is not contained in the list of subjects of the certificate). 1251 of
these connections are authenticated with valid certificates. Several of these mis-
configurations are related to Akamai, a well known Content Distribution Network
that provides its customers a single SSL certificate valid for different domains
(e.g., *.akamaihd.net [3]). Also the Google Project SDPY, an open networking
protocol for transporting web content, does not follow the specifications of SSL
correctly, using hash values (e.g., 01cf645e.32fa6d90) as the server name in
the ClientHello request. With this outcome we confirm, as discussed in [4], that
there are still several web applications using SSL in a wrong way. However, we
apply a further analysis on these connections, and determined we can group the
misconfiguration into two sets: light and heavy. A light misconfiguration is when
the SLD of the server name matches with the SLD of the certificate subject,
but there is a mismatch between subdomains (e.g., example.website.com and
fake.website.com). We called them light because for an attacker it is hard to
create a MitM attack, since he should generate or ”steal” a certificate with the
same SLD and a different subdomain, or he should compromise a CA and release
a certificate with same SLD and different subdomain. A heavy misconfiguration
is when the SLD of the server name is different from the SLD domain of the cer-
tificate subject (e.g., www.example.com and www.malicious.com). In this case
the connection can be easily attacked by a MitM, because the certificate is not
verified to match with the requested domain.



Indicators of Malicious SSL Connections 11

TOR. Analyzing the randomness of domains we encountered several TOR con-
nections within the HTTPS traffic. We identified a simple pattern to distin-
guish it from normal HTTPS traffic: ServerName= www.[randomstring].com

AND Subject=www.[randomSLD].net AND certificate validation=”Unable to
get Certificate Issuer”. This is a constant pattern in all TOR communications
over port 443. All the TOR connections (i.e., 7127) have this pattern. Moreover,
we were able to identify an exit node which was generating a lot of TOR traffic
within the University network. Amman et al. [2] in their work, arrived at the
same conclusions, with a very similar pattern: where Issuer and Subject match
the pattern CN=www.[randomstring].[tld]. Both patterns successfully iden-
tify connections among TOR nodes. The TOR exit node presents within the
university network is responsible for two of the malicious connections that we
have found in our analysis. The server name is a random string, typical char-
acteristic of TOR traffic. In these two cases, the connections were exiting the
onion network, therefore the certificate provided by the real destination was not
respecting the pattern of TOR nodes.

Financial Corporation. We analyzed the indicating features (see Section 4.2)
in a further scenario. The dataset in this case is approximately 2 TB of network
traffic, which has been captured over a period of two weeks, from the 23rd of
March to the 9th of April 2015, within the infrastructure of an international
financial corporation. Figure 3 shows a simplified architecture of our approach
for data collection. The network traffic of client networks is mirrored to our
solution, deployed on one of their machines. The traffic seen by our system is
previously filtered by state-of-the-art security solutions deployed by the com-
pany that prevent clients to communicate with malicious domains. Moreover,
the gateway firewall is a state-of-the-art solution capable of inspecting the SSL
traffic. It does this decrypting the traffic, analyzing it and re-encrypting it and
finally forwarding it towards its destination. However, the inspection is based
on certain criteria, therefore not all the traffic is inspected. This firewall highly
limits the number of connections analyzed by our system, because it uses self-
signed certificates to re-encrypt the traffic, therefore the handshake that our
system analyzes is not the original and features like F1 and F4 can be altered.
For this reason, we filter these connections: we analyze the handshake of those
connections that were not inspected by the firewall.

The analysis of the financial corporation network has also revealed vulnera-
ble connections to MitM (i.e., heavy misconfiguration). We have identified 129
connections, where 118 provide an expired certificate (115 are connections to
the same website). The remaining 11 connections have a self signed certificate in
chain. We were also able to identify 14 TOR connections, despite the fact that
the network traffic was filtered through a blacklisting mechanism to block TOR
traffic. This result remarks how blacklisting solutions are not perfect. Lastly,
we have identified two malicious connections. They share the same IP address,
which is blacklisted by ThreatStop [16] as a potential botnet. Considering the
well-protected infrastructure where the malicious connections have been iden-



12 Riccardo Bortolameotti et al.

tified, we believe this result underlines the strength of our indicators for the
identification of malicious connections over SSL.

Internet

Firewall

Server
Network

Client
Network

Our 
System

mirror

Firewall

Firewall

Fig. 3. High-Level representation of the data capturing within the Financial Corpora-
tion network

5 Limitations and Future Works

As we mentioned in the introduction, our work is an initial analysis of SSL ma-
licious connections and it still has its limitations. First of all, the weight of our
features has been computed from a small number of observation during the anal-
ysis of the first dataset. Although it can give an intuition about the effectiveness,
because during the second analysis we found more malicious connections having
such indicators, a more extensive validation should be done. This can be real-
ized through an analysis of additional traffic. Another limitation of this work is
that the set of features might be under fitting. There could be more handshake
features that could be helpful in identifying malicious connection. Moreover, it
is possible that more malicious connections have not been identified due to a
limited set of indicators. Indeed, in the first analysis we ran ThreatStop against
the subset of connections containing at least one of our indicators. This was a
design decision, because it does not seem sensible to evaluate our indicators over
connections that were not including them. As future work, extending the set
of features is a necessary step. The features proposed by Pukkawanna et al. [7]
could be used as helpful reference. The usage of machine learning techniques
could also be useful in the analysis. Our judgement on the maliciousness of a
connection heavily relies on the ThreatStop service. Therefore, it is possible that
more connections were malicious and we did not consider them because they were
not blacklisted by ThreatStop. This is a typical drawback of using blacklisting.



Indicators of Malicious SSL Connections 13

This might be improved using additional sources to verify the maliciousness of
IP addresses. Lastly, the design and implementation of an intrusion detection
system based on an extension of our work (e.g. with additional indicators) can
be considered as interesting future work.

6 Conclusion

We presented a set of indicators of malicious connections for SSL. Analyzing
the network traffic of an international university and a secured network of an
international financial corporation with our indicators, we have identified sev-
eral malicious connections. In the university setting we have found in total (see
Section 4.3): 5 connections related to TOR traffic, and 10 connections that share
the same communication patterns and use an expired certificate of Amazon for
authentication. In the financial corporation we have identified 2 malicious con-
nections. All these connections have IP addresses blacklisted by ThreatStop [16].
One of these IP addresses was blacklisted after we have identified it, and 4 ad-
dresses are associated with botnet activities. Furthermore, we have identified
24 other connections that are also using the expired certificate of Amazon and
share the same traffic characteristics but are not blacklisted (yet). Having 34
connections sharing these characteristics, we strongly believe that we have found
a potential botnet on SSL. Nonetheless, we have also verified several results of
prior research on the identification of many vulnerable SSL connections to MitM
attacks, but by using a different method. This work is not intended as an in-
trusion detection system, although our indicators, through further validation,
could potentially be part of such a system. A deeper understanding and further
research is needed to turn our work into an intrusion detection system. We con-
sider this as future work. The goal of this work is to identify features that could
indicate malicious behaviors. We believe this set of indicators is a good starting
point. Further extensions are still needed, as we suggested in Section 5.

Acknowledgements This work was partially supported by the AVATAR project
(funded by the Ministry of Security and Justice of the Kingdom of the Nether-
lands) and the INAETICS project (funded by the European Regional Develop-
ment Fund). Furthermore, Riccardo Bortolameotti carried out much of his work
as part of his final master thesis within the EIT Digital Master program on
Security and Privacy. Andreas Peter’s and Maarten H. Everts’ contributions to
this paper were supported by the THeCS project as part of the Dutch national
program COMMIT/.

References

1. Holz, R., Braun, L., Kammenhuber, N., Carle, G. The SSL Landscape: A thorough
Analysis of the X.509 PKI Using Active and Passive Measurements. SIGCOMM
IMC 2011, pp. 427-444, ACM.

2. Amann, B., Vallentin, M., Hall, S., Sommer, R. Revisiting SSL: A Large-Scale Study
of the Internets Most Trusted Protocol. Technical Report 2012, ICSI.



14 Riccardo Bortolameotti et al.

3. Amann, B., Sommer, R., Vallentin, M., Hall, S. No Attack Necessary: The Surprising
Dynamics of SSL Trust Relationships. ACSAC 2013, pp. 179-188, ACM.

4. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V. The
Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software. CCS 2012, pp. 38-49, ACM.

5. Fahl, S., Harbach, M., Muders, T., Baumgrtner, L., Freisleben, B., Smith, M. Why
Eve and Mallory Love Android: An Analysis of Android SSL (in) Security. CCS
2012, pp. 50-61, ACM.

6. Conti, M., Dragoni, N., Gottardo, S. MITHYS: Mind The Hand You Shake - Pro-
tecting Mobile Devices from SSL Usage Vulnerabilities. In Security and Trust Man-
agement 2013, pp. 65-81, Springer.

7. Pukkawanna, S., Kadobayashi, Y., Blanc, G., Garcia-Alfaro, J., Debar, H. Clas-
sification of SSL Servers based on their SSL Handshake for Automated Security
Assessment. BADGERS 2014, to appear.

8. Bates, A., Pletcher, J., Nichols, T., Hollembaek, B., Tian, D., Butler, K. R., Alkhe-
laifi, A. Securing SSL Certificate Verification through Dynamic Linking. CCS 2014,
pp. 394-405, ACM.

9. Holz, R., Riedmaier, T., Kammenhuber, N., Carle, G. X. 509 Forensics: Detect-
ing and Localising the SSL/TLS Men-in-the-Middle. ESORICS 2012, pp. 217-234,
Springer.

10. Clark, J., van Oorschot, P. C. SoK: SSL and HTTPS: Revisiting Past Challenges
and Evaluating Certificate Trust Model Enhancements. Symposium on Security and
Privacy (SP) 2013, pp. 511-525, IEEE.

11. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou II, N., Abu-Nimeh, S., Lee,
W., Dagon, D. From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based
Malware. USENIX Security Symposium, pp. 491-506, USENIX.

12. Paxson, V. Bro: a System for Detecting Network Intruders in Real-Time. USENIX
Security 1998, USENIX.

13. Wang, K., Parekh, J. J., Stolfo, S. J. Anagram: A Content Anomaly Detector
Resistant to Mimicry Attack. RAID 2006, pp. 226-248, Springer.

14. Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S. Phoenix: DGA-based Botnet
Tracking and Intelligence. In Detection of Intrusions and Malware, and Vulnerability
Assessment 2014, pp. 192-211, Springer.

15. RFC6066. Internet Engineering Task Force (IETF). Transport Layer Security
(TLS) Extensions: Extension Definitions. https://tools.ietf.org/html/rfc6066

16. ThreatStop Check IP service. http://www.threatstop.com/checkip
17. Tcpdump & Libpcap. http://www.tcpdump.org/
18. RFC5246. Internet Engineering Task Force (IETF). The Transport Layer Security

(TLS) Protocol Version 1.2 - The TLS Handshaking Protocols https://tools.

ietf.org/html/rfc5246#section-7


