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Abstract—This paper explains how the measured directivity
of antenna elements can be taken into account during shaped
pattern synthesis. The method that is presented is based on the
Orchard Elliott synthesis procedure. Important features of this
classical way of synthesizing shaped antenna patterns are its high
degree of control over the pattern’s shape, and the flexible way
in which the array excitations can be chosen. However, because it
operates on the array factor, the directivity (i.e., element factor)
of the antenna elements is neglected. Once synthesis is complete,
and the element factor is reintroduced to evaluate the actual beam
pattern, one often finds that the overall shape is not as it was
specified. In particular when the shaped region of the pattern
is placed further away from broadside, the differences become
substantial. In those cases it may be necessary to take the element
factor into account during synthesis.

Keywords—Shaped pattern synthesis, antenna directivity, ele-
ment factor.

I. INTRODUCTION

Within the field of shaped (null-free) pattern synthesis,
one could make a differentiation between the classic ana-
lytical methods and the more recent numerical techniques.
Analytical methods, which started with Woodward [1], take a
direct approach while numerical techniques mostly formulate
the synthesis problem such that it is suitable for (global)
optimization. Simulated Annealing[2], Genetic Algorithms [3],
Particle Swarm Optimization [4] or other techniques [5][6]
can then be used to solve it. Numerical synthesis of shaped
beam patterns is very generic. Difficulties such as arbitrary
array geometries, differently oriented antenna elements and
also the directivity of the individual elements can easily be
taken into account. Analytical methods are much more limited.
However, when the positioning and orientation of the antenna
elements is sufficiently regular (e.g., equispaced linear arrays),
an analytical approach often provides more precise control over
the pattern’s shape.

In an earlier publication [7], the analytical approach in-
vented by Orchard et al [8] was chosen to synthesize shaped
beam patterns for tracking purposes. This method will be
referred to as Orchard Elliott synthesis. The main reasons for
choosing Orchard Elliott synthesis are its ability to produce a
very smooth ripple in the shaped region, and the fact that it uses
the Schelkunoff unit circle representation [9]. Schelkunoff’s
representation is advantageous because it provides the designer
a number of options to choose the beam pattern’s array
excitations conveniently [10]. The low ripple makes it possible
to estimate the direction of arrival (DoA) based on the power
received from an asymmetrically (ramp) shaped beam pattern
[7]. When the DoA can be determined from the power output

only, mobile wireless devices can be tracked efficiently (i.e.,
without the need for scanning) using a single output (fully)
analog beamformer. However, it was found that the shape
of the pattern is affected to an unacceptable degree by the
non-isotropic gain of the array elements. This is in particular
problematic for shaped patterns outside the broadside [11]
region, which has lead to the investigation of how the element
factor can be incorporated in the synthesis algorithm.

In [12] it has been suggested that Orchard Elliot synthesis
can be applied to non-isotropic antenna elements, however,
without further elaborating on this. Our paper details exactly
how to incorporate the (measured) directivity of physical
antennas in the Orchard Elliott synthesis method. Section II
first introduces the problem of synthesizing beam patterns
and in particular how Orchard and Elliott approached it. The
most relevant steps of their synthesis method are emphasized
after which the modifications necessary for element factor
compensation are explained in Section III. As an example,
the synthesis of a ramp shaped pattern is shown in Section IV,
followed by some practical hints for computational stability in
section V and a discussion in Section VI. Conclusions based
on synthesizing various commonly used shaped patterns are
drawn in Section VII.

II. ANALYSIS

Under the assumption that all antenna elements are identi-
cal and oriented in the same direction [11], the beam pattern
B(θ) of an equispaced linear antenna array can be separated
into an array factor AF (θ) and an element factor EF (θ):

B(θ) = AF (θ)EF (θ) (1)

The element factor corresponds to the gain of the antennas and
the array factor of an N -element array is given by:

AFθ(θ) =

N−1
∑

n=0

Ine
jn 2πd

λ
sin(θ), (2)

where In is the excitation (also know as coefficient or weight)
of the nth element, d the spacing between the elements and θ
the angle of incidence with respect to the array normal. When
a spacing of d = 1/2λ is assumed, the array factor is periodic
with a 180° period. This period is also known as the array’s
visible region [11].

For analytical reasons, the simplification EF = 1 (i.e.,
assuming the isotropic antenna model) is commonly applied
to replace (1) by (2). Substituting ψ = 2πd

λ
sin(θ) then yields:



AFψ(ψ) =
N−1
∑

n=0

Ine
jnψ, (3)

which is an expression for the array factor in terms of the
frequency independent variable ψ. A second substitution w =
ejψ , followed by factorization gives:

AFw(w) = IN

N−1
∏

n=1

(w − wn), (4)

where IN is usually chosen 1 for convenience, and in which
the variable w lies on the Schelkunoff unit circle [9]. When a
root wn of this polynomial also lies on the unit circle, it can
be recognized as a null at angle arg(wn) in the array factor.
However, if the root is positioned off the unit circle (|wn| 6= 1),
the corresponding null will be ‘filled’ [10]. Furthermore, a lobe
between two nulls is lowered when the distance between the
roots is decreased and raised when the distance is increased
[13]. A combination of the two enables the creation of (null-
free) shaped regions.

The synthesis procedure by Orchard et al [8] essentially
displaces the roots of (4) systematically until its shape suf-
ficiently approximates a specified contour S. In order to
control the shape effectively, the roots are decomposed to
wn = ean+jbn and (4) is rewritten to:

G(ψ) = 10log10(AF
2
ψ(ψ))

=

N−2
∑

n=1

10log10[1− 2eancos(ψ − bn) + e2an ]

+ 10log10[2(1 + cos(ψ))] + C, (5)

which is the (power) pattern expressed in dB. The constant C
is used to normalize the power to a convenient reference level
(e.g., 0 dB). Fig. 1 shows G(ψ) for N = 16. The roots wn of
this pattern are uniformly distributed around the unit circle:

an = 0 (6)

bn = ±
2n

(N)
π ∪ −π (n = 1, 2, · · ·N/2− 1) (7)

which is the same as using uniform excitations in (3). Note
that the term outside the summation in (5) fixes the position
of one root at wn = −1 (i.e., the circled null at −π in Fig. 1),
preventing simultaneous angular root displacement [13]. The
particular location −π is preferred because it constrains the
other roots to be within the visible region (ψ = −π . . . π).

The desired pattern shape is specified in a shaping contour
S(ψ). Typically part of S(ψ) describes a region with null
filling (region I) and another part (region II) where a certain
side lobe topography is specified. A ramp shaped region I, used
in [7] for DoA estimation, with uniform side lobe suppression
of −30 dB (Fig. 1) serves as an example throughout this paper.
Let there be N1 roots located in region I and N2 roots in region
II. This gives in total N1 +N2 + 1 = N − 1 roots, including
the one fixed at wn = −1. For the shape of the pattern it does
not matter whether a region I root is outside the unit circle
(|wn| > 1) or inside (|wn| < 1) [10]. This creates 2N1 possible
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Fig. 1. Array factor G(ψ) for N = 16 and the desired shape S(ψ).

combinations of root, which can be exploited to optimize the
array excitations In found by expanding (4).

Starting from a suitable initial pattern, the synthesis proce-
dure iteratively perturbs an and bn simultaneously to find better
root positions to approximate S(ψ). For this paper, the relevant
steps of one such iteration are finding the local maxima of
G(ψ) in region II and finding the minima and maxima of
the ripple created by G(ψ) − S(ψ) in region I. Following
the Orchard Elliott approach, these values are derived from
(5) but in this paper the objective is to obtain them from a
function GE(ψ), in which the element factor E(ψ) has been
incorporated.

III. INCORPORATING THE ELEMENT FACTOR

A. Initial pattern and shape specification

Almost any pattern can serve as a starting point, as long
as it leads to well defined minima and maxima for region I
(an 6= 0). The pattern proposed in the original work of Orchard
et al [8]:

an =

{

0.1, in region I

0, in region II
(8)

bn =

(

2n

N + 1
− 1

)

π (n = 2, 3, · · ·N) (9)

positions the main lobe adjacent to −π, which ensures that
the location of the shaped region remains fairly stable during
synthesis. The power pattern resulting from these roots is
illustrated for N = 16 by the thick line in Fig. 2.

Let region I be specified between two arbitrarily chosen
angles ψ0 and ψ1 (ψ1 > ψ0), and the location of the main
lobe’s peak be denoted by ψm (Fig. 2). Because S(ψ) must
be specified relative to ψm, it is necessary to shift the desired
shaping contour by δψ = ψm − ψ0:

S′(ψ) = S(ψ − δψ) (10)

Once the pattern has converged on S′(ψ), region I and II
will have the desired shape but not the desired location. By
rotating all roots −δψ around the unit circle simultaneously
(i.e., bn = bn − δψ), region I can be brought back to
the originally specified location ψ0 . . . ψ1. When the element
factor is uniform over all ψ, this process will not affect the
shape of the pattern, as shown by the thin line in Fig. 2.
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Fig. 2. Beam pattern (shifted) using isotropic antennas.

B. The element factor

Incorporating the element factor in (5) requires that it is
characterized first. Most likely, this characterization will be
a set of measurements rather than a closed form expression.
Let the set of measurements be denoted by E. Throughout
this paper, the gain of a customly designed 10GHz wideband
antenna, measured every 3° in the far field (Fig. 3), is used as
the element factor. This antenna is currently used in an exper-
imental optical beam steering setup [14], which is envisioned
to use shaped beam patterns for tracking [7]. Note that only
the measurements between −90° and 90° around boresight are
relevant in the array’s visible region. Furthermore, the gain was
measured in θ-space (2), which means that a conversion to ψ-
space is needed. Given that the distance between the antenna
elements is 1/2λ, this conversion is defined by:

ψ = πsin(θ) (11)

Lastly E should be normalized to 0 dB for convenience. The
element factor can then be included in (5) as follows:

GE(ψ) = G(ψ) + E(ψ) (12)

However, a closed form expression E(ψ) for the element factor
is not available, only a set of measurements E. One could
evaluate G(ψ) at the same angles as E and obtain a numerical
representation of (12), however, there are some downsides to
this approach. Firstly, the synthesis algorithm relies on finding
local extrema which requires a certain ‘smoothness’ that a
numerical representation does not exhibit. Secondly, when a
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Fig. 3. Measured antenna gain
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Fig. 4. Beam pattern (shifted) using non-isotropic antennas.

very small ripple is desired (e.g., ≤ 0.1 dB, the minima and
maxima eventually become so small that they are difficult to
detect using numerical methods. In most cases polynomial
fitting can be applied to E to obtain an expression E(ψ) for the
element factor. The extrema can then be found algebraically
which is more robust.

C. Element factor alignment

The result of including the element factor can be seen
in Fig. 4. Unlike the array factor G(ψ), the beam pattern’s
shape GE(ψ) is clearly affected when it is shifted, if the array
consists of non-isotropic antennas. During synthesis, ψm must
therefore always remain aligned with ψ0 to obtain excitations
that compensate the element factor correctly. Such an align-
ment can be achieved by either shifting E(ψ) along with S(ψ),
or by shifting G(ψ) such that ψm = ψ0 always holds. When
the fixed root is at −π, as suggested in section III-A, G(ψ)
itself is also more or less fixed. Because of this and the fact that
the latter alternative was found to be cumbersome, alignment
of E(ψ) will be explained in more detail.

G(ψ) is a periodic function with a period of 2π, which
means that it repeats itself outside the visible region [11].
Effectively this causes G(ψ) to wrap itself around −π/π when
it is shifted. Due to this property and because only the visible
region is of interest, E(ψ) may also be wrapped around the
visible region in the direction of δψ:

E′(ψ) = E(ψ − δψ + π) mod 2π (13)

for synthesis purposes (Fig. 5). Substituting E′(ψ) for E(ψ) in
(12) yields an expression in which the element and array factor
are correctly aligned. It should be noted that ψm may change
slightly after displacing the roots of G(ψ). This means that δψ
needs to be recalculated and E(ψ) realigned for each synthesis
iteration. It is also important to realize that the direction of δψ
changes when ψ0 < ψm.

D. Piecewise approximation

The shifted version E
′ of the measured antenna gain can

often not be approximated properly by a polynomial. Wrapping
the element factor introduces discontinuity (Fig. 5), or at least
a sudden jump, at ψp:

ψp =

{

π + δψ, δψ < 0

−π − δψ, δψ > 0
(14)
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Fig. 5. Element factor alignment.

The approximation suffers considerably from this discontinuity
as can be seen in Fig. 6(a). Much better results are obtained
when E′(ψ) is fitted piecewise from −π to ψp, and from ψp
to π, as illustrated in Fig. 6(b).

Let El(ψ) be the curve fitted to the data points from E
′,

where ψ ≤ ψp, and Er(ψ) the curve fitted to the data from
ψ > ψp. The expression for the beam pattern, including the
aligned element factor, then becomes:

GE(ψ) =

{

G(ψ) + El(ψ), ψ ≤ ψm
G(ψ) + Er(ψ), ψ > ψm

(15)

Using this expression for synthesis will yield a beam pattern
which does not suffer from the non-uniform gain of the
physical antennas used in the array.

IV. APPLICATION TO A RAMP SHAPED PATTERN

To demonstrate the effectiveness of the proposed modifica-
tions, the result of synthesizing the ramp shaped pattern with a
maximum ripple of 0.1 dB is shown. The desired shape (Fig. 7)
is defined as:

Sr(θ) =







−30 dB, θ < −45°

−(1/4 × θ)−5 dB, −45° ≤ θ ≤ 5°

−30 dB, −5° < θ

(16)

Region I (−45°. . .−5°) is intentionally chosen close to endfire,
where the non-uniformity of the antenna gain is most notable.
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The pattern resulting from standard Orchard Elliott synthesis
is plotted as the thick line in Fig. 7. Note that the power is
almost 5 dB below the specification at θ = −45°. Such a large
difference will lead to a large error in the DoA estimated by the
method in [7]. Using the proposed modifications, the pattern’s
shape is much closer to specification, as illustrated by the thin
line. The small deviations in the sidelobe height are caused by
the polynomial approximation.

V. COMPUTATIONAL STABILITY

Finding the local maxima in region II can be problematic
when ψp coincides with one of the lobes. The sudden jump of
E(ψ) at angle ψp causes the appearance of two small peaks in
GE(ψ), as depicted in Fig. 8. This is problematic because the
algorithm expects exactly N2 maxima while N2 + 1 maxima
are found. Let wl be the first root to the left of ψp and wr the
first root to the right of ψp (Fig. 8). To solve the issue, one
could interpolate the expected GE(ψ) curve between wl and
wr. However, this requires a fair amount of computation while
for most applications a satisfactory single peak location, say
ψr, can be found using G(ψ) on that interval. Depending on
whether ψr < ψp or ψr > ψp, G(ψr) + El(ψr) or G(ψr) +
Er(ψr) will give the desired height of the lobe. A similar
repair would be extremely hard for region I. Shaping patterns
where ψ0 < ψp < ψ1 (i.e., shapes defined across the visible
region’s ends) are therefore best avoided.

A different problem may arise when ψ0 and ψm are close
together. When ψp ends up too close to −π or π, there will
be insufficient data points to fit El(ψ) or Er(ψ) uniquely.
When this is the case, GE(ψ) should be replaced by either
G(ψ)+El(ψ) or G(ψ)+Er(ψ), for all ψ. At which distance
between ψ0 and ψm this measure is needed depends on how
fine grained E(θ) was measured. As a rule of thumb it can
be said that when ψp < ψm, it is better to use G(ψ) +Er(ψ)
instead of (14), and G(ψ)+El(ψ) when ψm is to the right of
the right-most peak in G(ψ).

VI. DISCUSSION

There are some downsides to element factor aware syn-
thesis. Firstly one can (generally) expect longer computation
times. These result mainly from the additional calculations
required for the GE(ψ) expression. However, the conver-
gence rate now also varies with the positioning of region
I. Convergence rates of synthesizing the ramp, flat-top and
csc2(θ)×cos(θ)) shaped patterns, with a maximum ripple of
0.1 dB, can be found in Table I. The second column represents



TABLE I
SYNTHESIS CONVERGENCE (# ITERATIONS)

G GE GE GE GE GE
−60°. . .−20° −40°. . .0° −20°. . .20° 0°. . .40° 20°. . .60°

flat 5 6 6 6 6 6
ramp 6 12 11 13 22 14

csc2(θ)×cos(θ)) 13 6 11 13 14 14

conventional Orchard Elliott (G) synthesis and columns three
to seven list element factor synthesis (GE) for different
locations of region I. In most cases element factor compensa-
tion results in slower convergence, however, occasionally the
element factor appears to be beneficial for the converge rate.
The additional computation time per iteration varies between
40% and 45%. It should also be noted that synthesizing shaped
patterns for a specific element factor means that a pattern needs
to be resynthesized when the location of region I is changed.
Unlike the array factor, the beam pattern will be affected by
rotating all roots simultaneously, as explained in section III-C.
Lastly, an increased complexity in the excitations In is likely,
as already pointed out in [12]. One should in particular be
aware of a higher amplitude range (i.e., max(|In|)/min(|In|)),
which requires additional design effort with respect to mutual
coupling.

VII. CONCLUSION

The Orchard Elliott synthesis method is an attractive option
when shaped beam patterns need to be designed for equispaced
linear arrays, with high precision. A modification of this
algorithm has been presented, which takes the element factor
into account. The modification compensates for the directivity
of antenna elements, which is particularly of interest for
patterns that have their shaped region outside the broadside
area. Synthesis of various shaped patterns, compensated for a
realistic element factor, has been evaluated successfully using
the proposed method. Still achieving a 0.1 dB ripple, this
indicates that the proposed modification has no negative effect
on the precision. It does entail increased computation time,
however, the strength of the Orchard Elliot method is it’s
excellent control over the pattern’s shape rather than delivering
results fast. In addition, it can be said that shaping beam
patterns is predominantly a task that is performed offline. The
additional computation time should therefore not be a major
drawback.
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