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Abstract—This paper introduces the Langevin Monte Carlo
Filter (LMCF), a particle filter with a Markov chain Monte Carlo
algorithm which draws proposals by simulating Hamiltonian
dynamics. This approach is well suited to non-linear filtering
problems in high dimensional state spaces where the bootstrap
filter requires an impracticably large number of particles.

The simulation of Hamiltonian dynamics is motivated by
leveraging more model knowledge in the proposal design. In
particular, the gradient of the posterior energy function is
used to draw new samples with high probability of acceptance.
Furthermore, the introduction of auxiliary variables (the so-
called momenta) ensures that new samples do not collapse at
a single mode of the posterior density.

In comparison with random-walk Metropolis, the LMC al-
gorithm has been proven more efficient as the state dimension
increases. Therefore, we are able to verify through experiments
that our LMCF is able to attain multi-target tracking using small
number of particles when other MCMC-based particle filters
relying on random-walk Metropolis require a considerably larger
particle number.

As a conclusion, we claim that performing little additional
work for each particle (in our case, computing likelihood energy
gradients) turns out to be very effective as it allows to greatly
reduce the number of particles while improving tracking perfor-
mance.

I. INTRODUCTION

Filtering in dynamical systems with nonlinear time evolution

and where the state of interest is only observable through

nonlinear functions is a hard problem. A closed-form ex-

pression for the Bayesian posterior density is available only

for a restricted class of dynamic systems. Consequently, it

is oftentimes required to resort to approximate, suboptimal

solutions given by numerical approximations. Amongst those,

sequential Monte Carlo approaches (including particle filters)

[1], [2] are especially attractive for two main reasons. First,

they can in principle perform statistical inference no matter the

mathematical form of the underlying system. Second, they fea-

ture convergence guarantees provided enough computational

power.

The seminal particle filter [1] based on sequential im-

portance sampling (SIS) and resampling can become com-

putationally intractable as the dimension of the state space

increases. In the context of multiple target tracking, this

imposes a hard limitation in the number of objects we are able

to track jointly. Furthermore, in order to process efficiently

large amounts of data it is necessary to keep the number of

samples low.

The combination of particle filters and Markov chain Monte

Carlo (MCMC) methods is becoming increasingly more popu-

lar in the multi-object filtering domain [3], [4], [5]. The reason

behind this growing interest being the efficiency of MCMC in

high-dimensional, complex problems.

In the MCMC literature, the hybrid or Hamiltonian Monte

Carlo (HMC) [6], [7] method is rather popular as it allows

the sampler to perform an efficient search of the state space

by leveraging model knowledge through first-order gradients.

This is in contrast with random-walk MCMC techniques,

such as Metropolis-Hastings [8], which perform an exhaustive,

inefficient exploration of the state space by taking a succession

of random steps. Furthermore, HMC is well-suited to sampling

in high-dimensional state spaces [7].

This article introduces a novel approach to HMC-based

particle filtering by means of the Langevin Monte Carlo

(LMC) method, a special case of HMC. Theoretically, LMC

features better asymptotic complexity with the dimension of

the posterior than Metropolis-Hastings [7]. Thus, we expect

that a particle filter relying on LMC requires fewer particles

than an equivalent Metropolis-Hastings-based particle filter.

We verify through example this hypothesis after describing

an innovative fashion of introducing Hamiltonian dynamics in

a multi-target particle filter through the Langevin equation.

II. STATE SPACE MODEL AND BAYESIAN FILTERING

Consider the following formulation for a general nonlinear

dynamical system:

sk+1 = f (sk,vk) , (1)

zk = g (zk,wk) . (2)

In the equations, s and z are used to denote the state of

the system and the observations, respectively. The underlying

processes describing the time evolution of the states and the

observations of the system are assumed to follow the structure

of a hidden Markov model.

The probability density function (PDF) of the process noise

v together with the transition function f specify the transition

distribution Π(sk+1|sk). Likewise, the measurement noise w

and the function g specify the likelihood Θ(zk|sk) which

defines the probability of observing zk given that the system

is at sk.

From a Bayesian perspective, the goal of filtering is speci-

fying the PDF of the unobserved state conditioned on all evi-
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dence. Specifically, finding p(sk|z1:k). The solution essentially

consists of the time and observation updates of the Bayes filter:

p(sk|z1:k−1) =

∫

Π(sk|sk−1) p(sk−1|z1:k−1) dsk−1 (3)

p(sk|z1:k) ∝ Θ(zk|sk) p(sk|z1:k−1) (4)

III. MCMC-BASED PARTICLE FILTERING

In the particle filtering framework, MCMC can be introduced

as a technique to improve the diversity of the particle cloud.

This can be achieved by the simulation of a Markov chain

starting from each of the surviving particles. In this way,

MCMC is used in conjunction with importance sampling and

resampling to rejuvenate degenerate particles. Nevertheless,

a joint resampling-MCMC scheme renders a computationally

expensive filter.

Another possibility is to replace importance sampling (thus,

there is no need for resampling) with MCMC sampling.

Henceforth, we will refer to such approach as MCMC-based

particle filtering. From a practical point of view, such approach

is interesting because a particle filter without resampling keeps

its full parallelisation potential. In addition, the exponential

growth of the number of particles with the dimension of

the state space can be handled differently with an MCMC-

based particle filter: thanks to its iterative structure, MCMC

sampling is able to generate proposals modifying only a subset

of the state variables. By contrast, a SIS particle filter requires

to increase the number of particles; difficult design of the

proposal distribution; or the addition of heuristics to post-

process the particle cloud.

Previous work on MCMC-based particle filtering includes

[3], [4], [5]. Although they are not exactly the same, all these

methods rely on the Metropolis-Hastings algorithm.

In this paper, we introduce a novel MCMC-based particle

filter that exploits model knowledge through the use first-order

gradients. Our approach is appealing because the gradient of

the posterior is included through a principled probabilistic

fashion, well studied in the MCMC literature, known as

Langevin Monte Carlo. Section IV describes the MCMC

technique used by our filter, which is later introduced in

Section V.

IV. LANGEVIN MONTE CARLO

This section describes MCMC methods that incorporate the

gradient of the posterior into their sampling strategy. As it

shall be detailed, the gradient is not simply introduced as in

gradient descent, which would eventually collapse samples at

the peaks of the posterior. Rather, the gradient is introduced

through a well founded probabilistic framework.

HMC is a form of MCMC inspired by Hamiltonian mechan-

ics [6], [7]. In particular, HMC is a sampling method whose

proposal mechanism is based on the simulation of Hamiltonian

dynamics through the introduction of auxiliary variables. Let

us now recall Hamilton’s equations and some other notation

from mechanics necessary to convey the background of the

HMC. Afterwards, we will make clear its connection with

statistics and how it is formulated as an MCMC method.

Firstly, Hamilton’s equations in vectorial form are

q̇ = ∇pH, (5)

ṗ = −∇qH, (6)

where q,p ∈ R
d are the so-called position and momentum

variables and H ≡ H (q,p) : R
d × R

d → R is the

Hamiltonian. We use the Nabla operator from calculus so that

∇xF denotes the gradient of the scalar field F ≡ F (x) with

respect to the vector x. The time derivative of x is denoted

by ẋ.

The Hamiltonian is usually expressed as the sum of two

scalar quantities, namely, the potential U ≡ U (q) and kinetic

energies K ≡ K (p),

H (q,p) = U (q) +K (p) . (7)

By making use of the canonical distribution concept, energy

functions are associated with probability distributions via the

expression

P = exp (−E)↔ E = − log (P) , (8)

where E and P denote an arbitrary energy function and its

associated probability distribution, respectively. In HMC, the

usual choice of kinetic energy is

K (p) =
1

2
p

TM−1
p. (9)

An interpretation of (5)-(6) is a joint mapping of q and p

from time t to time t+ s. Thus, Hamilton’s dynamics specify

a trajectory in an joint space of position and momentum. By

choosing U to be the energy associated with the distribution of

interest, Hamilton’s equations specify a mechanism to explore

a joint state space by generating samples (q,p), where q are

in fact the samples of the distribution of interest and p are

auxiliary variables.

Although the trajectory of q and p is continuous, it is in

general not possible to compute it exactly since that requires

solving exactly the differential equations (5)-(6). Therefore,

it is necessary to resort to tools from numerical analysis to

discretise and solve Hamilton’s equations. Although not the

only possible choice, in the HMC literature the most popular

technique is the leapfrog integrator. Letting M be identity

matrix in (9), a single step of the leapfrog method is

p (t+ ǫ/2) = p (t)− ǫ/2 ∇q U (t) , (10)

q (t+ ǫ) = q (t) + ǫ p (t+ ǫ/2) , (11)

p (t+ ǫ) = p (t+ ǫ/2)− ǫ/2 ∇q U (t+ ǫ) . (12)

HMC has two algorithm specifications: the leapfrog step

size, ǫ, and the number of leapfrog steps, ℓ. Tuning ǫ and ℓ is

difficult and therefore represents a practical barrier to the use

of HMC. Suggestions for tuning ǫ and ℓ can be found in [7].

Tuning of ǫ on its own is also challenging. On the one hand,

if ǫ is too large, the leapfrog integration becomes unstable.

On the other hand, if ǫ is too small, the algorithm takes many

small steps and becomes inefficient to explore the state space.
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The main motivation behind HMC is to explore the state

space efficiently, generating proposals whose probability of

acceptance is large. As a matter of fact, Hamilton’s equations

conserve the value of the Hamiltonian. If proposals were

generated by solving the equations exactly, then acceptance

would happen with probability equal to one. The leapfrog

integrator (or any other numerical method, for that matter)

introduces some discretisation error which introduces some

variation in the Hamiltonian at different points of the trajectory

(when this variation grows unbounded the method is said to

be unstable). Consequently, a Metropolis acceptance ratio is

introduced to account for the variation in the Hamiltonian.

If the number of leapfrog steps is set to one, a special case

of HMC called Langevin Monte Carlo (LMC) arises [7]. In

fact, LMC is an iteration of HMC with one leapfrog step:

q
∗ = q− ǫ2/2 ∇q U (q) + ǫ p (13)

p
∗ = p− ǫ/2 ∇q U (q)− ǫ/2 ∇q U (q∗) (14)

The complete LMC algorithm is described in Algorithm 1.

Input : A sample q of the posterior.

Output: A new sample q
′ of the posterior.

1 Draw momentum p ∼ N (0, I).
2 q

∗ = q− ǫ2/2 ∇q U (q) + ǫ p.

3 p
∗ = p− ǫ/2 ∇q U (q)− ǫ/2 ∇q U (q∗).

4 Compute Hamiltonians:

5 H = U (q) + 1/2 p
T
p.

6 H∗ = U (q∗) + 1/2 p
∗T
p
∗.

7 Acceptance ratio:

8 α = min{1, exp (−H∗ +H)}.
9 With probability α, acceptance: q′ = q

∗;

10 otherwise, rejection: q′ = q.
Algorithm 1: The Langevin Monte Carlo algorithm.

Even though LMC sampling does not keep all the advan-

tages of HMC, its asymptotic complexity with the dimension

of the state is lower than in random-walk Metropolis [7]. This

is actually our main motivation behind proposing an LMC-

based particle filter. As it is proven to scale better with dimen-

sionality, we expect that a filter relying on LMC requires less

number of particles to attain a certain performance standard

than an equivalent filter using Metropolis-Hastings updates.

Reducing the number of particles is critical when likelihood

computations are very expensive since particle filters require to

evaluate the likelihood for every particle. The main principle

is that doing some extra work to propose better particles (extra

work in this context means the evaluation of gradients) pays off

if the necessary number of particles can be drastically reduced.

Remark: the term position used in this section does not mean

the position of the objects under track in a sequential setting.

In fact, when HMC is used in the context of tracking, the

position variables include target position and velocity, possibly

in addition to other state variables. Likewise, the time involved

in the differential equations is not the time of the state and

observation processes in the problem of filtering.

V. THE LANGEVIN MONTE CARLO FILTER

The Langevin Monte Carlo filter (LMCF) is summarised in

Algorithm 2. This algorithm uses a state vector formed by the

concatenation of the single-target state vectors (the so-called

partitions, each of dimension Nsj
) , i.e.

sk =
[

s
T
k,1 · · · s

T
k,j · · · s

T
k,Nt

]T
. (15)

where the number of targets Nt is fixed and known. In the

algorithm, Np denotes the number of particles.

The LMCF is inspired by the interacting population

MCMC-PF (IP-MCMC-PF) [5], [9]. Proposals in the IP-

MCMC-PF are drawn from the prediction density p(sk|z1:k−1)
and accepted with probability

α = min

{

1,
Θ(zk|s

∗

k)

Θ (zk|sk)

}

, (16)

where s
∗

k denotes the proposal and sk the current state of the

chain.

In comparison with Algorithm 1, the state vector sk in

Algorithm 2 corresponds to the position variables q in

Hamiltonian-based sampling. In both algorithms, the momen-

tum is denoted by p and it serves to build proposals.

Input : Particle approximation of p (sk−1|z1:k−1),
measurement zk.

Output: Particle approximation of p (sk|z1:k).

1 Draw a seed s
(0)
k ∼ p (sk|z1:k−1).

2 for i← 1 to Np do

3 Draw s
+
k ∼ p (sk|z1:k−1).

4 Draw partition index uniformly j ∼ U{1,Nt}.
5 Apply Langevin step to the partition j of s+k , s+k,j :

6 p ∼ N (0, I) of dimension Nsj
.

7 s
∗

k,j = s
+
k,j − ǫ2/2 ∇sk,j

UΘ
(

s
+
k

)

+ ǫ p.

8 p
∗ = −1/ǫ

(

s
(i−1)
k,j − s

+
k,j + ǫ2/2 ∇sk

UΘ
(

s
+
k

)

)

.

9 Build the complete proposal:

10 s
∗

k =
[

s
(i−1)
k,1 . . . s

∗

k,j . . . s
(i−1)
k,Nt

]T

.

11 Compute Hamiltonians:

12 H = UΘ
(

s
(i−1)
k

)

+ 1/2 p
T
p.

13 H∗ = UΘ (s∗k) + 1/2 p
∗T
p
∗.

14 Acceptance ratio:

15 α = min{1, exp (−H∗ +H)}.

16 With probability α, acceptance: s
(i)
k = s

(∗)
k ;

17 otherwise, rejection: s
(i)
k = s

(i−1)
k .

18 end

19 p (sk|z1:k) ≈
1

Np

∑Np

i=1 δ
(

sk − s
(i)
k

)

.

Algorithm 2: The Langevin Monte Carlo filter algorithm.

Motivation behind the proposal mechanism in the LMCF

Per-partition sampling: In the LMCF a proposed sample

of the posterior differs from its corresponding seed in one,

and only one, partition of the multi-target state. This is not
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Fig. 1. Example illustrations of the impact of the gradient energy approximation exploited in the LMCF (see Section V). We note that due to the nature
of the logarithm function, the gradient approximation is reasonable. First, for a trivial case where the prediction is rather uncertain and both likelihood and
prediction have their modes at the same point (upper row). Second, for another case where there is mismatch between the modes of the likelihood and the
prediction, and the uncertainty in the prediction is not much larger than the one in the likelihood (second row).

a novel decision in the proposal design of the algorithm as

it is a common choice found in other MCMC-based particle

filters [3], [5] and in the refinement step in [4]. The reason

behind this decision lies in the avoidance of the curse of

dimensionality which causes the acceptance ratio to drastically

drop as the number of dimension increases. Intuitively, as the

dimension of the space where proposals are drawn grows, its

volume increases exponentially, thus requiring an intractable

number of samples to ensure that regions of high probability

are covered. We circumvent this problem by making proposals

per-partition.

Posterior gradient approximation: Evaluation of the gra-

dient of the posterior density energy in (17) is required to

leverage Hamiltonian-based sampling. Applying Bayes theo-

rem, the gradient in (18) is equal to the sum of the gradients of

the likelihood energy and the predicted energy. The evaluation

of the predicted energy’s gradient has linear time complexity

in terms of the number of particles. Therefore, the LMCF

uses an alternative mechanism to generate proposals which

only exploits the gradient of the likelihood energy, whose

evaluation, for a single particle, does not depend on the

total number of particles used in the filter. We argue for

approximating the gradient of the posterior energy to the

gradient of the likelihood energy (i.e. neglecting the gradient

of the predictive energy). The argument is illustrated in Fig. 1.

Recall that the predict stage of the Bayes filter (3) can be seen

as a convolution of the belief at the previous time step sk−1

via the transition distribution Π(sk|sk−1). The update stage

of the Bayes filter (4) is a multiplication with the likelihood

Θ(zk|sk). Note that due to the nature of these two operations,

the predict stage will result in a distribution with no less

uncertainty than the update. As it can be appreciated from Fig.

1, when two distributions are multiplied, the energy (plots in

the second column in the figure) of the resulting distribution

is close to the energy of the distribution with less uncertainty.

This is a consequence of the nature of the logarithm function.

Therefore, a good approximation of the gradient of interest

(plots in the third column) is the gradient of the energy of the

least uncertain distribution.

U = − log p (sk|z1:k) = UΘ + Uf (17)

∇sk
U = ∇sk

UΘ +∇sk
Uf (18)

Reverse momentum: It is worth taking a closer look at line 8
in Algorithm 2. This line corresponds to line 3 in Algorithm

1. In these lines, the momentum associated with the reverse

move from proposal to the current state of the sampler is

computed. In case of the LMCF, note that the momentum p
∗

is not computed using the proposal s∗k,j and the current state

s
(i−1)
k,j , but the latter and the sample of the prediction s

+
k,j .

This is because the sampler of the LMCF does not use the

momentum p to move from the current sample to the proposal

(as in the general LMC outlined in the previous section), but to

altere the sample of the prediction s
+
k,j . Therefore, the reverse

momentum p
∗ is computed by regarding a fictitious move

from s
+
k,j to s

(i−1)
k,j .

VI. EXPERIMENTS

This section describes the example we have chosen to validate

the performance of the novel Langevin-based particle filter

introduced in this paper. We consider the motion of a fixed

number of targets moving on a two-dimensional plane. The

dynamics of the targets are modelled using the same nearly

constant velocity motion model. The targets are tracked using
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Fig. 2. Target trajectories in a scenario with 100 targets.

range and bearing plot measurements. An instance of a sce-

nario like the ones used in the experiments is shown in Fig.

2.

The section is organised as follows. First, both the transition

and observation models are introduced in VI-A and VI-B,

respectively. Then, we briefly specify the particular values

of the parameters used in our simulation in VI-C. Finally,

the tracking performance obtained with our new LMC-based

filter as well as other filters (including another MCMC-based

particle filter) is shown in VI-D.

A. Motion model

The trajectories of the targets are simulated using the

following equations:

ak ∼ N
(

0, σ2
a I2Nt

)

(19)

xk = xk−1 + ẋk−1 ∆t +
1

2
ak ∆2

t (20)

ẋk = ẋk−1 + ak ∆t (21)

In is the identity matrix of dimension n. ∆t denotes the

time difference between consecutive time steps. x is a vector

formed by the concatenation of the two-dimensional positions

of each target and ẋ is a vector constructed in a similar

fashion containing the target velocities. a represents a random

perturbation of the target velocities. Finally, k is used to denote

the time step.

The motion model describes the (linear) dynamics of Nt

targets moving independently with nearly constant velocities.

The state vector of the jth target (j = 1, . . . ,Nt) comprises

four components:

sk,j =
[

xk,j yk,j ẋk,j ẏk,j
]T

, (22)

corresponding to the position and velocity vectors. The state

vector describing the dynamics of all targets is the concatena-

tion of the individual target states as in (15).

The motion is specified by a near constant velocity model

with Gaussian noise:

sk = F sk−1 + vk, (23)

where

F = INt
⊗









1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1









(24)

corresponds to the deterministic component of the state tran-

sition, being ⊗ the Kronecker product. The noise is Gaussian

distributed and uncorrelated,

vk ∼ N (0,ΣΠ) , (25)

ΣΠ = INt
⊗ Σπ, (26)

where Σπ is the covariance of the single-target motion noise:

Σπ = ∆2
tσ

2
a











∆2

t

4 0 0 0

0
∆2

t

4 0 0
0 0 1 0
0 0 0 1











. (27)

B. Observation model

This section describes the generation of the observations

and the corresponding observation model. We consider a

simplified observation model with perfect measurement-to-

track association and where all the targets generate a single

plot measurement at each time step. Needless to say, this

approach is possible because we are simulating our own

scenario (that is, both the trajectories and the observations). In

a real application, one would need to solve the data association

problem [10].

Similarly to the state vector, the complete observation is the

concatenation of the individual target observations:

zk =
[

z
T
k,1 · · · z

T
k,j · · · z

T
k,Nt

]T
(28)

zk,j =
[

rk,j bk,j
]T

, (29)

where rk,j and bk,j denote the observed range and bearing

angle. The noise in the observations is additive, uncorrelated

and Gaussian distributed with variance σ2
r for the range and

σ2
b for the bearing.

Finally, the likelihood function is computed jointly using all

the partitions of the state,

Θ(zk|sk) =
Nt
∏

j=1

φ
(

rk,j ; g
r (sk,j) , σ

2
r

)

·φ
(

bk,j ; g
b (sk,j) , σ

2
b

)

.

(30)

In the equation, φ
(

x;µ, σ2
)

denotes the PDF of a univariate

Gaussian with mean µ and variance σ2 evaluated at x; and

the observation functions gr and gb are the usual ones:

gr (sk,j) =
√

x2
k,j + y2k,j , (31)

gb (sk,j) = arctan

(

yk,j
xk,j

)

. (32)
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TABLE I
SIMULATION PARAMETERS.

∆t σ2
a σ2

r σ2

b

1 [s] 50
[

m2 s−4
]

103
[

m4
]

10−5
[

rad4
]

TABLE II
VARIABLE STEP SIZE ǫ DEPENDING ON THE TIME STEP k.

k ∈ [1, 10] [11, 20] [21, 30] [31, 40] [41, 50]

ǫ 20 25 30 35 40

C. Parameters

The value of the parameters we used in our simulations

are outlined in Table I. The initial target positions x0 and

velocities v0 are 2 [km] and 100
[

m s−1
]

, respectively. The

simulations start with targets at positions x1 and with veloc-

ities v1, obtained after applying (19)-(21) once, and last for

50 time steps.

A step size ǫ must be chosen for the LMCF. We choose

ǫ carefully but not obsessively, by observing the results in a

few preliminary runs. In particular, we use different values of

ǫ depending on the time step. These values are reported in

Table II.

All the particle filters used in the experiments are initialised

by drawing particles from Gaussian densities centered around

the ground truth positions and velocities. The standard devi-

ations are equal to 500/3 [m] for target positions and 1
[

m s−1
]

for velocities. The initial means and covariances in the Kalman

filter are also such Gaussian densities.

D. Results

Given the transition and observation models described in the

previous paragraphs, we note we are dealing with a sequential

estimation problem with a linear transition model and nonlin-

ear observation model. The noise in both cases is zero-mean

and Gaussian distributed. In spite of the nonlinearities in the

observation model, a classical implementation of the Bayes

filter such like the extended Kalman filter (EKF) is able to

perform well in this problem. In fact, this enables us to have

a baseline and we will regard the EKF performance as the

best achievable one in this toy example. In this way, we can

compare the minimum number of particles the particle filters

require to attain a performance standard close to the EKF’s.

Each time a scenario is simulated it will be different

since the generation of the trajectories as described by (19)-

(21) and the observations (28)-(29) are stochastic processes.

In addition, the particle filters are random algorithms since

they are based upon sampling which is inherently random.

Consequently, there is a need of repeating the simulations in

different scenarios many times in order to obtain robust and

statistically reliable results. Let NMC be the number of Monte

Carlo simulations, then the measure to assess the performance

of the filters is the average position error (APE), defined as:

APEk :=
1

NMCNt

NMC
∑

n=1

Nt
∑

j=1

√

(

x̂n
k,j − xn

k,j

)2

+
(

ŷnk,j − ynk,j

)2

(33)

Together, x̂n
k,j and ŷnk,j denote the estimated position of target

j at time step k in the Monte Carlo simulation n, whereas xn
k,j

and ynk,j denote the ground truth target location. For the EKF,

the estimated position is directly given by the update step of

the filter. For the particle filters, the estimated positions are

the sample average over the population of particles (which

corresponds to the maximum likelihood estimate).

Results are obtained from NMC = 100 Monte Carlo simu-

lations. The APE obtained with the bootstrap particle filter

(BPF), the IP-MCMC-PF, and the novel LMCF are shown

in Fig. 3a with Nt = 10 (state space dimension equal to

40). In this case, the approximate computation times per time

step1 are 70 milliseconds for the LMCF with Np = 400, 120
milliseconds for the IP-MCMC-PF with Np = 1000, and 6.1
seconds for the BPF with Np = 2 · 106. The APE at the last

time step of the simulation for different choices of the number

of particles is shown in Fig. 3b. This plot is useful to set

a certain performance standard (i.e. fix a value along the y

axis) and read from the x axis the number of particles that

are required in order to obtain that performance for each of

the particle filters. A similar plot for the case of Nt = 100
(400-dimensional state space) is shown in Fig. 4a. The BPF

is not included in these plots since the number of particles is

much larger than for the MCMC-based filters (see Fig. 3a).

The results serve to validate our hypothesis that a particle

filter leveraging Hamiltonian-based sampling, thus exploiting

gradient information, requires less number of samples to

successfully achieve a certain performance standard. In our

case, such performance standard is given by the APE of

the EKF. From Fig. 3b and Fig. 4a, it can be seen that an

MCMC-based particle filter such as the IP-MCMC-PF, whose

proposals are drawn from the prediction density, requires a

considerably larger number of particles than the equivalent

LMC-based particle filter that proposes by applying Langevin

steps to samples of the prediction.

Fig. 4b shows box plots of the APE for the IP-MCMC-

PF and the LMCF when Nt = 100. Np = 4000 in both filters.

From the boxes, we can see that the median error of the LMCF

is stable. The small oscillations in the APE are given by the

crude choice of step size, which is constant throughout several

time steps (see Table II). In contrast with the bounded median

error in the LMCF, the median error of the IP-MCMC-PF

grows continuously over time.

1Matlab code executed on a 3.7 GHz Intel Xeon CPU E5-1620 with 16
GB RAM. The computation times should be interpreted with care since
they are implementation dependent. For instance, the BPF implementation
is vectorised, whereas the IP-MCMC-PF and LMCF are not. Also, none of
the filters leverages parallel computing.
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Fig. 3. Results in the 10 targets scenario.

VII. CONCLUSION AND FUTURE WORK

Conclusion

The work presented in this paper introduces a new MCMC-

based particle filter leveraging Hamiltonian dynamics that we

name the Langevin Monte Carlo filter (LMCF). This is not the

first particle filter employing Hamiltonian Monte Carlo, hybrid

Monte Carlo filtering was introduced in [11] by Choo et. al.

Our approach however differs from Choo’s in two aspects.

Firstly, the LMCF is a pure MCMC-based particle filter,

whereas Choo’s filter also includes importance sampling and

resampling. They include the MCMC algorithm as a way to

improve the diversity of the particle cloud, which in turn makes

it possible to reduce the number of particles. A drawback with

Choo’s approach is that resampling limits considerably the

parallel computing potential of the filter. Secondly, the LMCF

simulates Hamiltonian trajectories using a single leapfrog step
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Fig. 4. Results in the 100 targets scenario.

(which results in a type of Langevin equation). To the best of

our knowledge, this is the first MCMC-based particle filter

that does not rely on resampling and leverages first-order

gradient information in a principled manner through the use

of Hamiltonian dynamics.

A combination of particle filtering and LMC has been

recently introduced in [12] in the context of the particle

MCMC (PMCMC) framework. This framework is nonetheless

different from MCMC-based particle filtering. On the one

hand, in PMCMC a particle filter is used in order to build

efficient transition kernels for an MCMC sampler. On the other

hand, we use MCMC as an efficient substitute of importance

sampling and resampling in the particle filter.

Furthermore, the work presented here focusses on tracking a

fixed and known number of objects. Of course, this is a very

strong assumption far from the reality in many applications

(such as radar surveillance). Nevertheless, we claim that this

work is relevant for tracking an unknown and time-varying

number of objects since approaches to deal with this more

general problem often rely on filters designed for a fixed num-
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ber of targets. Examples of these are the multiple hypotheses

tracker (MHT) [13] and the multiple cardinality hypotheses

tracker (MCHT) [14], which respectively rely on the Kalman

filter and the interacting population MCMC PF (IP-MCMC-

PF) [5].

In comparison with standard LMC sampling, we have to

include certain modifications so that it is possible to use it

successfully in our sequential setting. First of all, per-partition

sampling. If samples were drawn using the Langevin equation

from the joint state space, the acceptance ratio would be

doomed to drop rapidly to zero as the number of partitions

grows. Thus, resulting in a completely inefficient sampler. We

show how to use per-partition sampling with the LMC and

also verify experimentally its good performance even when

the number of partitions is equal to one hundred. Secondly,

given that the proposal mechanism in the LMCF is composed

of two steps (sample the prediction density and then apply

the Langevin step) we have to modify the computation of the

momenta associated with the proposed samples to keep the

posterior invariant (or, in other words, to maintain the detailed

balance condition [15]).

Under certain assumptions on the posterior distribution,

LMC can be shown to provide better scaling with the di-

mensionality of the state space than random-walk Metropolis

in terms of the number of samples [7]. This is our main

motivation to design a filter using the LMC. As we have

proven by example, even for a problem with simple transition

and observation models, the use of LMC has a considerable

positive impact on performance: we are able to reduce the

number of particles by a factor of 10 (see Fig. 3b and 4a)

and still maintain the tracking performance standard (given

by the EKF and measured through the average position error,

see Section VI).

We expect this improvement to be especially relevant in data

intensive applications where the computational cost per parti-

cle is large. For instance, integrated processing approaches like

track-before-detect [16], wide-area surveillance applications,

multi-sensor systems, amongst others.

Future Work

As discussed in VI-C, the step size in the LMCF needs to

be manually adjusted. Nevertheless, this parameter could be

tuned automatically. For instance, an algorithm based on the

approach we followed in the experiments to find a suitable of

value of ǫ would be to generate a small set of samples with

different step sizes and choosing the value of ǫ for which the

acceptance rate is closest to optimal. Another less engineered

and more well-founded solution would consist of exploiting

second-order derivative information through the Hessian [17].

In Section V we explained the per-partition proposal mecha-

nism in the LMCF. Although this approach is suitable to avoid

degeneracy as the number of partitions increases, it may not

be always suitable if it is a requirement to keep intact target

correlations in the transition model. By using HMC sampling

with trajectories composed of several steps, it is expected that

proposals can be made in the joint state space without resulting

in an acceptance probability close to zero.

Finally, although stemming from completely different ori-

gins, both the Daum-Huang particle flow filter [18] and the

HMC-based particle filters have in common that the transition

between the predictive and the posterior densities are given

by differential equations. Perhaps, insights into one of the

methods could be used to gain more understanding of the

other, and vice versa.
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