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Abstract

From the early days of computers, researchers have been trying to
invent effective and efficient means for expressing software sys-
tems through the introduction of new programming languages. In
the early days, due to the limitations of the technology, the abstrac-
tions of the programming languages were conceptually close to
the abstractions of the von Neumann based realization platforms.
With the advancement of the technology, computers have been in-
creasingly applied for complex problems in different application
domains. This required the challenge of designing programming
languages that resemble more the semantics of software rather
than the concepts of underlying machinery. To this aim, various
new language concepts, such as object-oriented, aspect-oriented,
and event-based languages have been introduced. While these lan-
guages were successful in enhancing the expression power of lan-
guages towards more semantic concerns of application domains,
they fail in short in representing emergent behavioral patterns of
software effectively. We outline a set of requirements to overcome
these shortcomings, and explain the concept of event-based mod-
ularization as a possible solution.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Modules, packages

General Terms Languages, Design

Keywords Emergent behavior, modularity, von Neumann archi-
tecture

1. Introduction

Although there are many facets of software engineering, its main
objective is to create software systems that execute on hardware/-
software platforms [3, p.9-12]. From the early days of computers,
researchers have been trying to invent effective and efficient means
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for expressing software systems through the introduction of new
programming languages.

Along this line, we observe a continuous interplay between
programming languages and platforms. We claim that to create
better languages, one needs to understand the historical nature of
this interplay and the forces that influence it. From this perspective,
we will make an attempt to characterize platforms, programming
languages and the constraints among these.

During the last decades platforms have evolved dramatically.
They are now many magnitudes more powerful than their previ-
ous generations, they consist of multicores and they are based on
geographically distributed networked architectures. Despite these
developments, at their core, platforms still display typical charac-
teristics of von Neumann architecture of instructions, registers and
memory locations. In the literature [1, 5], programming languages
are generally classified based on the paradigms that they adopt.
Functional, logic, and imperative languages are considered as the
three basic categories; they all have equivalent expression power in
the sense that any executable program can be expressed in one of
these categories.

In practice, however, the main reason why a programming lan-
guage might be selected is more based on the pragmatic factors
such as availability of the tools, programmers’ skills and on the
desired non-functional characteristics of programs such as adapt-
ability, flexibility and evolvability rather than the paradigm of the
language. Moreover, most commercial languages are not based on a
single paradigm but they borrow features from multiple paradigms.
Imperative languages have been much more successful in practice
and therefore in this paper we will mainly focus on these languages.

Every language provides a set of first-class abstractions that
are directly supported by the mechanisms of that language. For
example, a first-class abstraction may be passed as an argument
of a call, it may be returned as a result of a call, it may be stored
or retrieved, etc. The interplay between languages and platforms is
defined by the following constraint [1]: the first-class abstractions
of a language as much as possible must match natural abstractions
and semantics of the considered problem domain. On the other
hand, they must be concrete enough to compile them easily and
efficiently onto the available platforms.

With the enormous increase in the complexity of software, the
concept of separation of concerns have become more and more
important. Naturally, the first class abstractions of the languages
have become the essential way of expressing the separation of con-
cerns in programs. They become important factors in evaluating
languages because they define the direct support that a program-
ming language offers for expressing concerns in programs.

In the following sections, to analyze the programming lan-
guages historically, we will characterize them with respect to their
first-class abstractions, and we will historically categorize the de-
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velopment of imperative languages as procedural, object-oriented
(OO), and aspect-oriented (AO). Although this development helped
to increase the liberation of programming languages from the von
Neumann architecture, in software engineering, the semantics of
problem domain is mainly defined in terms of emergent behavioral
patterns, which cannot effectively be represented and modularized
by these languages [6–10]. We outline a set of requirements to over-
come these shortcomings, and explain the concept of event-based
modularization as a solution. We explain that this concept helps
to liberate programs from the von Neumann architecture further
through flexible definition of modules as groups of events.

2. A Historical Perspective to Programming

Languages

As shown in Figure 1, in procedural languages, a program is di-
vided into a set of procedures/functions, which invoke each other
with zero or more call arguments. The callee procedure/- function
executes the call, and it may invoke on other procedures; this form
of communication is known as the client/server communication.

Compiling procedural languages onto von Neumann architec-
ture is relatively straightforward: the abstractions of an imperative
program: procedures, statements, input-output parameters have a
direct correspondence to von Neumann instructions and address-
able memory locations. This enables efficient execution of pro-
grams and relatively effective implementation of compilers. Proce-
dural languages, therefore, have a strong machine-oriented flavor.
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Figure 1: The evolution of four modularization mechanisms

The software systems of that time were mainly applied to solv-
ing well-structured and relatively simple problems. The platform
technology did not have the processing power to address more com-
plex problems and to support more complex programming abstrac-
tions. When the processors became more powerful, there was an
opportunity to address more complicated problems in software. Ac-
cordingly, software systems have become increasingly more com-
plex and expensive. Reducing complexity and enhancing flexibility
and evolvability of software systems have been considered as im-
portant requirements.

To liberate the programmers from machine-oriented view of
programming, object-oriented (OO) languages have been intro-
duced. These languages provided objects/classes as a means to
structure software systems. The roots of OO languages go back to
Simula, which is a language for simulating complex systems. Ob-
jects were considered a better match for the abstractions of the real
world. An object groups a set of attributes and procedures (meth-
ods) together. The methods can be explicitly invoked, or if the lan-
guage offer an event-delegate mechanism, they can be invoked im-
plicitly via event announcement.

As a structural reuse mechanism, objects can be typed, and
reused polymorphically using the class and class inheritance con-
structs. In the consequent years, many OO languages have been
introduced and this has resulted in the vast adoption OO languages
by industry. Polymorphic calls and hierarchical organization of ob-
jects made OO programs look quite different from von Neumann

architectures. On the other hand, the object structure is somehow
similar to a memory location in a von Neumann architecture which
is addressable by dedicated operations.

OO languages are particularly useful in representing hierar-
chically structured entities of the real world. However, OO pro-
grams in some cases creates too rigid program structures. There-
fore design-patterns have been introduced to bring some flexibil-
ity to the programs. For example, the Abstract Factory pattern was
proposed to increase the flexibility in instantiating objects with
different types; the Bridge pattern was introduced to support ob-
jects with flexible structures. In certain cases, the programmers
had to codify many patterns in the same program piece, which
led to increased complexity of software. As such, implementation
of patterns looked more like workarounds than meaningful archi-
tectural abstractions. Moreover, OO languages fail short in repre-
senting non-hierarchical structures. As a consequence, implemen-
tation of certain concerns, such as tracing of executions of non-
hierarchically organized objects, becomes problematic in OO pro-
grams; tracing code tangles with and scatters across the implemen-
tation of other concerns in multiple objects. This increases the com-
plexity and reduced the flexibility and evolvability of programs.

Aspect-oriented (AO) programming languages have been intro-
duced to represent non-hierarchical structures, and as such they
offer more powerful abstractions to implement concerns like trac-
ing. To this aim, AO programing languages extends the OO model
through implicit call mechanisms; objects do not need to refer each
other through explicit names but through quantification predicates.
This provides a more reusable and flexible coupling among the
caller and callee procedures, especially when the procedures are
not related to each other through a (class) hierarchy. By the help of
implicit invocation mechanisms, AO programming languages lib-
erate the programmer from von Neumann architectures even better
than OO languages.

Along with the struggle of liberating programmers from von
Neumann architecture, it is clear that all the relevant concerns in
the problem domain must be effectively represented by the first
class abstractions of the languages. With the introduction of AO
languages, the liberation effort has been successful along the struc-
tural dimension, from procedures to objects, and from hierarchi-
cal organization of objects to flexible organizations of objects (as-
pects). However, in software engineering, the semantics of problem
domain is mainly defined in terms of emergent behavioral patterns,
which cannot effectively be represented by current languages [6–
10].

3. Study on Emergent Behavior

Modelling behavior and patterns associated with behavior have
been studied in various disciplines such as biology and behavioral
sciences, system theory and traditional engineering domains. In
computer science, study on behavior is mainly carried out in the
definition of the semantics of programs. Since software systems
can be practically applied to wide area of domains, we will now
consider the concept of behavior and behavioral patterns from a
wider perspective. This would help us to determine the desired
characteristics of the first-class abstractions of new generation of
programming languages.

Emergent behavior is generally defined as the appearance of
complex behavior out of multiplicity of relatively simple interac-
tions among its constituents [4]; it is a macroscopic effect that is
caused by the microscopic interactions of its simpler constituents.

Various classifications and forms of emergent behavior have
been defined in the literature. In this paper, we consider the clas-
sification proposed in [4]. At its simplest form, emergent behavior
refers to the intentional design of a system to expose certain behav-
ior. In this type, fixed roles are assigned to the constituents forming
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the system, and there is no feedback from emergent behavior to
the constituents to adapt themselves. More complex form of emer-
gent behavior appears from the interactions of constituents, and
in turn influences the interactions and behavior of the constituents
through a feedback process. An example of this case is traffic con-
gestion, which is a behavior formed from the interactions of mul-
tiple drivers, and in turn it influences the way the drivers continue
driving. There can be multiple levels of emergent behavior in com-
plex adaptive systems, where there are multiple levels of feedback
process. An example, is the emergence of air pollution in an area
where traffic congestion has appeared.

In biology and behavioral sciences, for example, seedling, be-
havior of colonies of ants, piles of termites, swarms of bees, flocks
of birds, herds of mammals, shoals/schools of fish, packs of wolves
have been studied. In system sciences and engineering, different
kinds of emergent behavior have been considered in modelling,
simulating and controlling of road and air traffic systems, transport
systems, nature’s patterns, etc.

In software engineering, we look at emergent behavior from
two perspectives. First, the behavior that software exposes is re-
garded as emergent behavior [4]. Here, specific constituents (e.g.
statements) are put together to exhibit the behavior; it is not easy
or even possible to reduce the behavior of software to the behavior
of its individual constituents. Second, nowadays, there are various
kinds of software systems that deal with detecting the emergence
of certain behavior in environment, representing it in the software
and providing means to manipulate the behavior. Self-adaptive soft-
ware systems, runtime verification techniques, various monitoring
and simulation systems such as traffic monitoring/ simulation sys-
tems, and cyber physical systems such as air traffic control systems
are typical examples.

4. Designing Effective Programming Languages

The initial step to deal with in software engineering is to develop
suitable algorithms to detect the appearance and disappearance of
the emergent behavior, as well as algorithms to manipulate the
emergent behavior in software. In addition to algorithmic focus on
emergent behavior, it is necessary to provide suitable programming
languages and module abstractions to implement the algorithms
and to modularize the implementations, respectively. We define the
following set of basic requirements for the first class abstractions
of programming languages:

Events and states should be the basic abstractions: The se-
mantics of emergent behavior may be expressed in various for-
malisms; typical examples are regular expressions, state machines,
first-order logic based expressions, temporal logics, etc. Regardless
of the adopted formalism, the notions of events and states can be
seen as two fundamental concepts in representing emergent behav-
ior. An event represents a state change of interest, and can be re-
garded as a means to abstract necessary information about the state
change. A state represents the value of all the stored information
within a given context at a given instant in time. We see emergent
behavior as a sequence of state changes, which is specified in cer-
tain formalism(s).

The notions of events and states are also fundamental concepts
in language models. For example, invocation and/or execution of
procedures in procedural languages, evaluation of logical predi-
cates in logical languages, invocation and/or execution of methods
on objects, object construction and destruction in OO languages,
and the activation of joint points in AO languages, can all be re-
garded as events. Current languages support various means to de-
fine states of interest; for example, through local and/or global vari-
ables.

The module concept is useful in abstracting complexity and
in building high-level abstractions: Where events and states are

the core abstractions of emergent behavior, they can be too low
level for representing the concerns of interest in software. Modules
can be seen as means to increase the granularity of representations
through representing individual concerns as first-class entities in
software.

Module interfaces should be (also) defined as a set of events
but not necessarily as a set of methods: It is generally accepted
that a module has well-defined provided and required interfaces,
and encapsulates its implementation. In an event-based view of
emergent behavior, modules can be seen as a certain composition of
events, which encapsulate relevant state information. The required
interface of modules specifies the set of events to which the mod-
ules reacts; the implementation part of the modules defines the se-
mantics for processing these events; the modules may publish their
internal states as events, which form their provided interface. This
way of modularization can help in expressing the relevant concerns
of emergent behavior as the first-class abstractions of the language.

Events must not be fixed but user-definable: The set of nec-
essary events to represent emergent behavior of software is open-
ended and is influenced by application domain. For example, in
one application we may require to deal with events of operating
system processes, external events collected from hardware compo-
nents and users, and events published by software modules. Since
events are in principle open ended, it must be possible to define in-
terfaces of the modules flexibly through associative composition of
events.

Different module implementation techniques/formalisms
must be supported: It is desirable to keep the interfaces of mod-
ules separated from the implementations of the modules, so that
the implementations can be flexibly adapted. Besides, the language
in which the implementation part of modules must be expressed
cannot be fixed in general. Various domain-specific languages and
formalisms, such as state machines and temporal logics formula, as
well as general-purpose languages can be adopted for this matter.

Various dedicated languages have been defined which did not
follow the imperative language paradigm, such as functional lan-
guages, logic-based languages, data-flow languages, etc. In [2], for
example, functional programming languages were proposed to lib-
erate the programmers from the von Neumann architecture. None
of these proposals fulfill the requirements outlined in this paper, as
such they lack language abstractions to modularize behavioral pat-
terns in some application domains. Furthermore, within the context
imperative languages, we have extensively studied the shortcom-
ings of various general purpose and domain-specific languages in
fulfilling the requirements outlined in this paper [6–10].

5. Event-based Modularization

In the von Neumann architecture, the basic elements are defined as
statements (functions), registers and memory locations, instruction
fetch and decoding controlled by the program counter. Although
events can be supported by the von Neumann hardware in terms
of interrupts, if they need to be expressed in software, they have to
be programmed. The abstractions are based on statements, registers
and memory locations but not as a group of events. The behavior is
expressed by steering the program counter.

Considering events and states as the basic abstractions, support-
ing arbitrary kinds of events and state abstractions, grouping sets
of relevant events as modules, and using logical expressions (like
predicates) as the notations of events and states, would make pro-
grams deviate from the basic mechanisms of von Neumann archi-
tecture considerably.

We have been developing the concept of event-based modu-
larization [6–9], which offers first-class abstractions to overcome
these shortcomings. As Figure 2 shows, at a high level of abstrac-
tion, we consider the environment as a set of events, which may

33



be published by the objects and aspects that exist in an application,
and/or by external entities such as OS and hardware drivers. Events
are typed entities; an event type defines a set of attributes for the
events.
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Figure 2: Event and gummy modules

We introduced event modules [6, 7] and gummy modules [8,
10] as means to modularize a group of related events and the re-
actions to them. These modules have required and provided inter-
faces, which specify the set of events they select from the environ-
ment and publish to the environment, respectively. The implemen-
tation part of the modules, which is termed as reactor, provide the
functionality to process and publish the events.

A gummy module with primitive interfaces and reactor is equiv-
alent to an event module. A composite gummy module consists
of a set of (primitive) gummy modules as its required interface,
provided interface, and/or reactor. Composite gummy modules are
means for encapsulating a group of correlated gummy modules/
event modules. A gummy module may be instantiated explicitly
like an object, or it may encapsulate its construction and destruction
semantics through its appearance and disappearance code blocks.
The latter is termed as emergent gummy module [8], and is suit-
able to modularly represent emergent behavior that has transient
nature.

The events published by an event/gummy module can be se-
lected further by other event/gummy modules. This facilitates the
composition of event/gummy modules with each other, and modu-
larly expressing composition constraints as event/gummy modules
in their desired language [8, 10].

Event-based modularization does not fix the set of supported
events and even; new kinds of event types, attributes and events
can be defined according to applications demands. The languages
in which the interfaces and the reactors can be programmed are not
fixed; various domain-specific and general-purpose languages can
be adopted for this matter. In event/gummy modules, the interfaces
and implementations of modules are separated from each other.

We have shown that these features paves the way to flexibly
modularize various kinds of concerns in software, and to achieve
better adaptability in modules [6, 7].

6. Achieving Uniformity in Modularization

As the complexity of today’s software systems increases, it is
becoming inevitable to design them as systems of systems, where
each system may offer functionalities specific to a certain domain.
Besides, each system may provide additional functionalities, such
as monitoring external environment, self-adaptation and runtime
verification, to increase the reliability of its behavior in changing
environments. These imply that new categories of concerns may
appear in software systems, which must effectively be represented
and modularized.

As a result, the evolution of modularization mechanisms will
continue, and we will have software systems that are modular-
ized via various modularization mechanisms; for example, real-
world entities, crosscutting concerns and emergent behavior are
represented via objects, aspects, and event/gummy modules, re-
spectively. Diversity in module abstractions reduces the compose-
ability of software if suitable mechanisms are not available to com-
pose diverse kinds of modules with each other. Therefore, it is of
interest to achieve uniformity in representation of concerns in soft-
ware.

We claim that the notion of emergent behavior plays an impor-
tant role in achieving such a uniformity. Software engineers design
and implement software to expose certain behavior, by putting spe-
cific constituents (e.g. statements) together to exhibit the behavior.
Since it is not easy or even possible to reduce the behavior of soft-
ware to the behavior of its individual constituents, software behav-
ior can be regarded as emergent behavior [4]. Based on this def-
inition, design and implementation of software imply design and
implementation of known and desirable emergent behavior; mod-
ularization of software behavior imply modularizing emergent be-
havior.

Event-based modularization is where modularity and event-
driven programming meet to facilitate representing various kinds
of concerns. Event-based modularization extends the traditional
view on events, which mainly considers events as means for asyn-
chronous communication. It considers events as the core abstrac-
tions of computations, which must be taken into account as the core
abstractions for defining modules. Emergent behavior is an exam-
ple kind of concern, which should be modularized. As we explained
in Section 4, regardless of the adopted formalism, the notions of
events and states are fundamental in representing the semantics of
emergent behavior, let it be the emergent behavior of software or
the emergent behavior in an external environment. Event/gummy
modules are flexible module abstractions to represent emergent
behavior.
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