

Semantic Service Modeling: Enabling System
Interoperability

Stanislav Pokraev1, Dick Quartel2, Maarten W. A. Steen1 and Manfred Reichert2

1Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
{Stanislav.Pokraev, Maarten.Steen}@telin.nl , http://www.telin.nl
2Center for Telematics and Information Technology (CTIT), University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
{D.A.C.Quartel, M.U.Reichert}@ewi.utwente.nl, http://www.utwente.nl

Keywords: service modeling, semantic interoperability

1.1 Introduction

The integration of software systems is a major challenge for companies today.
Both external forces, such as business process integration, and internal forces, such
as the move towards service-oriented architectures, put increasing pressure on
software engineers to reuse and integrate existing system services, rather than
building new systems from scratch. However, the lack of interoperability of
software systems forms a major stumbling block for the integration of such
services. Hence a lot of effort is currently being invested in standardization of
service description languages and protocols for service interactions [2][9][12].
Unfortunately, these efforts mainly address what we call syntactic interoperability,
with semantic interoperability just starting to be addressed in a number of
initiatives (see next section). These initiatives propose semantically-rich service
models, definition of mappings among these models, and runtime mediation based
on the defined mappings.

Interoperability is the capability of different systems to use each other’s
services effectively. It is about sharing functionality and information between
systems at different levels, e.g., between physical devices, software applications,
business units within one organization, or between different organizations.
Interoperability implies that systems are able to interact (i.e., exchange messages),
read and understand each other’s messages, and share the same expectations about
the effect of the message exchange.

In this paper we analyze and define in detail what it means for software systems
to be interoperable. We identify three different levels of interoperability – the
syntactic, semantic and pragmatic level – and define the requirements for assessing
interoperability at each of these levels. We propose a method for formally
verifying the semantic and pragmatic interoperability of a number of systems,

2 S. Pokraev, D. Quartel, M. W. A. Steen and M. Reichert

given a target for integration. The latter qualification becomes necessary because
interoperability is not an absolute measure. Before one can assess the
interoperability of a number of services, it is necessary to define the task or the
goal that these services should accomplish in concert. In other words,
interoperability can only be defined with respect to the desired goal of their
composition.

The goal of this paper is to explain what interoperability means and how it can
be achieved. To realize this goal, we first define a number of concepts and use
them to explain what a service is, how systems interact and, how they use each
other’s services. Next, we discuss what interoperability problems arise when
systems interact and for what reasons. Then, we identify a number of requirements
for interoperability. Finally, we present a method for checking if the design of a
composite system meets the requirements for interoperability.

1.2 Related Work

The Web Service Modeling Ontology (WSMO) [4] has been proposed by the SDK
cluster of EU FP6 projects as an alternative for OWL-S [13]. They argue that
OWL-S is only a formalization of WSDL[9] and BPEL4WS[2], and that true
semantic web services require a much richer ontology. In addition to the WSMO
ontology also a Web Service Modeling Language (WSML) [5] and a Web Service
Execution Environment (WSMX)[6] have been defined. The objective of these
specifications is to allow automatic tasks (e.g., discovery, selection, composition,
mediation, execution and monitoring) to be performed with respect to services in
the context of Web and grid. To solve the interoperability problems, WSMO
defines Mediators - elements that aim to overcome structural, semantic or
conceptual mismatches between the different components that build up a WSMO
description.

The Semantic Web Services Framework[3] is a relatively new initiative, which
addresses interoperability by proposing a language and ontology for specifying the
semantics of Web Services. The language consists of two parts, namely, a first
order logic language for describing Web Services (SWSL-FOL) and a rule-based
language with non-monotonic semantics (SWSL-Rules). SWSL-FOL is used to
formally specify service characteristics whereas SWSL-Rules is used to reason
about those characteristics and execute services. SWSF also defines a formal
ontology for representing service characteristics called First-Order Logic Ontology
for Web Services (FLOWS).

METEOR-S project[15] is concerned with the complete lifecycle of semantic
and dynamic web processes. It proposes a framework that has two main
components – a configuration module and execution environment. The
configuration module uses semantic service annotations based on WSDL-S[1] and
constraint analysis to discover services and configure the process. The execution

 Semantic Service Modeling: Enabling System Interoperability 3

environment takes the output of the configuration module and handles the
interactions between respective services at runtime. Data and process
heterogeneities are dealt with by using a proxy with mediation capabilities.

1.3 Conceptual Framework

In this section we present our conceptual framework for service modeling. We
consider the interaction between systems from a communication, behavioral and
information perspective. For each perspective, we present concepts to model
system interactions. The presented concepts are based on earlier work [16][17].

The communication perspective is concerned with modeling the interacting
systems and their interconnection structure. We introduce the following two
concepts for that purpose: an Entity models the existence of some system, while
abstracting from its properties; an Interaction point models the existence of some
mechanism that enables interaction between two or more systems, while
abstracting from the properties of the mechanism. In general, the interaction
mechanism is identified by its location (e.g., the combination of an IP address and
port number can be used to identify a TCP/UDP socket). Entities and interaction
points can further be refined to describe more precisely the internal structure of a
system.

The behavioral perspective is concerned with modeling the behavioral
properties of a system, i.e., the activities that are performed by the system as well
as the relations among these activities. For that purpose we introduce the following
basic concepts: An Action models an activity performed by a single entity; An
Interaction models an activity performed by two or more entities in cooperation; an
Interaction contribution models the contribution of an entity to an interaction; a
Causality relation models how an action or interaction contribution depends on
other actions or interaction contributions.

An Action represents a unit of activity that either occurs (completes) or does
not occur (complete) during the execution of a system. Furthermore, an action only
represents the activity result (effect) that is established upon completion, and
abstracts from the way this result is achieved.

An Interaction represents a common activity of two or more entities. An
interaction can be considered as a refinement of an action, defining the
contribution of each entity involved in the interaction. Therefore, an interaction
inherits the properties of an action. In addition, an interaction either occurs for all
entities that are involved, or does not occur for any of them. In case an interaction
occurs, the same result is established for all involved entities.

An Interaction contribution represents the participation (or responsibility) of an
entity that is involved in an interaction. An interaction can only occur if each
involved entity can participate. An entity can participate if the causality condition
of its interaction contribution is satisfied (see below). In addition, an interaction
contribution may define constraints on the possible results that can be established
in the interaction. This means that an interaction represents a negotiation among
the involved entities, only defining the possible results of the interaction, while
abstracting from how they are established. We distinguish the following basic
types of negotiation between two entities A and B:

4 S. Pokraev, D. Quartel, M. W. A. Steen and M. Reichert

- value checking: entity A proposes a single value x as interaction result and

entity B proposes a single value y. The interaction can only occur if x = y, in which
case the interaction result is x.

- value passing: entity A proposes a single value x as interaction result and
entity B accepts a set of values Y. The interaction can only occur if x ∈ Y, in which
case the interaction result is x.

- value generation: entity A accepts a set of values X as interaction result and
entity B accepts a set of values Y. The interaction can only occur if
X ∩ Y ≠ ∅, in which case the interaction result is a value from the intersection of X
and Y (while abstracting from the choice of the particular value).

A Causality relation defines for an action or interaction contribution, say a, its
causality condition, which must be satisfied to enable the occurrence of a. Three
basic causality conditions are distinguished: enabling condition b, which defines
that a depends on the occurrence of b, i.e., b must have occurred before a can
occur; disabling condition ¬b, which defines that a depends on the non-occurrence
of b, i.e., b must not have occurred before nor simultaneously with a to allow the
occurrence of a; start condition √, which defines that a is allowed to occur from
the beginning of the behavior, independent of any other actions or interaction
contributions.

The basic conditions can be combined to represent more complex causality
conditions using the AND- and OR-operator, which define that a conjunction and
disjunction of conditions must be satisfied, respectively.

The information perspective is concerned with modeling the information that is
exchanged in the interaction between the system and its environment. The subject
domain of a system comprises the entities and phenomena in the real world that are
identifiable by the system. The information model is a model of this subject
domain consisting of individuals that represents the entity and phenomena from the
subject domain, classes that represent the types of the entities and phenomena, and
the possible relations between them. In addition, an action or interaction
contribution may require that the subject domain is in a certain state before and
after the occurrence of that action or interaction contribution. To model the
information aspect of a system we introduce the following basic concepts: an
Individual represents a entity or phenomenon in the system’s subject domain, e.g.,
“John Smith”, “TopTech Company” or “London”; a Class represents an abstract
type of entities or phenomena in the system’s subject domain, e.g., “Person”,
“Company” or “City”; a Property represents a relationships between entities or
phenomena in the system’s subject domain, e.g., “works for”, “is a” or “has office
in”; a Result constraint models a condition on the result of an action or interaction
contribution that must be satisfied after the occurrence of the action or interaction
contribution; a Causality constraint models a condition on the results established in
causal predecessors (i.e., actions or interaction contributions) that must be satisfied
to enable the occurrence of an action or interaction contribution. In this paper we

 Semantic Service Modeling: Enabling System Interoperability 5

use Description Logics[7], more specifically OWL-DL[8] to represent our
information concepts by a concrete formalism.

Putting together the three modeling perspectives yields an integrated service
model. A service is a set of related interactions between the system and its
environment. The interaction contributions are adorned with result constraints
expressing the respective information constraints of the system and the
environment on the values that can be established in the interactions. Taken
together the interactions, their causal relations and the information constraints
define the service between the system and the environment.

Our definition of service does not include a sense of ownership or initiative. An
interaction is performed by two or more entities in cooperation, while abstracting
from which entity initiates the interaction. However, it is often useful to talk about
the service that is offered by a system without having to specify the constraints of
the environment. Likewise, it is often useful to talk about the service that is
required by an entity without making assumptions about the constraints of the
service provider. These are two complementary views on a service, which can be
obtained by only specifying one entity’s contributions and constraints.

1.4 Levels of Interoperability

Software systems manage a domain of lexical items. These items represent entities
and phenomena in the subject domain of the systems, e.g., patients, medicines or
treatments.

Software systems interact by exchanging messages. Messages that enter the
system request or update the state of its lexical domain. Messages that leave the
system request information about the system’s subject domain or provide
information about the lexical domain of the system.

Messages consist of data that represent property values of entities or
phenomena in the subject domain. The data in the messages have meaning only
when interpreted in terms of the subject domain model of the system.

This research focuses on the interoperability of software systems. At this level,
we distinguish between three different types of interoperability:

Syntactic interoperability is concerned with ensuring that data in the exchanged
messages is in compatible formats. The message sender encodes data in a message
using syntactic rules, specified in some grammar. The message receiver decodes
the received message using syntactic rules defined in the same or some other
grammar. Syntactic interoperability problems arise when the sender’s encoding
rules are incompatible with the receiver’s decoding rules and this leads to the
construction of mismatching message parse trees.

Semantic interoperability is concerned with ensuring that the exchanged
information has the same meaning for both message sender and receiver. The data
in the messages have meaning only when interpreted in terms of the respective
subject domain models. However, the message sender does not always know the
subject domain model of the message receiver. Depending on its knowledge, the
message sender makes assumptions about the subject domain model of the receiver
and uses this assumed subject domain model to construct a message and

6 S. Pokraev, D. Quartel, M. W. A. Steen and M. Reichert

communicate. Semantic interoperability problems arise when the (assumed)
sender’s subject domain model differs from the receiver’s subject domain model.

Pragmatic interoperability is concerned with ensuring that the message sender
and receiver share the same expectation about the effect of the exchanged
messages. When a system receives a messages it changes its state, sends a message
back to the environment, or both[19]. In most cases, messages sent to the system
change or request the system state, and messages sent from the system change or
request the state of the environment. That is, the messages are always sent with
some intention for achieving some desired effect. In most of the cases the effect is
realized not only by a single message but by a number of messages send in some
order. Pragmatic interoperability problems arise when the intended effect differs
from the actual effect.

1.5 Requirements for Semantic and Pragmatic Interoperability

Web Services standards address syntactic interoperability by providing XML-
based standards such SOAP[14], WSDL[9] and BPEL4WS[2]. XML is a platform-
independent markup language capable of describing both data and data structure.
This way, different systems can parse each other’s messages, check if these
messages are well-formed, and validate if the messages adhere to a specific
syntactic schema. In our approach we adopt XML to deal with the syntactic
interoperability and only focus on semantic and pragmatic interoperability.

Software systems exchange messages that consist of property values of entities
or phenomena in their shared subject domain. Semantic interoperability problems
arise when the message sender and receiver have a different conceptualization or
use a different representation of the same entity type, property (type-level
conflicts) or property value (value-level conflicts).

Requirement 1 A necessary condition for semantic interoperability of two
systems is the existence of a translation function that maps the entity types,
properties and values of the subject domain model of the first system to the
respective entity types, properties and values of the subject domain model of the
second system.

The class of possible results of an interaction is defined by the conjunction of
result constraints of all contributing systems.

 Requirement 2 A necessary condition for pragmatic interoperability of a
single interaction is that at least one result which satisfies the constraints of all
contributing systems can be established.

This requirement is illustrated in Figure 1. For example, if an interaction
contribution defines that the result of the interaction should be a “female patient”
and the other interaction contribution defines that that the result should be a “male
patient”, there are no possible results of this interaction.

 Semantic Service Modeling: Enabling System Interoperability 7

System BSystem A a a

Result RAa Result RBa

Class RBa

Class RAa

Possible results
of the interaction

class

interaction
contributionbehavior interaction

enabling
conditionR

result
constraint

Figure 1. Pragmatic interoperability of an interaction

Requirement 3 A necessary condition for pragmatic interoperability of a
service is that Requirement 2 is met for all of its interactions and they can occur in
a causal order, allowed by all participating systems.

This requirement is illustrated by Figure 2. In the example, the service
requestor requires that the result Ra is established first, then the result Rb, and then
the result Rc. The service provider requires that the result Ra is established first,
then either the result Rb (followed by Rc), or Rc (followed by Rb). If all results
are possible (i.e., the interactions meet Requirement 2), the systems are
interoperable, because the order (Ra, Rb, Rc) meets the requirements of both the
service requestor and provider.

System A System B

Service requestor

Ra Rb Rc

Service Requestor

Ra Rb Rc

Result UR = { (Ra, Rb, Rc) } Result SR = { (Ra, Rb, Rc), (Ra, Rc, Rb) }

Requested
Service

Offered
Service

behavior

interaction
contribution

interaction

enabling
condition

Figure 2. Pragmatic interoperability of a set of interactions

1.6 Addressing the Interoperability Requirements

To address Requirement 1 we need a method to establish a mapping between
individuals, classes and properties from the subject domains of the systems being
integrated. Tools exist that use sophisticated heuristic algorithms to discover
possible mappings and provide mechanisms for specifying these mappings.
Besides mapping there are two other relevant approaches: alignment and merging
of the subject domain models. Alignment is the process of making the subject
domain models consistent and coherent with one another while keeping them
separate. Merging is the process of creating a single subject domain model that
includes the information from all source subject domain models.

To address Requirement 2, we use Description Logic[7] as a representation
system for individuals, classes, properties, result constraints and causality
constraints. This way, we can describe the subject domains of the system, define

8 S. Pokraev, D. Quartel, M. W. A. Steen and M. Reichert

classes that represent the conditions and results of actions and interaction
contributions and reason if these classes can have instances or not.

The basic reasoning task in OWL-DL is subsumption check – a task of
checking if a class D is more general than a class C. In other words, subsumption is
checking if the criteria for being individual of type C imply the criteria for being
individual of type D. The concept D is called subsumer and the concept C is called
subsumee. Checking satisfiablity is a special case of subsumption reasoning. In this
case the subsumer is the empty class (⊥). If a class C is subsumed by the empty
class we say that the concept C is not satisfiable. This means that no individual can
be of type C.

To address Requirement 2 we define a class as an intersection of the classes
that define the admissible results of an interaction for all participating interaction
contributions, and check if the concept that represents the class is satisfiable.

To address Requirement 3 we translate a model of a composite service
described in our language to a Coloured Petri Net (CP Net) ([10][11]. The mapping
is based on previous work[18].

A classical Petri net consists of a set of places (represented by circles), a set of
transitions (represented by black bars), directed arcs connecting places to
transitions or transitions to places, and markings assigning one or more tokens
(represented by black dots) to some places. CP Nets extend the classical Petri nets
by providing a mechanism for associating a value of a certain type to each token.
In addition, a transition can be enabled only if its input tokens satisfy certain
conditions (guards) and produce output tokens that represent new values
(bindings). In this way, a transition can be seen as a function that maps input
values to output values in a certain context.

Once we translate a service model to a corresponding CP Net, we can construct
the occurrence graph of that net and reason about the dynamic properties of the
model. We address Requirement 3 by checking for the existence of a marking in
which the results defined by the participating systems can be established. Next, we
check if the order of the results establishment meets the causality constraints of the
participating systems.

1.7 Conclusions

In this paper we have outlined a method for formally verifying the interoperability
of a number of system services to achieve a particular task. To this end we first
analyzed and defined what it means for software systems to be interoperable. We
identified three different levels of interoperability – the syntactic, semantic and
pragmatic level – and defined the requirements for assessing interoperability at
each of these levels. Since we feel that the syntactic interoperability is sufficiently
addressed by existing standards and initiatives, our method focuses on the semantic
and pragmatic interoperability requirements.

 Semantic Service Modeling: Enabling System Interoperability 9

Our method involves the use of a new modeling technique for services, which
is more abstract and more complete than most existing service description
techniques (WSDL, BPEL4WS), including current proposals for the specification
of Semantic Web Services (OWL-S, SWSO, WSMO). Our approach combines the
precise, but abstract definition of the behavior of services and their compositions
with a formal definition of the information being exchanged between services.
Once we have specified services in this formalism, we are able to apply a
combination of a formal logic reasoner and a formal behavior analysis tool to
verify the semantic and the pragmatic interoperability of a given set of services.

1.8 Acknowledgements

The presented work has been done in the Freeband Communication project
A-Muse (http://a-muse.freeband.nl). Freeband Communication
(http://www.freeband.nl) is sponsored by the Dutch government under contract
BSIK 03025.

The presented work is a result of a collaboration between the Telematica
Instituut and the University of Twente, the Netherlands, which is supported by the
Commission of the European Communities under the sixth framework (INTEROP
Network of Excellence, Contract N° 508011, http://www.interop-noe.org/.

We would like to thank Henk Jonkers and Patrick Strating from the Telematica
Instituut and Luis Ferreira Pires from the University of Twente for their valuable
comments on this work.

1.9 References

1. Akkiraju R, Farrell J, Miller J, Nagarajan M, Schmidt M-T, Sheth A, Verma K
(2005) Web Service Semantics - WSDL-S. W3C Member Submission 7 November
2005, version 1.0

2. Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, Liu K, Roller D,
Smith D, Thatte S, Trickovic I, Weerawarana S (2003) Business Process Execution
Language for Web Services, Version 1.1, 5 May 2003,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

3. Battle S, Bernstein A, Boley H, Grosof B, Gruninger M, Hull R, Kifer M, Martin D,
McIlraith S, McGuinness D, Su J, Tabet S (2005) Semantic Web Services Framework
(SWSF) Overview, W3C Member Submission 9 September 2005,
http://www.w3.org/Submission/SWSF/

4. Bruijn Jd, Bussler C, Domingue J, Fensel D, Hepp M, Keller U, Kifer M, König-Ries
B, Kopecky J, Lara R, Lausen H, Oren E, Polleres A, Roman D, Scicluna J, Stollberg
M (2005) Web Service Modeling Ontology (WSMO), W3C Member Submission 3
June 2005, http://www.w3.org/Submission/WSMO/

5. Bruijn Jd, Fensel D, Keller U, Kifer M, Lausen H, Krummenacher R, Polleres A,
Predoiu L (2005) Web Service Modeling Language (WSML), W3C Member Sub-
mission 3 June 2005, http://www.w3.org/Submission/WSML/

6. Bussler C, Cimpian E, Fensel D, Gomez JM, Haller A, Haselwanter T, Kerrigan M,
Mocan A, Moran M, Oren E, Sapkota B, Toma I, Viskova J, Vitvar T, Zaremba M
(2005) Web Service Execution Environment (WSMX), W3C Member Submission 3
June 2005, http://www.w3.org/Submission/WSMX/

10 S. Pokraev, D. Quartel, M. W. A. Steen and M. Reichert

7. Calvanese D, McGuinness D, Nardi D, Schneider PP (2003) The Description Logic

Handbook: Theory, Implementation and ApplicationsCambridge University Press,
2003. ISBN 0521781760. http://www.cambridge.org/uk/catalogue/catalogue.
asp?isbn=0521781760

8. Dean M, Schreiber G, Bechhofer S, Harmelen Fv, Hendler J, Horrocks I, McGuinness
DL, Schneider PP, Stein LA (2004) OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004, http://www.w3.org/TR/owl-ref/

9. Erik C, Curbera F, Meredith G, Weerawarana S (2001) Web Services Description
Language (WSDL) 1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

10. Jensen K (1992) Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science,
Springer-Verlag, 1992. ISBN: 3-540-60943-1.

11. Jensen K (1994) Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science,
Springer-Verlag, 1994. ISBN: 3 -540-58276-2

12. Kavantzas N, Burdett D, Ritzinger G, Fletcher T, Lafon Y (2004) Web Services
Choreography Description Language Version 1.0, W3C Working Draft 17 December
2004, http://www.w3.org/TR/ws-cdl-10/

13. Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S, Narayanan S,
Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S:
Semantic Markup for Web Services W3C Member Submission 22 November 2004,
http://www.w3.org/Submission/OWL-S/

14. Martin G, Hadley M, Mendelsohn N, Moreau, J-J, Nielsen HF (2003) SOAP Version
1.2 Part 1: Messaging Framework, W3C Recommendation 24 June 2003,
http://www.w3.org/TR/soap12-part1/

15. METEOR-S: Semantic Web Services and Processes, http://lsdis.cs.uga.edu/projects/
meteor-s/

16. Quartel DAC, Dijkman RM, Sinderen MJv (2004) Methodological support for
service-oriented design with ISDL. In: Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC 2004), New York City, NY,
USA, 2004.

17. Quartel DAC, Ferreira LP, Sinderen MJv (2002) On Architectural Support for
Behaviour Refinement in Distributed Systems Design. In: Journal of integrated design
and process science online, 06(01) issn. 1092-0617.

18. Sinderen MJv, Ferreira LP, Vissers CA, Katoen JP (1995) A design model for open
distributed processing systems. Computer Networks and ISDN Systems, Vol. 27,
1995, pp. 1263-1285. ISSN 0169-7552.

19. Wieringa RJ (2003) Design Methods for Reactive Systems: Yourdon, Statemate, and
the UML. Morgan Kaufmann, 2003. http://www.mkp.com/dmrs

	Semantic Service Modeling: Enabling System Interoperability
	1.1 Introduction
	1.2 Related Work
	1.3 Conceptual Framework
	1.4 Levels of Interoperability
	1.5 Requirements for Semantic and Pragmatic Interoperability
	1.6 Addressing the Interoperability Requirements
	1.7 Conclusions
	1.8 Acknowledgements
	1.9 References

