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Abstract— The Cayley-Hamilton theorem is an important the-
orem of linear algebra which is well known and used in system
theory. Unfortunatelly, this powerful result is practically never
used in robotics even though it is of extreme relevance. This
article is a review of the use of this result for the calculation of
general matrix functions which are very common in robotics. It
will be shown how any analytic matrix function like exponential,
logarithm and more complicated expressions in robotics, can be
easily and analytically calculated in an explicit form. Examples
are given for the exponential map, inverse of the exponential
map, and the derivative of the exponential map. For the first
two examples there exist well known expressions in the literature,
but the last one is not as easy to compute without the presented
methods.

I. INTRODUCTION

The Cayley-Hamilton theorem is a well known theorem in
control theory which is used among others to study the Jordan
form of a linear system. This theorem states that a matrix A
satisfies its own characteristic equation. If the characteristic
equation does have roots with multiplicity higher than one,
there may also exist a smaller polynomial, called minimal
polynomial, with the same roots but with lower multiplicity,
which is also satistied by the matrix itself.

The Cayley-Hamilton theorem was discovered by the fa-
mous mathematicians Arthur Cayley and William Hamilton.
Arthur Cayley (18211895, see figure 1) was a British scholar,
who helped in founding the British school of pure mathemat-
ics. Sir William Hamilton (1805-1865, see figure 2) was an
Irish mathematician, as well as a physicist and astronomer. The
Cayley-Hamilton theorem allows us to compute functions of
matrices like the matrix exponent or matrix logarithm, in a
straightforward and uniform way, by making use of the fact
that a matrix taken to a certain power, can be expressed as a
sum of lower powers of the original matrix.

The Cayley-Hamilton theorem and its associated corollaries
have been known for a long time, and are commonly used in
the fields of linear algebra and system theory [1]. On the other
hand, to the author’s knowledge they are not commonly used
in the field of robotics, despite several powerful applications
described in this article. Robotics makes elaborate use of
matrix functions. For example 3 by 3 rotation matrices are
used to describe rigid body orientations, and 4 by 4 homoge-
neous transformations matrices are used to describe rigid body
motions.

The techniques described in this article are related to the
spectral decomposition of a matrix, see [2], [3]. The spectral
decomposition decomposes a matrix along a basis of mutually
annihalating idempotent and nilpotent matrices.
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Fig. 1: Arthur Cayley

Fig. 2: William Hamilton

The rest of this article is organized as follows. First in
section II the theorem with its associated corollaries are
reviewed. In the subsections their use is illustrated with impor-
tant examples from the field of robotics. Finally in section III
the conclusions are drawn. Appendix contains a small Maple
library that automatically performs the procedures explained
in this article.

II. MATRIX FUNCTIONS

We start by stating the Cayley-Hamilton theorem.
Theorem 1 (Cayley-Hamilton): Let A be a square n by n
matrix. Its characteristic equation is

det(A—AI)=0 (1)
This is a polynomial equation of degree n
A da, AT+ @A +ag=0 )

The roots A; of the characteristic equation are the eigenvalues
of A. Then the matrix satisfies its own characteristic equation

A'+a, A"+ 4+ alA+apl =0 (3)

The proof follows from the definition of eigenvalue Av = Av
where v is an eigenvector of A. Eigenvectors are characterized
by a direction only, and are independent on their length.
If v is an eigenvector then also Av is an eigenvector and
therefore A%v = A2v and so on. This theorem has two important
corollaries.

Corollary 1 (Matrix polynomial): Any matrix polynomial
in A of degree > n can be written as a matrix polynomial
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of degree < n. This is because the higher powers of A can be
written as sums of the lower powers with

A" = —q, A" = —aqiA—apl 4)

This procedure is illustrated by Maple function reducePolyno-
mial( ) in the appendix.

Corollary 2 (Matrix inverse): The inverse of a non-singular
matrix A can be written as a matrix polynomial of degree < n
P L R Y R b (5)

ao ap ap

The Cayley-Hamilton theorem can be used to extend scalar
functions of scalar arguments to matrix functions of matrix
arguments. The following theorem states that any scalar func-
tion that can be written as a polynomial, can be extended to
a matrix function. Note that every analytic function can be
written as a polynomial with a Taylor expansion. !

Theorem 2 (Matrix functions): Any analytic, scalar func-
tion f(x) of a scalar argument x, can be extended to a square
matrix function F(A) of a square matrix argument A. With
corollary 1 the matrix function F(A) can be written as a
polynomial P(A) of degree < n

F(A) = P(A) = pa 1 A" '+ ...+ p1A+ pol (6)

The coefficients of P(A) can be found by evaluating f(x) at
the eigenvalues of A.

Proof: let A; be an eigenvalue of A with corresponding eigen-
vector v;. Then

f(Ai)vi=F(A)vi = P(A)v; = p(A)vi 7

The first equality follows because f(x) can be written as
a Taylor expansion, and from the definition of eigenvalue
Av; = Ajv;. This implies that f(A;) is an eigenvalue of F(A)
with corresponding eigenvector v;. The second equality follows
from corollary 1. The third equality follows again from the
definition of eigenvalue. The coefficients of P(A) are the same
as the coefficients of p(x) and can be found by solving

f(i) = p(%)

If all eigenvalues have multiplicity m = 1 this yields n in-
dependent equations. For eigenvalues with multiplicity m > 1
also the first (m — 1) derivatives of f(x) must be evaluated

94 94
L) =S 0)

ﬁ 1
This yields n equations which can be solved for the n un-
known coefficients. This procedure is illustrated by the Maple
function matrixFunction( ) in the appendix. Now it will be
proven that these equations are indeed independent.

Equation (8) can be written in matrix form as

for i=1...n (8)

with g=1...(m—1) 9)

'An analytic function is more than a infinitely differentiable function. A
typical example of an infinite differentiable function which is not analytic is
a function which is constant on a finite interval. In that interval all derivatives
vanish.

f(A) LA A lfki Po

A 1 A 2 A

e I R > P ao
f()‘*’l) 1 l.n 21,12 zfyrll.il Pn—1

or F = AP. Here F is a vector of function evaluations, P
is a vector of unknown polynomial coefficients, and A is a
matrix of powers of eigenvalues. Each of the rows correspond
to one eigenvalue. If A is invertable, then P can be solved
with P = A~!'F. Now A has a special form which is called
a Vandermonde matrix. It can be proven that if all eigenval-
ues are different with multiplicity m = 1, than all rows are
independent, and the matrix is invertable. For a proof see for
example [4].

If some eigenvalues are the same with multiplicity m > 1,
then the corresponding rows would become dependent, and
the matrix would become singular. Then equation (9) can be
used to replace those dependent rows with

()

a%)} 0 1 24 (n—1)Ar—2 Po
57 (k) 00 1 (n—2)A"3 pi
a1 f 00 0 (n—m+ DA™ ) \pa-i

dxm—1 (%

These rows are called confluent rows, and are the first
(m — 1) derivatives of the original Vandermonde row. The
resulting matrix is called a confluent Vadermonde matrix. It
can be proven that a confluent Vandermonde matrix is always
invertable. For a proof see [4].

Two matrix functions that are very important for robotics
are the exponential map or matrix exponential, together with
its inverse or matrix logarithm. In Lie theory the matrix
exponential maps an element of a Lie algebra onto an element
of the corresponding Lie group. The matrix logarithm maps
an element of a Lie group back onto an element of the
corresponding Lie algebra. Consider for example the Lie
algebra of angular velocities so(3) with corresponding Lie
group of rotations SO(3), or the Lie algebra of twists se(3)
with corresponding Lie group of rigid body motions SE(3).
3 by 3 rotation matrices are elements of SO(3). 4 by 4
homogeneous transformation matrices are elements of SE(3).

A. FEigenvalues of rotations and motions

In this section the eigenvalues of rotations and motions are
computed. These eigenvalues are used in the computation of
the matrix functions in the following sections. It is easiest to
first compute the eigenvalues of elements of the Lie algebras.
The eigenvalues of the elements of the Lie groups then follow
from the following theorem.

Theorem 3 (Eigenvalues): Let A and B be square matrices
with B = exp(A). Then if A is an eigenvalue of A, then u =
exp(A) is an eigenvalue of B. The proof follows from the
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eigendecomposition A = VAV ! and the property of the matrix
exponential that exp(VAV 1) = Vexp(A)V~!.

A rotation can be represented as an element of the Lie group
SO(3) with a 3 by 3 orthonormal matrix R, or as an element
of the corresponding Lie algebra so(3) with a 3 vector @ =
(w1, @, ®3). The 3 vector @ can be written as a 3 by 3 skew-
symmetric matrix Q as

0 -3 @
Q= s 0 - (11)
- O 0

R is commonly known as a rotation matrix, while @ is
sometimes referred to as the equivalent angle and axis repre-
sentation, see for example [5]: the length of @ is the equivalent
angle, and the direction of @ the equivalent axis. In the rest
of this article the symbol w will be used for the length of
the vector @. R and Q are related by the matrix functions
R =exp(Q) and Q = In(R).
The characteristic equation of Q is

det(Q—Al =-A*—Aol —Aw) —Aw? (12)

=AA—iw)(A+iw) =0 with w=/0}+ o+ ?

so its eigenvalues are A; =0, Ay = iw and A3 = —iw. The
eigenvalues of R = exp(Q) follow from theorem 3. They are
A =exp(0) =1, A = exp(iw) and A3 = exp(—iw).

A motion (rotation and translation), can be represented as
an element of the Lie group SE(3) with a 4 by 4 homogeneous
transformation matrix

i3 7)

where rotational part R is a 3 by 3 orthonormal rotation matrix
and the translational part p is a position 3 vector. Alternatively
it can be represented as an element of the corresponding Lie
algebra se(3) with a 4 by 4 matrix

()

where the rotational part Q is a 3 by 3 anti-symmetric matrix
and the translational part v is a 3 vector. T is commonly known
as the twist. H and T are related by the matrix functions H =
exp(T) and T = In(H).

The characteristic equation of T is

det(T — Al) = —A* — A2w? — A%w3 — A°w3
=A2A—iw)(A+iw) =0

(13)

(14)

15)

so the its eigenvalues are A} = A, =0, A3 =iw and A4 =
—iw. Note that they do not depend on the elements of v. The
eigenvalues of H = exp(T) follow from theorem 3. They are
M =2 =exp(0) =1, A3 = exp(iw) and Ay = exp(—iw).

B. Exponential map

In this section the matrix exponentials for rotations and
motions are computed, using the eigenvalues from the previous
section. First the exponential map for rotations R = exp(Q)

is computed. Q has the eigenvalues A; =0, A, = iw and
A3z = —iw. Using theorem 2

1 10 0\ /po
exp(iw) | =1 iw —w?]||p (16)
exp(—iw) 1 —iw —w?) \p

This yields 3 independent equations which can be solved for
the 3 coefficients

po=1 (17)

sinw
p1=

w
_ 1—cosw
p2 - W2
The resulting polynomial is
1 .
R=exp(Q) = — @2+ 0041 (18)
w w

This result is the same as the well known Rodriguez formula,
see again [5]. Because the matrix exponential for rotations over
an angle of 27 more or less yields the same rotation matrix,
R =exp(Q) is not injective (it is not one-to-one).

Now the exponential map for motions H = exp(T) is
computed. T has the eigenvalues A = A, =0, A3 = iw and
A4 = —iw. Evaluating f(A;) = p(A;). Because eigenvalue A; =
A2 = 0 has multiplicity m = 2 here also the first derivative

df/dx(A1) = dp/dx(A;) must be evaluated
1 1 0 0 0 o
1 o 1 0 o ||p
exp(iw) | |1 iw —w? —iwd || p
exp(—iw) 1 —iw —w?  iw D3

Since the original matrix is real, and the image matrix is
real, the coefficients must be real. Here that fact is used.

po=1 (19)
p1=1
_ 1 —cosw
p2 - W2
w—sinw
pP3= 3
w

The resulting polynomial is

w—sinw 1 —cosw
T3+

H =exp(T) = — - T>4+T+1

This implementation of the exponential map for motions can
be checked against other implementations from the literature,
see for example [5].

C. Inverse of the exponential map

In this section the inverses of the exponential maps or matrix
logarithms for rotations and motions are computed. First the
inverse of the exponential map for rotations Q = In(R) is
computed. R has the eigenvalues A; =1, A, = exp(iw) and
A3 = exp(—iw). Evaluating f(4;) = p(4;)

0 1 1 1 Do
iw | =11 exp(iw) exp(2iw) D1
—iw 1 exp(—iw) exp(=2iw)/ \p2
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Solving for the coefficients

—w(2cosw+1
Po = “‘sz‘f“““z (20)
sinw
_ wsinw
Pr= osw—1
=W
P2= 5w
The resulting polynomial is
Q=In(R) = R wsinw —w(2c9sw+ 1)1
2sinw cosw— 1 2sinw

This implementation of the inverse of the exponential map
for rotations, can be checked against other implementations
from the literature, see for example [5]. Because the matrix
logarithm for rotations always yields rotations with an angle
w < m, Q =1In(R) is not surjective (it is not onto). It is singular
in w=0 and w = 7. For w = 0 this is because the rotation axis
is not well defined for a rotation angle of 0. Close to 0, an
infinitely small rotation can point the axis into any arbitrary
direction. For w = 7 this is because there are two possibilities
for the sign of the rotation (clockwise or counterclockwise).
Now the inverse of the exponential map for motions 7 =

see [7]. Another application is in describing the dynamics
of a free floating robot with the Boltzmann-Hamel equations
expressed in exponential coordinates.

dr  d

(1)
il In(H)

~ exp(ad(T)) — IS =J(1)S

(22)
Here ad(T) is the adjoint representation of the Lie algebra
of T, and exp(ad(T)) = Ad(H) is the Adjoint representation
of the Lie group of H. This is a matrix division and can
be written in this way because the “numerator” and the
“denominator” commute, so left and right division are the
same. The only problem is that the denominator is singular:
ad(T) has an eigenvalue of 0 with multiplicity 2. Therefore
Ad(H) = exp(ad(T)) has an eigenvalue of 1 with multiplicity
2. Therefore (Ad(H) —1I)) has an eigenvalue 0 with multi-
plicity 2. Nevertheless the limit of J exists, and is continuous
in ad(T), so it can be computed with the Cayley-Hamilton
theorem. This is a good example of a matrix function that can
be computed with Cayley-Hamilton, that could otherwise not
be easily computed.
For rotations

In(H) is computed. H has eigenvalues A} = A, =1, 43 = 1
exp(iw) and A4 = exp(—iw). Evaluating f(4;) = p(4;). Be- iw 1 0 0 Do
cause eigenvalue A} = A, = | has multiplicity m = 2 here also exp(iw)—1 | =11 iw —w? P1
the first derivative must be evaluated —iw 1 —iw —w? )2
0 1 1 1 1 Po exp(—iw) —1
.1 = (1) 1, 22, 33, P Solving for the coefficients. Here the fact is used that the
w exp(tv'v) exp( zw) exp( zw) P2 coefficients must be real.
—iw 1 exp(—iw) exp(—2iw) exp(—=3iw)/ \p3
Solving for the coefficients. Here the fact is used that the po=1 (23)
coefficients must be real. -1
_ 2weos?w —sinw—w an ) ,
po= 2sinw(1 —cosw) Dy = —wcosw+2sinw —w
. . 2w?sinw
_ —4wcos®w +2sinwcosw — wcos w4 2w+ sinw
pr= 2sinw(1 —cosw) For motions
= 2wcos?w — 2sinwcosw +2wcosw — sinw — w 11 1 0 0 0 0 0
2sinw(1 —cosw) — 0 1 0 0 0 0
—wcosw +sinw ]%3 I I L iw®
= " = ; 2 3 4
ps 2sinw(l —cosw) fa (1) 1 lez _,SV; _434/ SV.V 5
—iw  —w iw w —iw
This formula for the computation of the matrix logarithm for J5 0 1 “oiw —3w? 4iwd Sswh
motions can be checked against other implementations from Je
the literature, see for example Appendix A of [5]. with
D. Derivative of the exponential map iw
Let S=dH/dtH! and T = In(H). Note that both S and T fi= exp(iw) — 1 (24)
are both twists, but 7" has the dimension of meters and radians —iw
and is a “position”, while S has the dimension of meters and Ja= W
radians per second and is a “velocity”. The relation between 1 wexp(iw)
dT /dt and S is given by the derivative of the exponential map. fs= - 1 - 2
It can be computed by taking the Taylor expansion of In(H), exp(iw) — (exp(iw) — )
and is given in [6]. This relation is very useful in the modelling fo= 1 _ WCXP.(*IW)
and simulation of spatial springs in exponential coordinates, exp(—iw) —1  (exp(—iw) — 1)
4190
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Solving for the coefficients. Here the fact is used that the
coefficients must be real.

po=1 (25)
—1
p1= 5
_ 3wsinw + 8cosw — 8 +w?
p2= 4(cosw — 1)w?
p3=0

4cosw~+ wsinw — 4+ w?
4w*(cosw —1)

b4 =

ps=0
III. CONCLUSIONS

In this article the use of the Cayley-Hamilton theorem for
roboticists has been explained, and illustrated with some ex-
amples. The Cayley-Hamilton theorem allows to any analytic
scalar functions to a matrix function, and to compute these
matrix functions in a straightforward way. Roboticists make
extensive use of the exponential map or matrix exponent,
and the inverse of the exponential map or matrix logarithm.
Examples have been given of how to implement these matrix
functions with the Cayley-Hamilton theorem. The appendix
contains a small Maple library that does this automatically.

For most of these functions there exist other implemen-
tations from the literature. These other implementations of
course yield the same results, but were computed in a less
straightforward and uniform way. For other functions there
are no known other implementations. A good example is the
Jacobian of the exponential map. This function is useful for
the modelling and simulation of spatial springs, which will be
demonstrated in a separate article [7]. This is an expression
that is singular but whose limit nevertheless exists, and can
be computed nicely and efficiently with the Cayley-Hamilton
theorem.

In this article examples were given for matrices from
the group of rotations SO(3) and motions SO(3), but the
procedures work for all matrices. The procedures also work
for complex matrices from the group of quaternions SU(2),
and even dual matrices from the groups of dual rotations and
dual quaternions.

APPENDIX

This section presents a small library of Maple functions that
automatically perform the procedures explained in this article.
The arguments of the functions are lists, list of coefficients of
polynomials, and lists of eigenvalues of matrices.
pout = reducePolynomial( pin, eigs ) This function takes a
polynomial pin in a matrix with eigenvalues eigs, and
returns the minimal polynomial pout.

pout = matrixFunction( fun, eigs ) This function takes a
matrix function fun of a matrix with eigenvalues eigs, and
returns the coefficients of the corresponding polynomial
pout.

pout = changeVariable( pin, fun, eigs ) This function takes
a polynomial pin in a matrix variable with eigenvalues

eigs, then performs a change of variable fun, and returns
the corresponding polynomial pout in the other variable.

reducePolynomial := proc( pin, eigs )
local nl, pl, n2, t1, t2, pout;
nl := nops( pin );
pl :==sum( pin[ il ] *x " (il — 1), il = 1.nl );
n2 := nops( eigs );
tl := product( x — eigs[ il ], il = 1..n2 );
tl := simplify( t1 );
nl := degree( pl, x );
while ( n1 >=n2 ) do
t2 := coeff( pl, x, nl );
# substitute characteristic polynomial
pl:=pl —22xtl x(x"(nl —n2));
pl := simplify( pl );
pl := collect( pl, x );
nl := degree( pl, x );
end;
pout := PolynomialTools: —CoefficientList( p1, x );
simplify( pout );
end:

matrixFunction := proc( fun, eigs )
local nl, pout, sl, e2, n2, tl, f2, t2, s2, i2, i3, s3, 13;
nl := nops( eigs );
pout := [ seq( p||il, il =0..(nl — 1)) ];
sl := convert( pout, set );
# list of eigenvalues and their multiplicities
e2 := convert( eigs, multiset );
n2 := nops( €2 );
tl := sum( ’p|[il * x ~il’,il =0..(nl — 1));
f2 := unapply( t1, x );
2:={}
for i2 to n2 do
# evaluate function and derivatives
for i3 from O to (e2[i2,2] — 1) do
try
2 :=(D@@i3 )( fun )(e2[i2,1]);
catch “numeric exception: division by zero™:
t2 := limit( ( D@ @i3 )( fun )( x ), X = €2[ i2,

1)
end;
s2:={op(s2),2=(D@@i3 )(f2)(e2[i2, 1]
) ks
end;

end;
s3 := solve( s2, sl );
83 := simplify( s3 );
pout := subs( s3, pout );
pout := map( Re, pout );
simplify( pout );

end:

changeVariable := proc( pin, fun, eigs )
local nl, pl, 12, n2, p2, p3, pout;
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nl := nops( pin );

pl :==sum( pin[ il ] * x " (il — 1), il = 1.nl );
12 := matrixFunction( fun, eigs );

n2 := nops( 12 );

p2 :=sum( 12[il ] *y "~ (il — 1), 1l = 1..n2 );
p3 :=subs( x = p2, pl );

p3 := simplify( p3 );

p3 := collect( p3,y );

pout := PolynomialTools: —CoefficientList( p3, y );
reducePolynomial( pout, eigs );

end:

(1]
(2]

(3]
[4]
[5]
(6]
(7]
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