
Safe-Guarded Agent Design Pattern for Mechatronic Systems

Dao Ba Phong, Theo J.A. de Vries and Job van Amerongen

Control Engineering, Faculty EEMCS, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands. Tel: +31 53 4892606

{P.B.Dao , T.J.A.deVries , J.vanAmerongen} @utwente.nl

Abstract: To support the application of real-time Multi-Agent Control Systems (MACS) for mechatronic
systems, a combination between the MACS design approach and OROCOS framework has been
implemented: the OROCOS-based Implementation Framework for MACS (OROMACS). This paper
presents our research results to make the OROMACS framework be easily applicable to develop real-
time safe-guarded controller-agents and to maximize the reusability of safe-guarded MACS designs for
various types of mechatronic systems. The approach that we advocate is a combination between
OROMACS framework and pattern-based design method. Eleven control system design patterns are
formed in which the Safe-Guarded Agent, one of the core design patterns, aims at providing a generic
and flexible safe-guarded control solution for mechatronic systems. The design patterns are well
organized into two reusable generalized safe-guarded control solutions, one for simple mechatronic
systems and one for complex mechatronic systems.

Keywords: controller-agent, multi-agent control system, safe-guarded control, design pattern, intelligent
control, polymorphic specifications, mechatronics.

1. INTRODUCTION

While designing a safe-guarded control system for a
mechatronic system, the designer has to consider the
following particular requirements (or specifications):

1. The control system should be designed to meet the
functional requirements of a mechatronic system such as:
multi-operation modes like start-up, homing, normal
operation and shut-down; multiple functionality like
detect targets, move to targets, follow a target and
concurrently avoid obstacles on the way.

2. The control system not only should have a good control
algorithm to meet the requirement of control
performances (speed of response, bandwidth, stability,
overshoot, sensitivity for disturbances and parameter
variations), but also guarantees the safe-guarded control
issue for both operator and machine.

3. The safe-guarded control issue has to cover and deal with
a variety of fault sources with different criticality levels. It
should also be functioned with the functions such as error
detection, error handling, graceful degradation, and error
recovery along with different degrees of fault tolerance.

Because of the specific design objectives and constraints,
these requirements cannot be solved easily and satisfactorily
by a single (traditional) control algorithm, i.e. a control
system with only one controller such as a PID controller.
Several practical solutions have been proposed such that
complex requirements can be solved by using multiple
models of computation, heterogeneous design techniques,
and an integrated approach of multi-disciplinary, while taking
into account multiple control objectives (van Breemen, 2001;

Fregene et al., 2001; Masina et al., 2004). Therefore, realistic
control requirements of mechatronic systems generally
results in a multi-controller system that consists of a set of
subcontrollers that are combined into an overall controller,
such that when the multi-controller system is executed the
overall performance specification is met. For each
subcontroller, several conventional controller design
techniques can be appropriately applied. This strategy of
solving a complex control problem by decomposing it into
partial control problems is called the divide-and-conquer
approach (Johansen and Murray-Smith, 1997). In this area,
the research of van Breemen (2001) contributed with a
controller design framework for complex control problems
named Multi-Agent Controller Implementation Framework
(MACIF). Although van Breemen’s design framework results
in a clear structural overview of the overall control problem,
and in a structured way to design and implement the multi-
agent control system, it still gives room for improvement: the
design process has to be largely repeated whenever the
designer moves to new applications or other mechatronic
systems, even when these control problems resemble each
other. The main reason is the lack of support for reusability
of the design results of multi-agent control systems from
previous projects to new projects. In order to solve this
problem, two research questions have been formulated along
with strict requirements of safe-guarded control issues taken
into account:

1. How to make the multi-agent control system design
approach be easily applicable to design safe-guarded
controllers for various types of mechatronic systems?

2. How to maximize the reusability of safe-guarded
MACS designs for mechatronic systems?

Preprints of the 5th IFAC Symposium on Mechatronic Systems
Marriott Boston Cambridge
Cambridge, MA, USA, September 13-15, 2010

345

MECHATRONICS2010-113

Copyright © 2010 IFAC

While answering these questions, eleven control system
design patterns are formed in which the Safe-Guarded Agent
design pattern is presented here. Section 2 contains
background information about Agents and Multi-Agent
Systems, Multi-Agent Control Systems, OROMACS
framework, and Design Patterns in Control Engineering.
Section 3 describes the safety issue in mechatronic systems.
Section 4 deals with DemoLin setup, a simple mechatronic
system, with the approach starting with the design of a safe-
guarded MACS for DemoLin and then formulating a reusable
generalized solution for other simple mechatronic systems in
terms of control system design patterns. Section 5 deals with
TriPod setup, a complex mechatronic system, with the
approach that supports the design of a safe-guarded MACS
for TriPod by reusing the whole complete safe-guarded
MACS design for DemoLin; and then a reusable generalized
solution for other complex mechatronic systems in term of
control system design patterns is formulated. Finally, some
conclusions are given in section 6.

2. BACKGROUND

2.1 Agents and Multi-Agent Systems (MAS)

In Information Technology, an “agent” is regarded as an
autonomous entity responsible for performing a certain task
in coordination with its community. Because the term “agent”
is used so frequently in various domains with different
purposes, a unanimous precise and technical definition of the
term “agent” cannot be formulated easily (Wooldridge,
1999). In spite of the lack of a technical definition,
researchers try to come up with a notion of what an agent is,
and is not, so as to be able to discuss their work with others
based on the notion. A definition that captures the essential
aspects of being an agent, what is approved by most
researchers, is given in (Franklin & Graesser, 1996): “An
autonomous agent is a system situated within and part of an
environment that senses that environment and acts on it, over
time, in pursuit of its own agenda and so as to effect what it
senses in the future.”

Although an agent is presented as an entity that solves
problems in order to achieve its own goal, many problems are
far too complex to be handled by an individual agent. Only a
“society of agents” is capable of solving such problems. In a
more technical meaning, a society of agents is called a multi-
agent system (MAS). A commonly approved definition of a
MAS is given by Wooldridge (2002): “A Multi-Agent
System consists of a number of autonomous, intelligent
agents, which can interact with one another in order to pursue
their own goals or cooperatively solve common problems”.

At present, the research community of agent technology has
pursued the objective to bring results of academic researches
into practical applications. Pechoucek et al. (2006) pointed
out that the available agent techniques have performed well
in five types of application groups. And recently, a valuable
review of industrial deployment of multi-agent technologies
has been carried out by Pechoucek and Marik (2008) that
gives an overview of the current applications and evolving
trends of MAS in the industrial domain. As many numerous

control applications based on agent technology have been
successfully developed and implemented, a survey of multi-
agent systems in control engineering is done by Daneshfar
and Bevrani (2009). In the review, they present design
methodologies, standards, tools, and supporting technologies
to provide an effective MAS-based control design.

2.2 Multi-Agent Control Systems (MACS)

Because of the advantages of agents and MAS in solving
complex problems, agent and controller have been combined
to form a new concept named controller-agent. It brings the
best of both fields together in the form of an agent-based
multi-controller system. Pursuing this idea, van Breemen
(2001) proposes a controller design framework for complex
control problems named Multi-Agent Controller
Implementation Framework (MACIF). This framework
formulates a new design approach that is called Multi-Agent
Control Systems (MACS). The MACS design approach
results in control systems that have an open character, such
that parts (or controller-agents) can be added, modified or
removed without re-programming the operation of the
remaining parts of the control system. In a MACS, a complex
control problem is solved by a pool of controller-agents, in
which each controller-agent is responsible for solving a part
of the whole problem, thus providing a well-structured
problem solving approach. As multiple controller-agents are
acting on their own particular problems to solve the overall
problem, conflicts between individual agents may arise, as
these partial problems are interdependent. These conflicts are
resolved by coordination mechanisms between controller-
agents (CA); these mechanisms determine when and how
activities of controller agents (i.e., calculation of control
signals) are applied to the plant. There are five coordinator
types mainly used in MACS which are:

1. Master-Slave (MS) is a subordination dependency in
which the Slave-CA depends on the Master-CA, i.e. the
Slace can be active only when the Master is active.

2. Fixed-Priority (FP): each CA is assigned a fixed priority
during the operation of the MACS. The operation of CAs
in a group is determined relying on their priority levels.

3. Parallel (P) makes all controller-agents within a group
concurrently active.

4. Sequential (S) makes controller-agents within a group
active in succession, for a single round only.

5. Cyclic (C) makes controller-agents within a group active
in succession repeatedly.

2.3 OROMACS Framework

The MACS design approach and the OROCOS framework
(Orocos, 2009) complement each other in two main aspects:

 MACS enables to create the hierarchically structured
control systems that consist of coordinated elementary
and composite controller-agents. In OROCOS, it is not
possible to do this because the construction of a
composite component is currently not supported.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

346 Copyright © 2010 IFAC

 OROCOS framework supports a generic hard real-time
kernel that can be used to build control applications with
reliable determinism real-time behavior. Thus, it is an
ideal complement for the MACS design approach.

The reciprocal complement makes a strong motivation for a
combination between the MACS design approach and
OROCOS framework. As a result, an OROCOS-based
Implementation Framework for MACS (OROMACS) has
been formed to support the development of real-time multi-
threaded MACS in all phases from the design and simulation
in computer to the realization and application in real model.

2.4 Design Patterns in Control Engineering

The design patterns technology that is widely used nowadays
was inspired by the work of Christopher Alexander and
colleagues. He is the first person that used what he called “a
pattern language” in the architectural work to get such better
design solutions. Alexander defines a pattern as “a three-part
rule, which expresses a relation between a certain context, a
problem, and a solution” (Alexander, 1979, p. 247). Through
the literature review on design patterns, we understand that
research and application of design patterns technology in
control engineering domain is rather rare. It is clearly proved
by the little number of relevant publication in journal and
conference papers. The main reason is that pattern-based
design approach is fairly new in the control theory and
control engineering community. Another reason is the
insufficient awareness of advantages of using design patterns.
Because of that, some experience researchers on pattern-
based control engineering point out main benefits to motivate
the application of pattern-based design approach in the
control engineering field. Sanz and Zalewski (2003) defines
the pattern-based approach as “a method of generating
solutions based on existing design knowledge”. They stress
that the pattern-based control engineering is not a control
design method in the classic sense but a new way of
managing and exploiting existing design knowledge for
control systems, leading to better solutions. With the same
judgement, Selic (1996) states that design patterns capture
proven solutions, which, if applied intelligently, can result in
significant benefits in terms of productivity and reliability.
Zalewski, Selic and others believe that using this approach
leads to control systems that are better designed, i.e. they are
more modular, adaptable, understandable, and evolvable.

3. SAFETY ISSUE IN MECHATRONIC SYSTEMS

The safety issues in mechatronic systems (robots and
manipulators) are always involved in two aspects: safety for
human or operator and safety for machines themselves.

 The safety issue for human can be guaranteed by placing
robots and manipulators in an area where people do not
work closely to or directly with; and also by preventing
people from entering the machine’s working area.
However, in some special cases people have to work
closely to the machine (e.g. doing experimental research,
testing or repairing of the system) and thus the safety
issue for operator becomes more complex in these cases.

 Regarding the safety issue for machines themselves, the
problem is generally very complicated because many
possible sources of faults or errors have to be identified
and handled strictly.

While performing a certain task, a robot or manipulator
system usually has to cope with variously serious levels of
different fault sources that can occur in an unwanted manner.
If these faults are not identified correctly and handled strictly,
they can bring dangerous situations for both human and
machine. Because of that, we identify 18 fault sources that
are common in mechatronic systems. We also classify the
fault sources into three critical levels those are dangerous,
serious, and warning in which dangerous is the highest
hazardous level, the next one is serious, and warning is the
lowest hazardous level. We assess the potential risk level of
faults for human and machine to make this categorization.

 8 fault sources at dangerous level: faults at the highest
critical level that can result in hazardous accidents for
operator and critical damages for machine; therefore cut-
off the power supply as fast as posible is the chosen
solution to prevent faults from growing worse.

 6 fault sources at serious level: faults at the critical level
that only cause critical damages for machine; therefore,
emergency-stop as fast as possible is the desired response
to prevent worse damage for the machine.

 4 fault sources at warning level: faults at the lowest
critical level that don’t cause much dangerous for operator
and machine; thus normal stop is the reasonable solution.

Table 1. List of 18 fault sources that are common in
mechatronic systems

Faults Critical level
N1. Control computer get crashed totally dangerous
N2. Failure of interface cards dangerous
N3. Interconnecting wiring gets broken dangerous
N4. Mechanical part is broken dangerous
N5. Human collision dangerous
N6. Human’s unauthorized access into
the working area dangerous

N7. Failure of the power supply dangerous
N8. Active emergency-stop dangerous
N9. Exceeding end-effector working area serious
N10. Exceeding joint working area serious
N11. Failure of joint(s) or motor’s
transmission part(s) serious

N12. The moving direction of motor(s) is
intercepted by obstacle serious

N13. Obstacle collision serious
N14. Self-collision serious
N15. Over-heating of the motor’s
armature coils warning

N16. Failure of motor’s power amplifier warning
N17. Large tracking errors warning
N18. Actuator overload warning

Note that, we kindly don’t want to discuss much about the list
of fault sources and the categorization of critical levels

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

347 Copyright © 2010 IFAC

because these works are not the main content of the research
and they vary according to personal opinion. To detect the
fault sources, we propose a list of measures which is the
combination of hardware- and software-based solutions.
However, these measures are not presented in this paper
because of space limitations.

4. DEMOLIN SETUP

4.1 Introduction

DemoLin is a simple mass-spring-mass system which was
developed at Imotec B.V. (http://www.imotec.nl/) for the
demonstration purpose of controller performances. It has a
base plate (motor mass), which is driven by a linear motor.
Another mass (end-effector mass) is connected on the top of
the base plate with two flexible iron plates. Both the masses
are attached to pretension belts and these belts are supported
by pulleys mounted on two shafts that drive encoders. Plant
model of DemoLin setup is the fourth-order and defined as a
Flexible Mechanism of type AR (Coelingh, 2000). DemoLin
can be considered as a simple single-axis electro-mechanical
motion system; the 20-sim model is given in Fig. 1.

emergencyButtonstopButtonstartButton

MACS

Hold

Sample

Sample

positionSensor velocitySensor

Flexible IronPlates

motorMass

disturbance

loadMass

randomNoise

viscousFriction

dynamicBrake

forceActuator

ZOH
m

P V

F m

Endstops

Fig. 1. 20-sim model of the DemoLin setup with the safe-
guarded MACS.

4.2 Design the safe-guarded MACS for DemoLin

Before designing a safe-guarded control system for DemoLin
setup, three particular requirements for the system are given:

1. The control system is needed to have multi-operation
modes, which are: Startup (with two sub-operation modes
are Initial and Homing), Normal Operation, Shutdown
(with three sub-operation modes are Stop, Standby, and
PowerOff), and Safe-Guarded in which the Safe-Guarded
mode always has the highest operation priority to ensure
the safety for the setup and human. Operation modes can
have different priority levels (i.e. priority-based
operation), control missions (e.g. accurate position control
or safe-guarded control), control system configurations
(e.g. simple or advanced controller), and motion
trajectories (e.g. periodic or non-periodic path).

2. The control system is required to meet the desired control
performances (speed of response, bandwidth, stability,
overshoot, sensitivity for disturbances and parameter

variations); and also to guarantee the safe-guarded control
issue for both operator and machine.

3. The controller in each operation mode should perform its
mission intelligently and autonomously. In case there is
not any fault, the operation modes are normally active in
the sequence: Initial, Homing, Normal Operation, Stop,
Standby, and PowerOff. However, in case a certain fault
occurs, the Safe-Guarded mode is immediately activated
to handle the fault. The Safe-Guarded mode should be
equipped with capabilities such as error detection, error
handling, graceful degradation, and error recovery along
with different degrees of fault tolerance. Then, depending
on the potential critical level of the present fault, an
appropriate safe-guarded activity could be applied.

A safe-guarded MACS is designed for DemoLin that fully
meets the above-mentioned requirements (Fig. 2). We apply
a design procedure including four control system design
patterns that is described in a top-down approach hereafter.

Firstly, we use the SingleApplication-Agent design pattern to
initially generate the hierarchically structured safe-guarded
MACS. As a result, we obtain “MACS for DemoLin setup”
that consists of a “Local Safe-Guarded Agent” and a “Multi-
Operation Mode Agent”, coordinated by a Fixed-Priority
Coordinator in which the “Local Safe-Guarded Agent” has a
higher priority level than the one of the “Multi-Operation
Mode Agent”.

Secondly, we use the Local SafeGuarded-Agent design
pattern to generate the hierarchical structure for the “Local
Safe-Guarded Agent”. As a result, the “Local Safe-Guarded
Agent” consists of a “Local Dangerous Problems Handler”, a
“Local Serious Problems Handler”, and a “Local Warning
Problems Handler” that are coordinated by a Fixed-Priority
Coordinator in which the “Local Dangerous Problems
Handler” has the highest priority level; the “Local Serious
Problems Handler” is the next one; and the “Local Warning
Problems Handler” has the lowest priority level.

Thirdly, we use the MultiFunction-Agent design pattern to
generate the hierarchical structure for the “Multi-Operation
Mode Agent”. As a result, it consists of a “StartupMode
Agent”, a “NormalOperationMode Agent”, and a
“ShutdownMode Agent” that are coordinated by a Sequential
Coordinator in which the “StartupMode Agent” is the first
one to be active.

Finally, we use the SingleFunction-Agent design pattern to
generate the hierarchical structure for the three operation
modes. As a result, each operation mode consists of a
“TrajectoryGenerator-Agent” and a “OperationController-
Agent” that are coordinated by a Master-Slave Coordinator in
which the “TrajectoryGenerator-Agent” is the Master and the
“OperationController-Agent” is the Slave. Note that, in Fig. 2
this structure is not displayed; it is just presented in Fig. 6.

Here, we explain how the Local Safe-Guarded Agent handles
a certain fault. According to Fig. 2, the Local Safe-Guarded
Agent has the hierarchical structure with three different Local
Problems Handlers, coordinated by a Fixed-Priority
Coordinator, to deal with three critical levels of faults

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

348 Copyright © 2010 IFAC

(dangerous, serious, and warning). Each Local Problems
Handler has a hierarchical structure as depicted in Fig. 3, in
which the Errors Detection-Agent plays the role of the
Master-controller-agent with the mission to detect faults
and then to classify them into three critical levels; whereas
the Single Safe-Guarded Activity-Agent keeps the role of
the Slave-controller-agent with the mission to deal with
graceful degradation and errors recovery issues. Hence, it
can be seen that whenever a certain fault occurs the Errors
Detection-Agent will decide an appropriate Local Problems
Handler to handle the fault.

Fig. 2. Safe-guarded MACS for DemoLin.

Note that, only one Errors Detection-Agent element is really
existing in all three Local Problems Handlers. That is because
we reuse the Errors Detection-Agent in all Problems
Handlers and use the polymorphic specification approach
to make the Errors Detection-Agent structure able to hold
multiple functionality. In our research, the Errors Detection-
Agent is designed to have six polymorphic specifications (see
Fig. 3 and Fig. 9). The same approach is applied for the
Single Safe-Guarded Activity-Agent. The graceful
degradation and errors recovery issues can be done flexibly
through a plentiful set of polymorphic specifications that are
provided by the Single Safe-Guarded Activity-Agent (Fig. 3).
It means that, while designing a safe-guarded MACS, we
have to choose a suitable polymorphic specification for each
Single Safe-Guarded Activity-Agent of three Local Problems
Handlers. For example, in Fig. 3 the “Brake + PowerOff”
specification is chosen for the Single Safe-Guarded Activity-
Agent of the Local Serious Problems Handlers.

To illustrate for the design procedure, a test case is realized
in a scheme that the end-effector hits against an end-limit
switch caused by a wrong position reference. After the Errors
Detection-Agent identifies this fault as N10 (exceeding joint

working area) and classifies it as a serious level (Table 1), the
Local Serious Problems Handler is immediately activated to
handle the fault. In this case, a graceful degradation issue is
realized by the Single Safe-Guarded Activity-Agent with the
“Brake + PowerOff” specification (Fig. 3).

Fig. 3. Hierarchical structure of the Local Problems Handler.

Setpoints from Orocos, measured positions and motor position error

0

0.05

0.1

0.15
Reference motor position from Orocos {m}

-0.05

0

0.05

0.1 Measured motor position {m}

-0.05

0

0.05

0.1 Measured load position {m}

0 2 4 6 8 10 12
time {s}

-0.01

-0.005

0

0.005
Motor position error {m}

Fig. 4. Simulation result of which the safe-guarded MACS
deals with the fault “exceeding joint working area”.

Control signal, motor velocity and the safe-guarded MACS's operational status

-0.4

-0.2

0

0.2

0.4
Total control signal {V}

-0.4
-0.2

0
0.2
0.4

Motor velocity {m/s}

2
4
6
8

10 Which operation mode is active {1: Initial; 2: Homing; 3: Normal Operation; 4: Stop; 5: Standby; 6: PowerOff; 7: Safe-Guarded}

0 2 4 6 8 10 12
time {s}

0

0.4

0.8

1.2 Dynamic braking {1: Activated}

Fig. 5. Status transitions between operation modes of the
safe-guarded MACS for DemoLin.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

349 Copyright © 2010 IFAC

As a result, the sequence of operation modes is: from t = 0 [s]
to 4 [s] is Initial mode; from t = 4 [s] to 6 [s] is Homing
mode; from t = 6 [s] to 9.62 [s] is Operation mode; from t =
9.62 [s] to 9.87 [s] is Safe-guarded control mode with
dynamic brake; from t = 9.87 [s] to end is PowerOff mode
(Fig. 4 and Fig. 5). The experiment results on the real setup
are given in (Phong and de Vries, 2010).

4.3 A generalized solution for simple mechatronic systems

Relying on the safe-guarded MACS design procedure for
DemoLin setup, a reusable generalized solution (Fig. 6) for
other simple mechatronic systems (single-axis manipulators
or single-functionality motion systems, etc.) is formulated by
the hierarchically structured application of four control
system design patterns as follows:

Design pattern 1: SingleApplication-Agent design pattern
consists of a Local SafeGuarded-Agent and a MultiFunction-
Agent that are coordinated by a Fixed-Priority Coordinator in
which the Local SafeGuarded-Agent always has a higher
priority level than the one of the MultiFunction-Agent.

Design pattern 2: Local SafeGuarded-Agent design
pattern consists of a Local Dangerous Problems Handler, a
Local Serious Problems Handler, and a Local Warning
Problems Handler that are coordinated by a Fixed-Priority
Coordinator in which the Local Dangerous Problems Handler
has the highest priority level; the Local Serious Problems
Handler is the next one; and the Local Warning Problems
Handler has the lowest priority level.

Fig. 6. Hierarchical structure of the reusable generalized
solution for simple mechatronic systems.

Design pattern 3: MultiFunction-Agent design pattern is
the composite controller-agent that consists of several
SingleFunction-Agents, coordinated by one of five
coordinator types: Master-Slave (MS), Fixed-Priority (FP),
Parallel (P), Sequential (S), or Cyclic (C).

Design pattern 4: SingleFunction-Agent design pattern
consists of a TrajectoryGenerator-Agent and a
OperationController-Agent that are coordinated by a Master-
Slave Coordinator in which the TrajectoryGenerator-Agent is
the Master and the OperationController-Agent is the Slave.

5. TRIPOD SETUP

5.1 Introduction

Tripod is a pick-and-place machine which was also
developed at Imotec B.V. (http://www.imotec.nl/) for testing
different types of advanced controllers. It consists of three
linear motors, which can move up and down within their safe
operating regions. A pair of rods is connected to each linear
motor, and the other side of these rods is connected to a
platform at the top. Due to the constrained movement of the
rods, the platform cannot rotate but only translate. The
position of the platform is determined by the positions of the
three linear motors. So we see that TriPod has three identical
parts. Each part consists of one linear motor attached to the
platform through a leg, thus forming a fourth order plant
model which can be categorized as a Flexible Mechanism of
type AR (Coelingh, 2000). As a result, each leg of TriPod has
the same plant model as DemoLin. TriPod can be considered
as a complex multi-axis electromechanical motion system
(three axes) with the 20-sim model is given in Fig. 7.
Moreover, because of its specific structure, TriPod setup has
some special properties such as: variable load mass and
variable springs due to the coupling between three axes that
make the load forces variable; the strong coupling between
the end-effector space and the joint spaces of three legs.
Leg 1 actuation Leg 2 actuation

Leg 3 actuation

emergencyButtonstopButton

startButton

dynamicBrake

MACS

Tripod from 3D Mechanics Editor

Tripod
1

R

C

MSe 1

R

C

1 RC

RotationSprings

MSe

MSe

interfaceLegZ1

interfaceLegZ2

interfaceLegZ3

Fig. 7. 20-sim model of the TriPod setup and the safe-
guarded MACS.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

350 Copyright © 2010 IFAC

5.2 Design the safe-guarded MACS for TriPod

In general, the requirements of the safe-guarded control
system for TriPod setup are almost the same as the ones for
DemoLin setup. The reason is that the safe-guarded control
problem of each axis of TriPod setup can be considered the
same as the one of DemoLin setup. However, a new issue has
come up in this case where the safe-guarded control problem
for multi-axis operations related to all three axes of the
TriPod setup should be taken into account. In order to
distinguish this kind of safe-guarded control problem with
other safe-guarded control issues for single-axis operations,
we categorize the safe-guarded control problem for multi-axis
operations in a new context, i.e. a Global influence sphere.
Hence, the requirements while designing a safe-guarded
control system for TriPod setup consist of both Local and
Global safe-guarded control issues. A safe-guarded MACS
(Fig. 8), designed for TriPod setup to meet the particular
requirements, which is based on the design procedure: apply
three control system design patterns; and then reuse the
whole complete safe-guarded MACS design for DemoLin
into the design for TriPod setup. The design procedure is
explained according to a top-down approach:

Fig. 8. Safe-guarded MACS for TriPod.

Firstly, we use the System-Agent design pattern to initially
generate the hierarchically structured safe-guarded MACS.
As a result, we obtain “MACS for TriPod setup” that consists
of a “Global Safe-Guarded Agent” and a “Multi-Axis
Controller Agent”, coordinated by a Fixed-Priority
Coordinator in which the “Global Safe-Guarded Agent” has a
higher priority level than the one of the “Multi-Axis
Controller Agent”.

Secondly, we use the Global SafeGuarded-Agent design
pattern to generate the hierarchical structure for the “Global
Safe-Guarded Agent”. As a result, the “Global Safe-Guarded
Agent” consists of a “Global Dangerous Problems Handler”,
a “Global Serious Problems Handler”, and a “Global
Warning Problems Handler” that are coordinated by a Fixed-
Priority Coordinator in which the “Global Dangerous
Problems Handler” has the highest priority level; the “Global
Serious Problems Handler” is the next one; and the “Global
Warning Problems Handler” has the lowest priority level.

Thirdly, we use the MultiApplication-Agent design pattern to
generate the hierarchical structure for the “Multi-Axis
Controller Agent”. As a result, the “Multi-Axis Controller
Agent” comprises a “AxisZ1 Controller Agent”, a “AxisZ2
Controller Agent”, and a “AxisZ3 Controller Agent” that are
coordinated by a Parallel Coordinator.

Finally, we reuse the whole designed safe-guarded MACS for
DemoLin into each axis of TriPod. It means: AxisZ1
Controller Agent, AxisZ2 Controller Agent, and AxisZ3
Controller Agent use the safe-guarded MACS with the same
hierarchical structure as DemoLin setup. The only thing that
remains to be done is to modify application-specific settings
(e.g. error bound, controller parameters, polymorphic
specifications, etc.).

Fig. 9. Hierarchical structure of the Global Problems Handler.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

351 Copyright © 2010 IFAC

Here, we make clear how the Global Safe-Guarded Agent
handles a certain fault. By comparison of Fig. 2 and Fig. 8,
we see that the Local Safe-Guarded Agent and the Global
Safe-Guarded Agent have the same hierarchical structure.
The difference is only between the Local Problems Handlers
(Fig. 3) and the Global Problems Handlers (Fig. 9) that is
the Global Problems Handlers use the Multi-Safe-Guarded
Activities-Agent, instead of the Single Safe-Guarded Activity-
Agent. It can be seen that a Multi-Safe-Guarded Activities-
Agent consists of a pool of Single Safe-Guarded Activity-
Agents which are coordinated by one of four coordinator
types: Parallel (P), Sequential (S), Fixed-Priority (FP), and
Master-Slave (MS). The different types of coordinators
allows designers to flexibly choose an appropriate safe-
guarded control strategy for each mechatronic application.
Single Safe-Guarded Activity-Agents of a Multi-Safe-
Guarded Activities-Agent can use the same or different
polymorphic specification. For example, in Fig. 9 the “Brake
+ Standby + Stop + PowerOff” specification is used for all
Single Safe-Guarded Activity-Agents.

Fig. 10. Overall hierarchical structure of the safe-guarded
MACS for TriPod.

It is noticed that the Global Safe-Guarded Agent always has a
higher priority level than the Local Safe-Guarded Agent. It
means the Global Problems Handlers have right to take over
the active authority from the Local Problems Handlers.
Hence, the designer must be very careful while designing the
Global Problems Handlers because it can cause problem by
taking over the active authority from a Local Problems
Handler which maybe is handling a critical fault. To avoid
this problem, we suggested a temporary solution that is
design the Global Safe-Guarded Agent with only the Global
Dangerous Problems Handler. This solution can work well
because the faults with Global influence sphere occuring in
practical applications generally are problems related to the
operation of multiple manipulators, robots, or production
stations, which are normally considered as dangerous
problems. However, this problem has been fully studied to
bring out a better solution.

Because both Local Safe-Guarded Agent and Global Safe-
Guarded Agent present in the safe-guarded MACS design for
TriPod setup, the safe-guarded control missions have to be
appropriately assigned to six Problems Handlers. In Fig. 10,
we map the list of 18 common fault sources of mechatronic
systems (Table 1) into three Local Problems Handlers of the
Local Safe-Guarded Agent and three Global Problems
Handlers of the Global Safe-Guarded Agent. The map is
based on the influence sphere of faults (Local or Global) and
critical level of faults (Dangerous, Serious, or Warning). As
the Errors Detection-Agent plays the role of the Master-
controller-agent with the mission to detect and classify faults,
this map is done through programming six polymorphic
specifications of the Errors Detection-Agent. When moving to
a new application, the map will be different.

To illustrate for the design procedure, a test case is realized
in a scheme that the 1st linear motor works with a wrong
trajectory (it goes down too much and hits against the lower
end-limit switch). After the Errors Detection-Agent identifies
this fault as N10 (exceeding joint working area) occuring on
the 1st linear motor and classifies it as a serious level (see
Table 1), the Local Serious Problems Handler of the AxisZ1
Controller Agent is immediately activated to handle the fault.
In this case, a graceful degradation issue is realized by the
Single Safe-Guarded Activity-Agent with the “Brake +
PowerOff” specification (Fig. 3).

Co-simulation of MACS for Tripod setup: reference motor positions from Orocos vs. measured motor positions

0 2 4 6 8 10
time {s}

0

0.1

0.2

0.3

0.4

0.5 Z1 axis: reference motor position {m}
Z2 axis: reference motor position {m}
Z3 axis: reference motor position {m}
Z1 axis: measured motor position {m}
Z2 axis: measured motor position {m}
Z3 axis: measured motor position {m}

Fig. 11. Simulation result of which the safe-guarded MACS
deals with two consecutive faults (N10 and N9).

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

352 Copyright © 2010 IFAC

{1: Initial; 2: Homing; 3: Normal Operation; 4: Stop; 5: PowerOffLocalDangerous; 6: PowerOffGlobalDangerous; 7: BrakeLocalSerious;

2
4
6
8

10
12
14
16
18

8: BrakeGlobalSerious; 9: StandByNormal; 10: StandByLocalWarning; 11: StandByGlobalWarning; 12: BrakeLocalDangerous;

4

8
10

14

18
13: BrakeGlobalDangerous; 14: PowerOffNormal; 15: LocalRestart; 16: GlobalRestart}

0 2 4 6 8 10
time {s}

0
2
4
6
8

10
12
14
16
18

Which operation mode is active: the 1st plot is Z1 axis; the 2nd plot is Z2 axis; the 3rd plot is Z3 axis

Fig. 12. Status transitions between operation modes of the
safe-guarded MACS for TriPod.

However, the fault N10 of the first axis indirectly causes
another fault for TriPod; it makes the end-effector move out
of the safe working area. The Errors Detection-Agent
identifies this fault as N9 (exceeding end-effector working
area) and classifies it as a serious level (Table 1). Moreover,
the Errors Detection-Agent has been already programmed to
“understand” this kind of fault has a Global influence
sphere. It means that “exceeding end-effector working area”
must involve all three axes of TriPod setup. Therefore, the
Global Serious Problems Handler is immediately activated to
handle the fault. A graceful degradation issue is realized by
the Multi-Safe-Guarded Activities-Agent with the “Brake +
Standby + Stop + PowerOff” specification is chosen for all
Single Safe-Guarded Activity-Agents of three axes of TriPod
setup. In Fig. 12, we can see the transition from Local Safe-
Guarded Agent to Global Safe-Guarded Agent on the AxisZ1
Controller Agent, i.e. from “BrakeLocalSerious” with
number 7 to “BrakeGlobalSerious” with number 8.

5.3 A generalized solution for complex mechatronic systems

Relying on the safe-guarded MACS design procedure for
TriPod setup, a reusable generalized solution (Fig. 13) for
complex mechatronic systems (such as multi-robot or multi-
manipulator stations with multiple functionality and/or multi-
operation modes, etc.) is formulated based on two things:

1. The hierarchically structured application of three control
system design patterns:

Design pattern 1: System-Agent design pattern consists of
a Global SafeGuarded-Agent and a MultiApplication-Agent
that are coordinated by a Fixed-Priority Coordinator in which
the Global SafeGuarded-Agent always has a higher priority
level than the one of the MultiApplication-Agent.

Design pattern 2: Global SafeGuarded-Agent design
pattern consists of a Global Dangerous Problems Handler, a
Global Serious Problems Handler, and a Global Warning
Problems Handler that are coordinated by a Fixed-Priority
Coordinator in which the Global Dangerous Problems
Handler has the highest priority level; the Global Serious
Problems Handler is the next one; and the Global Warning
Problems Handler has the lowest priority level.

Design pattern 3: MultiApplication-Agent design pattern
is the composite controller-agent that consists of several
SingleApplication-Agents, coordinated by one of five
coordinator types: Master-Slave (MS), Fixed-Priority (FP),
Parallel (P), Sequential (S), or Cyclic (C).

2. Reuse the whole complete safe-guarded MACS design for
simple mechatronic systems, which are based on the
reusable generalized solution for simple mechatronic
systems (section 4.3), into the current safe-guarded
MACS design for a new complex mechatronic system.

Fig. 13. Hierarchical structure of the reusable generalized
solution for complex mechatronic systems.

6. CONCLUSIONS

The control system design patterns based on the polymorphic
specifications approach form a highly applicable and reusable
design patterns based safe-guarded MACS design
approach that answers well to the proposed research
questions. Moreover, through an analysis and design process
of the safe-guarded MACS for DemoLin and TriPod setup,
two reusable generalized safe-guarded control solutions, one
for simple mechatronic systems and one for complex
mechatronic systems, are well defined. With support of this
design approach, two advantages can be achieved while
designing the safe-guarded MACS for mechatronic systems,
thus shorten the control system development time.

1. The approach enables to quickly generate the
hierarchically structured safe-guarded MACS for
mechatronic systems with various complex levels.

2. The approach maximizes the reusability at three levels:

 Reuse coding parts containing control algorithms of
a controller-agent into another controller-agent.

 Reuse controller-agents of a safe-guarded MACS
design into another safe-guarded MACS design.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

353 Copyright © 2010 IFAC

 Reuse the whole complete safe-guarded MACS
design for a simple mechatronic system (e.g.
DemoLin) into another safe-guarded MACS design
for a complex mechatronic system (e.g. TriPod).

The research makes the MACS design approach be easily
applicable in practice and achieves a good reusability that can
significantly reduce the control system development time for
mechatronic systems. However, we have been faced with a
conflicting problem between Global and Local Safe-Guarded
Agent. This problem will be solved in our future research.

REFERENCES

Wooldridge, M. (1999). Intelligent agents. Multiagent
Systems, pp. 27-77. The MIT Press, Cambridge,
Massachusetts.

Franklin, S. and Graesser, A. (1996). Is it an agent, or just a
program?. In the 3rd International Workshop on Agent
Theories, Architectures and Languages, pp. 193-206.

Wooldridge, M. (2002). An Introduction to Multiagent
Systems. John Wiley & Son Ltd., Chichester, England.

Alexander, C. (1979). The Timeless Way of Building. Oxford
Univ. Press, New York.

Sanz, R. and Zalewski, J. (2003). Pattern-Based Control
Systems Engineering. IEEE Control Systems, vol. 23(3),
pp. 43-60.

Selic, B. (1996). An Architectural Pattern for Real-Time
Control Software. In Proc. PLoP’96 3rd Annual, Pattern
Languages of Programming Conf., Monticello, IL.

Johansen, T.A. and Murray-Smith, R. (1997). The Operating
Regime Approach to Nonlinear Modelling and Control.
Taylor & Francis.

van Breemen, A.J.N. (2001). An Agent-Based Multi-
Controller Systems: A design framework for complex
control problems. PhD thesis, 238 pages, University of
Twente, Enschede, The Netherlands. ISBN 9036515955.

Pechoucek, M., Thompson, S., Baxter, J., Horn, G., Kok, K.,
Warmer, C., Kamphuis, R., Marík, V., Vrba, P., Hall, K.,
Maturana, F., Dorer, K., and Calisti, M. (2006). Agents
in Industry: The Best from the AAMAS 2005 Industry
Track. IEEE Intelligent Systems, Vol. 21, No. 2, pp.86-
95, ISSN: 1541-1672.

Pechoucek, M. and Marik, V. (2008). Industrial Deployment
of Multi-Agent Technologies: Review and Selected Case
Studies. International Journal on Autonomous Agents
and Multi-Agent Systems, ISSN: 1387-2532.

Daneshfar, F. and Bevrani, H. (2009). Multi-Agent Systems
in Control Engineering: A Survey. Journal of Control
Science and Engineering, Volume: 2009. ISSN: 1687-
5249. DOI: 10.1155/2009/531080.

de Vries, T.J.A. (1994). Conceptual Design of Controlled
Electro-Mechanical Systems: A modeling perspective.
PhD thesis, 169 pages, University of Twente, Enschede,
The Netherlands. ISBN 90-900-6876-7.

Coelingh, H. J. (2000). Design Support for Motion Control
Systems. PhD thesis, 218 pages, University of Twente,
Enschede, The Netherlands. ISBN 90-365-1411-8.

Fregene, K., Kennedy, D.C., and Wang, D.W.L. (2001).
HICA: A Framework for Distributed Multiagent Control.

In Proc. IASTED Int. Conf. Intelligent System Control,
pp. 187-192.

Masina, S., Lee, K.Y., and Garduno-Ramirez, R. (2004). An
Architecture of Multi Agent System Applied to Fossil
Power-Fuel Power Unit. In Proc. of the IEEE Power
Engineering Society General Meeting, Denver, CO.

Phong, D.B. and de Vries, T.J.A. (2010). MACS for
DemoLin setup. Technical report, Control Laboratory,
University of Twente, Enschede, The Netherlands. To be
submitted.

OROCOS (2009). http://www.orocos.org.
Controllab Products, 20-sim (2009). http://www.20sim.com.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

354 Copyright © 2010 IFAC

