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Abstract: To support the application of real-time Multi-Agent Control Systems (MACS) for mechatronic 
systems, a combination between the MACS design approach and OROCOS framework has been 
implemented: the OROCOS-based Implementation Framework for MACS (OROMACS). This paper 
presents our research results to make the OROMACS framework be easily applicable to develop real-
time safe-guarded controller-agents and to maximize the reusability of safe-guarded MACS designs for 
various types of mechatronic systems. The approach that we advocate is a combination between 
OROMACS framework and pattern-based design method. Eleven control system design patterns are 
formed in which the Safe-Guarded Agent, one of the core design patterns, aims at providing a generic 
and flexible safe-guarded control solution for mechatronic systems. The design patterns are well 
organized into two reusable generalized safe-guarded control solutions, one for simple mechatronic 
systems and one for complex mechatronic systems. 
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1. INTRODUCTION 

While designing a safe-guarded control system for a 
mechatronic system, the designer has to consider the 
following particular requirements (or specifications): 

1. The control system should be designed to meet the 
functional requirements of a mechatronic system such as: 
multi-operation modes like start-up, homing, normal 
operation and shut-down; multiple functionality like 
detect targets, move to targets, follow a target and 
concurrently avoid obstacles on the way. 

2. The control system not only should have a good control 
algorithm to meet the requirement of control 
performances (speed of response, bandwidth, stability, 
overshoot, sensitivity for disturbances and parameter 
variations), but also guarantees the safe-guarded control 
issue for both operator and machine. 

3. The safe-guarded control issue has to cover and deal with 
a variety of fault sources with different criticality levels. It 
should also be functioned with the functions such as error 
detection, error handling, graceful degradation, and error 
recovery along with different degrees of fault tolerance. 

Because of the specific design objectives and constraints, 
these requirements cannot be solved easily and satisfactorily 
by a single (traditional) control algorithm, i.e. a control 
system with only one controller such as a PID controller. 
Several practical solutions have been proposed such that 
complex requirements can be solved by using multiple 
models of computation, heterogeneous design techniques, 
and an integrated approach of multi-disciplinary, while taking 
into account multiple control objectives (van Breemen, 2001; 

Fregene et al., 2001; Masina et al., 2004). Therefore, realistic 
control requirements of mechatronic systems generally 
results in a multi-controller system that consists of a set of 
subcontrollers that are combined into an overall controller, 
such that when the multi-controller system is executed the 
overall performance specification is met. For each 
subcontroller, several conventional controller design 
techniques can be appropriately applied. This strategy of 
solving a complex control problem by decomposing it into 
partial control problems is called the divide-and-conquer 
approach (Johansen and Murray-Smith, 1997). In this area, 
the research of van Breemen (2001) contributed with a 
controller design framework for complex control problems 
named Multi-Agent Controller Implementation Framework 
(MACIF). Although van Breemen’s design framework results 
in a clear structural overview of the overall control problem, 
and in a structured way to design and implement the multi-
agent control system, it still gives room for improvement: the  
design process has to be largely repeated whenever the 
designer moves to new applications or other mechatronic 
systems, even when these control problems resemble each 
other. The main reason is the lack of support for reusability 
of the design results of multi-agent control systems from 
previous projects to new projects. In order to solve this 
problem, two research questions have been formulated along 
with strict requirements of safe-guarded control issues taken 
into account: 

1. How to make the multi-agent control system design 
approach be easily applicable to design safe-guarded 
controllers for various types of mechatronic systems? 

2. How to maximize the reusability of safe-guarded 
MACS designs for mechatronic systems? 
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While answering these questions, eleven control system 
design patterns are formed in which the Safe-Guarded Agent 
design pattern is presented here. Section 2 contains 
background information about Agents and Multi-Agent 
Systems, Multi-Agent Control Systems, OROMACS 
framework, and Design Patterns in Control Engineering. 
Section 3 describes the safety issue in mechatronic systems. 
Section 4 deals with DemoLin setup, a simple mechatronic 
system, with the approach starting with the design of a safe-
guarded MACS for DemoLin and then formulating a reusable 
generalized solution for other simple mechatronic systems in 
terms of control system design patterns. Section 5 deals with 
TriPod setup, a complex mechatronic system, with the 
approach that supports the design of a safe-guarded MACS 
for TriPod by reusing the whole complete safe-guarded 
MACS design for DemoLin; and then a reusable generalized 
solution for other complex mechatronic systems in term of 
control system design patterns is formulated. Finally, some 
conclusions are given in section 6. 

2. BACKGROUND 

2.1  Agents and Multi-Agent Systems (MAS) 

In Information Technology, an “agent” is regarded as an 
autonomous entity responsible for performing a certain task 
in coordination with its community. Because the term “agent” 
is used so frequently in various domains with different 
purposes, a unanimous precise and technical definition of the 
term “agent” cannot be formulated easily (Wooldridge, 
1999). In spite of the lack of a technical definition, 
researchers try to come up with a notion of what an agent is, 
and is not, so as to be able to discuss their work with others 
based on the notion. A definition that captures the essential 
aspects of being an agent, what is approved by most 
researchers, is given in (Franklin & Graesser, 1996): “An 
autonomous agent is a system situated within and part of an 
environment that senses that environment and acts on it, over 
time, in pursuit of its own agenda and so as to effect what it 
senses in the future.” 

Although an agent is presented as an entity that solves 
problems in order to achieve its own goal, many problems are 
far too complex to be handled by an individual agent. Only a 
“society of agents” is capable of solving such problems. In a 
more technical meaning, a society of agents is called a multi-
agent system (MAS). A commonly approved definition of a 
MAS is given by Wooldridge (2002): “A Multi-Agent 
System consists of a number of autonomous, intelligent 
agents, which can interact with one another in order to pursue 
their own goals or cooperatively solve common problems”. 

At present, the research community of agent technology has 
pursued the objective to bring results of academic researches 
into practical applications. Pechoucek et al. (2006) pointed 
out that the available agent techniques have performed well 
in five types of application groups. And recently, a valuable 
review of industrial deployment of multi-agent technologies 
has been carried out by Pechoucek and Marik (2008) that 
gives an overview of the current applications and evolving 
trends of MAS in the industrial domain. As many numerous 

control applications based on agent technology have been 
successfully developed and implemented, a survey of multi-
agent systems in control engineering is done by Daneshfar 
and Bevrani (2009). In the review, they present design 
methodologies, standards, tools, and supporting technologies 
to provide an effective MAS-based control design. 

2.2  Multi-Agent Control Systems (MACS) 

Because of the advantages of agents and MAS in solving 
complex problems, agent and controller have been combined 
to form a new concept named controller-agent. It brings the 
best of both fields together in the form of an agent-based 
multi-controller system. Pursuing this idea, van Breemen 
(2001) proposes a controller design framework for complex 
control problems named Multi-Agent Controller 
Implementation Framework (MACIF). This framework 
formulates a new design approach that is called Multi-Agent 
Control Systems (MACS). The MACS design approach 
results in control systems that have an open character, such 
that parts (or controller-agents) can be added, modified or 
removed without re-programming the operation of the 
remaining parts of the control system. In a MACS, a complex 
control problem is solved by a pool of controller-agents, in 
which each controller-agent is responsible for solving a part 
of the whole problem, thus providing a well-structured 
problem solving approach. As multiple controller-agents are 
acting on their own particular problems to solve the overall 
problem, conflicts between individual agents may arise, as 
these partial problems are interdependent. These conflicts are 
resolved by coordination mechanisms between controller-
agents (CA); these mechanisms determine when and how 
activities of controller agents (i.e., calculation of control 
signals) are applied to the plant. There are five coordinator 
types mainly used in MACS which are: 

1. Master-Slave (MS) is a subordination dependency in 
which the Slave-CA depends on the Master-CA, i.e. the 
Slace can be active only when the Master is active. 

2. Fixed-Priority (FP): each CA is assigned a fixed priority 
during the operation of the MACS. The operation of CAs 
in a group is determined relying on their priority levels. 

3. Parallel (P) makes all controller-agents within a group 
concurrently active. 

4. Sequential (S) makes controller-agents within a group 
active in succession, for a single round only. 

5. Cyclic (C) makes controller-agents within a group active 
in succession repeatedly. 

2.3  OROMACS Framework 

The MACS design approach and the OROCOS framework 
(Orocos, 2009) complement each other in two main aspects: 

 MACS enables to create the hierarchically structured 
control systems that consist of coordinated elementary 
and composite controller-agents. In OROCOS, it is not 
possible to do this because the construction of a 
composite component is currently not supported. 
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 OROCOS framework supports a generic hard real-time 
kernel that can be used to build control applications with 
reliable determinism real-time behavior. Thus, it is an 
ideal complement for the MACS design approach. 

The reciprocal complement makes a strong motivation for a 
combination between the MACS design approach and 
OROCOS framework. As a result, an OROCOS-based 
Implementation Framework for MACS (OROMACS) has 
been formed to support the development of real-time multi-
threaded MACS in all phases from the design and simulation 
in computer to the realization and application in real model. 

2.4  Design Patterns in Control Engineering 

The design patterns technology that is widely used nowadays 
was inspired by the work of Christopher Alexander and 
colleagues. He is the first person that used what he called “a 
pattern language” in the architectural work to get such better 
design solutions. Alexander defines a pattern as “a three-part 
rule, which expresses a relation between a certain context, a 
problem, and a solution” (Alexander, 1979, p. 247). Through 
the literature review on design patterns, we understand that 
research and application of design patterns technology in 
control engineering domain is rather rare. It is clearly proved 
by the little number of relevant publication in journal and 
conference papers. The main reason is that pattern-based 
design approach is fairly new in the control theory and 
control engineering community. Another reason is the 
insufficient awareness of advantages of using design patterns. 
Because of that, some experience researchers on pattern-
based control engineering point out main benefits to motivate 
the application of pattern-based design approach in the 
control engineering field. Sanz and Zalewski (2003) defines 
the pattern-based approach as “a method of generating 
solutions based on existing design knowledge”. They stress 
that the pattern-based control engineering is not a control 
design method in the classic sense but a new way of 
managing and exploiting existing design knowledge for 
control systems, leading to better solutions. With the same 
judgement, Selic (1996) states that design patterns capture 
proven solutions, which, if applied intelligently, can result in 
significant benefits in terms of productivity and reliability. 
Zalewski, Selic and others believe that using this approach 
leads to control systems that are better designed, i.e. they are 
more modular, adaptable, understandable, and evolvable. 

3. SAFETY ISSUE IN MECHATRONIC SYSTEMS 

The safety issues in mechatronic systems (robots and 
manipulators) are always involved in two aspects: safety for 
human or operator and safety for machines themselves. 

 The safety issue for human can be guaranteed by placing 
robots and manipulators in an area where people do not 
work closely to or directly with; and also by preventing 
people from entering the machine’s working area. 
However, in some special cases people have to work 
closely to the machine (e.g. doing experimental research, 
testing or repairing of the system) and thus the safety 
issue for operator becomes more complex in these cases. 

 Regarding the safety issue for machines themselves, the 
problem is generally very complicated because many 
possible sources of faults or errors have to be identified 
and handled strictly. 

While performing a certain task, a robot or manipulator 
system usually has to cope with variously serious levels of 
different fault sources that can occur in an unwanted manner. 
If these faults are not identified correctly and handled strictly, 
they can bring dangerous situations for both human and 
machine. Because of that, we identify 18 fault sources that 
are common in mechatronic systems. We also classify the 
fault sources into three critical levels those are dangerous, 
serious, and warning in which dangerous is the highest 
hazardous level, the next one is serious, and warning is the 
lowest hazardous level. We assess the potential risk level of 
faults for human and machine to make this categorization. 

 8 fault sources at dangerous level: faults at the highest 
critical level that can result in hazardous accidents for 
operator and critical damages for machine; therefore cut-
off the power supply as fast as posible is the chosen 
solution to prevent faults from growing worse. 

 6 fault sources at serious level: faults at the critical level 
that only cause critical damages for machine; therefore, 
emergency-stop as fast as possible is the desired response 
to prevent worse damage for the machine. 

 4 fault sources at warning level: faults at the lowest 
critical level that don’t cause much dangerous for operator 
and machine; thus normal stop is the reasonable solution. 

Table 1.  List of 18 fault sources that are common in 
mechatronic systems 

Faults Critical level 
N1. Control computer get crashed totally dangerous 
N2. Failure of interface cards dangerous 
N3. Interconnecting wiring gets broken dangerous 
N4. Mechanical part is broken dangerous 
N5. Human collision dangerous 
N6. Human’s unauthorized access into 
the working area dangerous 

N7. Failure of the power supply dangerous 
N8. Active emergency-stop dangerous 
N9. Exceeding end-effector working area serious 
N10. Exceeding joint working area serious 
N11. Failure of joint(s) or motor’s 
transmission part(s) serious 

N12. The moving direction of motor(s) is 
intercepted by obstacle serious 

N13. Obstacle collision serious 
N14. Self-collision serious 
N15. Over-heating of the motor’s 
armature coils warning 

N16. Failure of motor’s power amplifier warning 
N17. Large tracking errors warning 
N18. Actuator overload warning 

Note that, we kindly don’t want to discuss much about the list 
of fault sources and the categorization of critical levels 
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because these works are not the main content of the research 
and they vary according to personal opinion. To detect the 
fault sources, we propose a list of measures which is the 
combination of hardware- and software-based solutions. 
However, these measures are not presented in this paper 
because of space limitations. 

4. DEMOLIN SETUP 

4.1  Introduction 

DemoLin is a simple mass-spring-mass system which was 
developed at Imotec B.V. (http://www.imotec.nl/) for the 
demonstration purpose of controller performances. It has a 
base plate (motor mass), which is driven by a linear motor. 
Another mass (end-effector mass) is connected on the top of 
the base plate with two flexible iron plates. Both the masses 
are attached to pretension belts and these belts are supported 
by pulleys mounted on two shafts that drive encoders. Plant 
model of DemoLin setup is the fourth-order and defined as a 
Flexible Mechanism of type AR (Coelingh, 2000). DemoLin 
can be considered as a simple single-axis electro-mechanical 
motion system; the 20-sim model is given in Fig. 1. 
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Fig. 1. 20-sim model of the DemoLin setup with the safe-
guarded MACS. 

4.2  Design the safe-guarded MACS for DemoLin 

Before designing a safe-guarded control system for DemoLin 
setup, three particular requirements for the system are given: 

1. The control system is needed to have multi-operation 
modes, which are: Startup (with two sub-operation modes 
are Initial and Homing), Normal Operation, Shutdown 
(with three sub-operation modes are Stop, Standby, and 
PowerOff), and Safe-Guarded in which the Safe-Guarded 
mode always has the highest operation priority to ensure 
the safety for the setup and human. Operation modes can 
have different priority levels (i.e. priority-based 
operation), control missions (e.g. accurate position control 
or safe-guarded control), control system configurations 
(e.g. simple or advanced controller), and motion 
trajectories (e.g. periodic or non-periodic path). 

2. The control system is required to meet the desired control 
performances (speed of response, bandwidth, stability, 
overshoot, sensitivity for disturbances and parameter 

variations); and also to guarantee the safe-guarded control 
issue for both operator and machine. 

3. The controller in each operation mode should perform its 
mission intelligently and autonomously. In case there is 
not any fault, the operation modes are normally active in 
the sequence: Initial, Homing, Normal Operation, Stop, 
Standby, and PowerOff. However, in case a certain fault 
occurs, the Safe-Guarded mode is immediately activated 
to handle the fault. The Safe-Guarded mode should be 
equipped with capabilities such as error detection, error 
handling, graceful degradation, and error recovery along 
with different degrees of fault tolerance. Then, depending 
on the potential critical level of the present fault, an 
appropriate safe-guarded activity could be applied. 

A safe-guarded MACS is designed for DemoLin that fully 
meets the above-mentioned requirements (Fig. 2). We apply 
a design procedure including four control system design 
patterns that is described in a top-down approach hereafter. 

Firstly, we use the SingleApplication-Agent design pattern to 
initially generate the hierarchically structured safe-guarded 
MACS. As a result, we obtain “MACS for DemoLin setup” 
that consists of a “Local Safe-Guarded Agent” and a “Multi-
Operation Mode Agent”, coordinated by a Fixed-Priority 
Coordinator in which the “Local Safe-Guarded Agent” has a 
higher priority level than the one of the “Multi-Operation 
Mode Agent”. 

Secondly, we use the Local SafeGuarded-Agent design 
pattern to generate the hierarchical structure for the “Local 
Safe-Guarded Agent”. As a result, the “Local Safe-Guarded 
Agent” consists of a “Local Dangerous Problems Handler”, a 
“Local Serious Problems Handler”, and a “Local Warning 
Problems Handler” that are coordinated by a Fixed-Priority 
Coordinator in which the “Local Dangerous Problems 
Handler” has the highest priority level; the “Local Serious 
Problems Handler” is the next one; and the “Local Warning 
Problems Handler” has the lowest priority level. 

Thirdly, we use the MultiFunction-Agent design pattern to 
generate the hierarchical structure for the “Multi-Operation 
Mode Agent”. As a result, it consists of a “StartupMode 
Agent”, a “NormalOperationMode Agent”, and a 
“ShutdownMode Agent” that are coordinated by a Sequential 
Coordinator in which the “StartupMode Agent” is the first 
one to be active. 

Finally, we use the SingleFunction-Agent design pattern to 
generate the hierarchical structure for the three operation 
modes. As a result, each operation mode consists of a 
“TrajectoryGenerator-Agent” and a “OperationController-
Agent” that are coordinated by a Master-Slave Coordinator in 
which the “TrajectoryGenerator-Agent” is the Master and the 
“OperationController-Agent” is the Slave. Note that, in Fig. 2 
this structure is not displayed; it is just presented in Fig. 6. 

Here, we explain how the Local Safe-Guarded Agent handles 
a certain fault. According to Fig. 2, the Local Safe-Guarded 
Agent has the hierarchical structure with three different Local 
Problems Handlers, coordinated by a Fixed-Priority 
Coordinator, to deal with three critical levels of faults 
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(dangerous, serious, and warning). Each Local Problems 
Handler has a hierarchical structure as depicted in Fig. 3, in 
which the Errors Detection-Agent plays the role of the 
Master-controller-agent with the mission to detect faults 
and then to classify them into three critical levels; whereas 
the Single Safe-Guarded Activity-Agent keeps the role of 
the Slave-controller-agent with the mission to deal with 
graceful degradation and errors recovery issues. Hence, it 
can be seen that whenever a certain fault occurs the Errors 
Detection-Agent will decide an appropriate Local Problems 
Handler to handle the fault. 

 

Fig. 2. Safe-guarded MACS for DemoLin. 

Note that, only one Errors Detection-Agent element is really 
existing in all three Local Problems Handlers. That is because 
we reuse the Errors Detection-Agent in all Problems 
Handlers and use the polymorphic specification approach 
to make the Errors Detection-Agent structure able to hold 
multiple functionality. In our research, the Errors Detection-
Agent is designed to have six polymorphic specifications (see 
Fig. 3 and Fig. 9). The same approach is applied for the 
Single Safe-Guarded Activity-Agent. The graceful 
degradation and errors recovery issues can be done flexibly 
through a plentiful set of polymorphic specifications that are 
provided by the Single Safe-Guarded Activity-Agent (Fig. 3). 
It means that, while designing a safe-guarded MACS, we 
have to choose a suitable polymorphic specification for each 
Single Safe-Guarded Activity-Agent of three Local Problems 
Handlers. For example, in Fig. 3 the “Brake + PowerOff” 
specification is chosen for the Single Safe-Guarded Activity-
Agent of the Local Serious Problems Handlers. 

To illustrate for the design procedure, a test case is realized 
in a scheme that the end-effector hits against an end-limit 
switch caused by a wrong position reference. After the Errors 
Detection-Agent identifies this fault as N10 (exceeding joint 

working area) and classifies it as a serious level (Table 1), the 
Local Serious Problems Handler is immediately activated to 
handle the fault. In this case, a graceful degradation issue is 
realized by the Single Safe-Guarded Activity-Agent with the 
“Brake + PowerOff” specification (Fig. 3). 

 

Fig. 3. Hierarchical structure of the Local Problems Handler. 
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Fig. 4. Simulation result of which the safe-guarded MACS 
deals with the fault “exceeding joint working area”. 
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Fig. 5. Status transitions between operation modes of the 
safe-guarded MACS for DemoLin. 
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As a result, the sequence of operation modes is: from t = 0 [s] 
to 4 [s] is Initial mode; from t = 4 [s] to 6 [s] is Homing 
mode; from t = 6 [s] to 9.62 [s] is Operation mode; from t = 
9.62 [s] to 9.87 [s] is Safe-guarded control mode with 
dynamic brake; from t = 9.87 [s] to end is PowerOff mode 
(Fig. 4 and Fig. 5). The experiment results on the real setup 
are given in (Phong and de Vries, 2010). 

4.3  A generalized solution for simple mechatronic systems 

Relying on the safe-guarded MACS design procedure for 
DemoLin setup, a reusable generalized solution (Fig. 6) for 
other simple mechatronic systems (single-axis manipulators 
or single-functionality motion systems, etc.) is formulated by 
the hierarchically structured application of four control 
system design patterns as follows: 

Design pattern 1: SingleApplication-Agent design pattern 
consists of a Local SafeGuarded-Agent and a MultiFunction-
Agent that are coordinated by a Fixed-Priority Coordinator in 
which the Local SafeGuarded-Agent always has a higher 
priority level than the one of the MultiFunction-Agent. 

Design pattern 2: Local SafeGuarded-Agent design 
pattern consists of a Local Dangerous Problems Handler, a 
Local Serious Problems Handler, and a Local Warning 
Problems Handler that are coordinated by a Fixed-Priority 
Coordinator in which the Local Dangerous Problems Handler 
has the highest priority level; the Local Serious Problems 
Handler is the next one; and the Local Warning Problems 
Handler has the lowest priority level. 

 
Fig. 6. Hierarchical structure of the reusable generalized 
solution for simple mechatronic systems. 

Design pattern 3: MultiFunction-Agent design pattern is 
the composite controller-agent that consists of several 
SingleFunction-Agents, coordinated by one of five 
coordinator types: Master-Slave (MS), Fixed-Priority (FP), 
Parallel (P), Sequential (S), or Cyclic (C). 

Design pattern 4: SingleFunction-Agent design pattern 
consists of a TrajectoryGenerator-Agent and a 
OperationController-Agent that are coordinated by a Master-
Slave Coordinator in which the TrajectoryGenerator-Agent is 
the Master and the OperationController-Agent is the Slave. 

5. TRIPOD SETUP 

5.1  Introduction 

Tripod is a pick-and-place machine which was also 
developed at Imotec B.V. (http://www.imotec.nl/) for testing 
different types of advanced controllers. It consists of three 
linear motors, which can move up and down within their safe 
operating regions. A pair of rods is connected to each linear 
motor, and the other side of these rods is connected to a 
platform at the top. Due to the constrained movement of the 
rods, the platform cannot rotate but only translate. The 
position of the platform is determined by the positions of the 
three linear motors. So we see that TriPod has three identical 
parts. Each part consists of one linear motor attached to the 
platform through a leg, thus forming a fourth order plant 
model which can be categorized as a Flexible Mechanism of 
type AR (Coelingh, 2000). As a result, each leg of TriPod has 
the same plant model as DemoLin. TriPod can be considered 
as a complex multi-axis electromechanical motion system 
(three axes) with the 20-sim model is given in Fig. 7. 
Moreover, because of its specific structure, TriPod setup has 
some special properties such as: variable load mass and 
variable springs due to the coupling between three axes that 
make the load forces variable; the strong coupling between 
the end-effector space and the joint spaces of three legs. 
Leg 1 actuation Leg 2 actuation

Leg 3 actuation
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Fig. 7. 20-sim model of the TriPod setup and the safe-
guarded MACS. 
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5.2  Design the safe-guarded MACS for TriPod 

In general, the requirements of the safe-guarded control 
system for TriPod setup are almost the same as the ones for 
DemoLin setup. The reason is that the safe-guarded control 
problem of each axis of TriPod setup can be considered the 
same as the one of DemoLin setup. However, a new issue has 
come up in this case where the safe-guarded control problem 
for multi-axis operations related to all three axes of the 
TriPod setup should be taken into account. In order to 
distinguish this kind of safe-guarded control problem with 
other safe-guarded control issues for single-axis operations, 
we categorize the safe-guarded control problem for multi-axis 
operations in a new context, i.e. a Global influence sphere. 
Hence, the requirements while designing a safe-guarded 
control system for TriPod setup consist of both Local and 
Global safe-guarded control issues. A safe-guarded MACS 
(Fig. 8), designed for TriPod setup to meet the particular 
requirements, which is based on the design procedure: apply 
three control system design patterns; and then reuse the 
whole complete safe-guarded MACS design for DemoLin 
into the design for TriPod setup. The design procedure is 
explained according to a top-down approach: 

 

Fig. 8. Safe-guarded MACS for TriPod. 

Firstly, we use the System-Agent design pattern to initially 
generate the hierarchically structured safe-guarded MACS. 
As a result, we obtain “MACS for TriPod setup” that consists 
of a “Global Safe-Guarded Agent” and a “Multi-Axis 
Controller Agent”, coordinated by a Fixed-Priority 
Coordinator in which the “Global Safe-Guarded Agent” has a 
higher priority level than the one of the “Multi-Axis 
Controller Agent”. 

Secondly, we use the Global SafeGuarded-Agent design 
pattern to generate the hierarchical structure for the “Global 
Safe-Guarded Agent”. As a result, the “Global Safe-Guarded 
Agent” consists of a “Global Dangerous Problems Handler”, 
a “Global Serious Problems Handler”, and a “Global 
Warning Problems Handler” that are coordinated by a Fixed-
Priority Coordinator in which the “Global Dangerous 
Problems Handler” has the highest priority level; the “Global 
Serious Problems Handler” is the next one; and the “Global 
Warning Problems Handler” has the lowest priority level. 

Thirdly, we use the MultiApplication-Agent design pattern to 
generate the hierarchical structure for the “Multi-Axis 
Controller Agent”. As a result, the “Multi-Axis Controller 
Agent” comprises a “AxisZ1 Controller Agent”, a “AxisZ2 
Controller Agent”, and a “AxisZ3 Controller Agent” that are 
coordinated by a Parallel Coordinator. 

Finally, we reuse the whole designed safe-guarded MACS for 
DemoLin into each axis of TriPod. It means: AxisZ1 
Controller Agent, AxisZ2 Controller Agent, and AxisZ3 
Controller Agent use the safe-guarded MACS with the same 
hierarchical structure as DemoLin setup. The only thing that 
remains to be done is to modify application-specific settings 
(e.g. error bound, controller parameters, polymorphic 
specifications, etc.). 

 

Fig. 9. Hierarchical structure of the Global Problems Handler. 
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Here, we make clear how the Global Safe-Guarded Agent 
handles a certain fault. By comparison of Fig. 2 and Fig. 8, 
we see that the Local Safe-Guarded Agent and the Global 
Safe-Guarded Agent have the same hierarchical structure. 
The difference is only between the Local Problems Handlers 
(Fig. 3) and the Global Problems Handlers (Fig. 9) that is 
the Global Problems Handlers use the Multi-Safe-Guarded 
Activities-Agent, instead of the Single Safe-Guarded Activity-
Agent. It can be seen that a Multi-Safe-Guarded Activities-
Agent consists of a pool of Single Safe-Guarded Activity-
Agents which are coordinated by one of four coordinator 
types: Parallel (P), Sequential (S), Fixed-Priority (FP), and 
Master-Slave (MS). The different types of coordinators 
allows designers to flexibly choose an appropriate safe-
guarded control strategy for each mechatronic application. 
Single Safe-Guarded Activity-Agents of a Multi-Safe-
Guarded Activities-Agent can use the same or different 
polymorphic specification. For example, in Fig. 9 the “Brake 
+ Standby + Stop + PowerOff” specification is used for all 
Single Safe-Guarded Activity-Agents. 

 

Fig. 10. Overall hierarchical structure of the safe-guarded 
MACS for TriPod. 

It is noticed that the Global Safe-Guarded Agent always has a 
higher priority level than the Local Safe-Guarded Agent. It 
means the Global Problems Handlers have right to take over 
the active authority from the Local Problems Handlers. 
Hence, the designer must be very careful while designing the 
Global Problems Handlers because it can cause problem by 
taking over the active authority from a Local Problems 
Handler which maybe is handling a critical fault. To avoid 
this problem, we suggested a temporary solution that is 
design the Global Safe-Guarded Agent with only the Global 
Dangerous Problems Handler. This solution can work well 
because the faults with Global influence sphere occuring in 
practical applications generally are problems related to the 
operation of multiple manipulators, robots, or production 
stations, which are normally considered as dangerous 
problems. However, this problem has been fully studied to 
bring out a better solution. 

Because both Local Safe-Guarded Agent and Global Safe-
Guarded Agent present in the safe-guarded MACS design for 
TriPod setup, the safe-guarded control missions have to be 
appropriately assigned to six Problems Handlers. In Fig. 10, 
we map the list of 18 common fault sources of mechatronic 
systems (Table 1) into three Local Problems Handlers of the 
Local Safe-Guarded Agent and three Global Problems 
Handlers of the Global Safe-Guarded Agent. The map is 
based on the influence sphere of faults (Local or Global) and 
critical level of faults (Dangerous, Serious, or Warning). As 
the Errors Detection-Agent plays the role of the Master-
controller-agent with the mission to detect and classify faults, 
this map is done through programming six polymorphic 
specifications of the Errors Detection-Agent. When moving to 
a new application, the map will be different. 

To illustrate for the design procedure, a test case is realized 
in a scheme that the 1st linear motor works with a wrong 
trajectory (it goes down too much and hits against the lower 
end-limit switch). After the Errors Detection-Agent identifies 
this fault as N10 (exceeding joint working area) occuring on 
the 1st linear motor and classifies it as a serious level (see 
Table 1), the Local Serious Problems Handler of the AxisZ1 
Controller Agent is immediately activated to handle the fault. 
In this case, a graceful degradation issue is realized by the 
Single Safe-Guarded Activity-Agent with the “Brake + 
PowerOff” specification (Fig. 3). 

Co-simulation of MACS for Tripod setup: reference motor positions from Orocos vs. measured motor positions
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Z2 axis: measured motor position {m}
Z3 axis: measured motor position {m}

 

Fig. 11. Simulation result of which the safe-guarded MACS 
deals with two consecutive faults (N10 and N9). 
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{1: Initial; 2: Homing; 3: Normal Operation; 4: Stop; 5: PowerOffLocalDangerous; 6: PowerOffGlobalDangerous; 7: BrakeLocalSerious;
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8: BrakeGlobalSerious; 9: StandByNormal; 10: StandByLocalWarning; 11: StandByGlobalWarning; 12: BrakeLocalDangerous;
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13: BrakeGlobalDangerous; 14: PowerOffNormal; 15: LocalRestart; 16: GlobalRestart}
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Which operation mode is active: the 1st plot is Z1 axis; the 2nd plot is Z2 axis; the 3rd plot is Z3 axis

 

Fig. 12. Status transitions between operation modes of the 
safe-guarded MACS for TriPod. 

However, the fault N10 of the first axis indirectly causes 
another fault for TriPod; it makes the end-effector move out 
of the safe working area. The Errors Detection-Agent 
identifies this fault as N9 (exceeding end-effector working 
area) and classifies it as a serious level (Table 1). Moreover, 
the Errors Detection-Agent has been already programmed to 
“understand” this kind of fault has a Global influence 
sphere. It means that “exceeding end-effector working area” 
must involve all three axes of TriPod setup. Therefore, the 
Global Serious Problems Handler is immediately activated to 
handle the fault. A graceful degradation issue is realized by 
the Multi-Safe-Guarded Activities-Agent with the “Brake + 
Standby + Stop + PowerOff” specification is chosen for all 
Single Safe-Guarded Activity-Agents of three axes of TriPod 
setup. In Fig. 12, we can see the transition from Local Safe-
Guarded Agent to Global Safe-Guarded Agent on the AxisZ1 
Controller Agent, i.e. from “BrakeLocalSerious” with 
number 7 to “BrakeGlobalSerious” with number 8. 

5.3  A generalized solution for complex mechatronic systems 

Relying on the safe-guarded MACS design procedure for 
TriPod setup, a reusable generalized solution (Fig. 13) for 
complex mechatronic systems (such as multi-robot or multi-
manipulator stations with multiple functionality and/or multi-
operation modes, etc.) is formulated based on two things: 

1. The hierarchically structured application of three control 
system design patterns: 

Design pattern 1: System-Agent design pattern consists of 
a Global SafeGuarded-Agent and a MultiApplication-Agent 
that are coordinated by a Fixed-Priority Coordinator in which 
the Global SafeGuarded-Agent always has a higher priority 
level than the one of the MultiApplication-Agent. 

Design pattern 2: Global SafeGuarded-Agent design 
pattern consists of a Global Dangerous Problems Handler, a 
Global Serious Problems Handler, and a Global Warning 
Problems Handler that are coordinated by a Fixed-Priority 
Coordinator in which the Global Dangerous Problems 
Handler has the highest priority level; the Global Serious 
Problems Handler is the next one; and the Global Warning 
Problems Handler has the lowest priority level. 

Design pattern 3: MultiApplication-Agent design pattern 
is the composite controller-agent that consists of several 
SingleApplication-Agents, coordinated by one of five 
coordinator types: Master-Slave (MS), Fixed-Priority (FP), 
Parallel (P), Sequential (S), or Cyclic (C). 

2. Reuse the whole complete safe-guarded MACS design for 
simple mechatronic systems, which are based on the 
reusable generalized solution for simple mechatronic 
systems (section 4.3), into the current safe-guarded 
MACS design for a new complex mechatronic system. 

 
Fig. 13. Hierarchical structure of the reusable generalized 
solution for complex mechatronic systems. 

6. CONCLUSIONS 

The control system design patterns based on the polymorphic 
specifications approach form a highly applicable and reusable 
design patterns based safe-guarded MACS design 
approach that answers well to the proposed research 
questions. Moreover, through an analysis and design process 
of the safe-guarded MACS for DemoLin and TriPod setup, 
two reusable generalized safe-guarded control solutions, one 
for simple mechatronic systems and one for complex 
mechatronic systems, are well defined. With support of this 
design approach, two advantages can be achieved while 
designing the safe-guarded MACS for mechatronic systems, 
thus shorten the control system development time. 

1. The approach enables to quickly generate the 
hierarchically structured safe-guarded MACS for 
mechatronic systems with various complex levels. 

2. The approach maximizes the reusability at three levels: 

 Reuse coding parts containing control algorithms of 
a controller-agent into another controller-agent. 

 Reuse controller-agents of a safe-guarded MACS 
design into another safe-guarded MACS design. 
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 Reuse the whole complete safe-guarded MACS 
design for a simple mechatronic system (e.g. 
DemoLin) into another safe-guarded MACS design 
for a complex mechatronic system (e.g. TriPod). 

The research makes the MACS design approach be easily 
applicable in practice and achieves a good reusability that can 
significantly reduce the control system development time for 
mechatronic systems. However, we have been faced with a 
conflicting problem between Global and Local Safe-Guarded 
Agent. This problem will be solved in our future research. 
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