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ABSTRACT
Traditionally listener response prediction models are learned
from pre-recorded dyadic interactions. Because of individ-
ual differences in behavior, these recordings do not capture
the complete ground truth. Where the recorded listener did
not respond to an opportunity provided by the speaker, an-
other listener would have responded or vice versa. In this
paper, we introduce the concept of parallel listener consen-
sus where the listener responses from multiple parallel in-
teractions are combined to better capture differences and
similarities between individuals. We show how parallel lis-
tener consensus can be used for both learning and evaluating
probabilistic prediction models of listener responses. To im-
prove the learning performance, the parallel consensus helps
identifying better negative samples and reduces outliers in
the positive samples. We propose a new error measurement
called Fconsensus which exploits the parallel consensus to
better define the concepts of exactness (mislabels) and com-
pleteness (missed labels) for prediction models. We present a
series of experiments using the MultiLis Corpus where three
listeners were tricked into believing that they had a one-
on-one conversation with a speaker, while in fact they were
recorded in parallel in interaction with the same speaker.
In this paper we show that using parallel listener consen-
sus can improve learning performance and represent better
evaluation criteria for predictive models.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Discourse; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents
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1. INTRODUCTION
During a conversation the interlocutors are in constant

interaction with each other. Speakers check to what ex-
tent the listeners are paying attention to the conversation
and whether they have understood the message. The lis-
tener signals this by a wide arrange of responses, commonly
called backchannels. These responses have been proven to
improve both the quality of the narrative of the speaker and
the understanding of the listener [1, 14]. Therefore, it is re-
garded as one of the important aspects of human behavior
which should be modelled, to create engaging virtual hu-
mans. Several systems (e.g. [8, 13, 19]) already include
such models and it has been shown to improve engagement
and speaker fluency of the user of the system [8].

When working towards a model for listener responses in an
interactive virtual human system, development and evalua-
tion of such a model is usually done on the basis of a corpus
of recorded human-human interactions. The assumption is
that a model which can reproduce the listeners recorded in a
corpus most accurately is the best model. However, as there
are a lot of individual differences between listeners, one lis-
tener might respond to certain cues from a speaker, whereas
another listener would not have or vice versa. So part of the
data will be mislabelled as negative samples. This is a prob-
lem in both development and the evaluation of the model. In
development the sequential probabilistic model will include
overlaps, since some of what should have been positive sam-
ples are labeled as negative samples. During evaluation the
model may produce responses at times the recorded listener
did not respond, but another listener would have. Such re-
sponses should not be considered as a false positive, where
in fact they will.

In this paper, we introduce the concept of parallel listener
consensus for learning and evaluating probabilistic predic-
tion models of listener responses (see Figure 1). To im-
prove the learning performance, the parallel consensus helps
identifying better negative samples and reduces outliers in
the positive samples. We propose a new error measurement
called Fconsensus which takes advantage of the parallel con-



Figure 1: Parallel Listener Consensus. Parallel Lis-
tener Consensus is defined as the combination of
the listener responses from multiple parallel interac-
tions. The parallel listener consensus captures the
differences and similarities between individuals. In
this paper, we show how parallel listener consensus
can be used for both learning and evaluating prob-
abilistic prediction models of listener responses.

sensus to better define the concepts of exactness (mislabels)
and completeness (missed labels) for prediction models. We
present a series of experiments using the MultiLis Corpus [4]
where three listeners were tricked into believing that they
had a one-on-one conversation with a speaker, while in fact
they were recorded in parallel in interaction with the same
speaker. In this paper we show that using parallel listener
consensus can improve learning performance and represent
better evaluation criteria for predictive models.

In Section 2 we discuss previous work on listener response
prediction models and their methods to cope with individ-
ual differences. In Section 3 we present the parallel listener
consensus and how it can be used to learn and evaluate
prediction models of listener responses. The experimental
setup is introduced in Section 4 and results are discussed in
Section 5.

2. RELATED WORK
Over the past decade, several researchers have developed

models to predict listener responses. Ward and Tsukahara
[20] created a handcrafted rule-based model using low pitch
and utterance length as cues for listener responses. When
analyzing the performance of their predictive rule they con-
clude that 44% of the incorrect predictions were cases where
a listener response could naturally have appeared, as judged
by one of the authors, but in the corpus there was silence
or, more rarely, the start of a turn.

Cathcart et al. [3] identified the same problem as well.
In their shallow model of backchannel continuers based on
pause duration and n-gram part-of-speech tags they remark
that human listener differ markedly in their own backchan-
neling behavior and pass up opportunities to provide a backchan-
nel. Their attempt to deal with this is testing their model
on high backchannel rate data, reasoning that the more
backchannels an individual produces, the fewer opportuni-
ties they are likely to have passed up.

Both of these approaches only offer a solution for the prob-
lem during evaluation, but not for the problem during devel-
opment. Noguchi and Den [17] do offer such a solution. A
machine learning approach is taken for modelling backchan-
nel behaviors based on prosodic features. This approach
requires a collection of positive and negative examples of ap-
propriate context for a listener response to occur. These ex-
amples were built by collecting listener responses from par-
ticipants in a study, in which the participants were asked to
hit the space bar on a keyboard at times where they thought
a listener response was appropiate while watching recorded
stimuli of a speaker. The stimuli were several pause-bounded
phrases and constitute a single conversational move (on av-
erage 2.91 phrases per stimuli). Each stimuli was shown to
9 participants. By counting the number of participants that
responded to a phrase positively, each phrase is classified ei-
ther as an appropriate context for a listener response, or an
inappropriate context for a listener response, or indecisive.

A similar approach was used by Huang et al. [11]. They
called this Parasocial Consensus Sampling (PCS). They let
observers indicate appropriate listener response moments for
whole conversations instead of conversational moves. An in-
teresting result from the study by Huang et al. [11] is that
the best listener response model need not be the model that
reproduces the recorded listener in a corpus most accurately.
From the results of the PCS they animated a virtual listen-
ing agent based on the displayed listener and another one
on the consensus of the observers. They let new observers
watch an interaction between the original speaker video and
the animated agent. The agent based on the consensus of the
observers was perceived as more believable and said to show
more rapport than the agent based on the displayed listener.
Both offer no evaluation of these observation based acqui-
sition of listener responses. It remains to be seen whether
people actually respond at the moments they indicated dur-
ing PCS when placed in the same interaction.

To our knowledge no previous work has proposed a method
of learning prediction models of listener responses based on
multiple parallel interactions. In this paper, we propose two
new techniques for learning and evaluating response predic-
tion models using parallel listener consensus.

3. PARALLEL LISTENER CONSENSUS
Parallel Listener Consensus can be defined as the combi-

nation of the listener responses from multiple parallel inter-
actions. The parallel listener consensus captures the differ-
ences and similarities between individuals. In the following
section we will explain the advantage this concept brings to
the prediction of listener responses in more detail. First the
MultiLis Corpus will be introduced in Section 3.1. Then
we will explain how we combine the recordings of multiple
listeners into consensus instances. How these consensus in-
stances can be used to improve the state of the art of listener
response prediction in both learning and evaluation will be
discussed in Sections 3.3 and 3.4 respectively.

3.1 Parallel Listener Corpus
The MultiLis corpus [4] is a Dutch spoken multimodal

corpus of 32 mediated face-to-face interactions totalling 131
minutes. Participants (29 male, 3 female, mean age 25)
were assigned the role of either speaker or listener during
an interaction. The speakers summarized a video they has
just seen or reproduced a recipe they has just studied for 10



Figure 2: Picture of the cubicle in which the partic-
ipants were seated. It illustrates the interrogation
mirror and the placement of the camera behind it
which ensures eye contact.

minutes. Listeners were instructed to memorize as much as
possible about what the speaker was telling. In each session
four participants were invited to record four interactions.
Each participant was once speaker and three times listener.

What is unique about this corpus is the fact that it con-
tains recordings of three individual listeners to the same
speaker in parallel, while each of the listeners believed to
be the sole listener. The speakers saw one of the listeners,
believing that they had a one-on-one conversation. We will
refer to this listener, which can be seen by the speaker, as
displayed listener. The other two listeners, which can not be
seen by the speaker, will be refered to as concealed listeners.
All listeners were placed in a cubicle and saw the speaker
on the screen in front of them. The camera was placed be-
hind an interrogation mirror, positioned directly behind the
position on which the interlocutor was projected (see Fig-
ure 2). This made it possible to create the illusion of eye
contact. To ensure the illusion of a one-on-one conversation
was not broken, interaction between participants was lim-
ited. Speakers and listeners were instructed not to ask for
clarifications or to elicit explicit feedback from each other.

The recordings were annotated manually for a number of
features. For the listener the corpus includes annotations
of head, eyebrow and mouth movements, and speech tran-
scriptions. What we refer to as a listener response can be
any combination of these various behaviors, for instance, a
head nod accompanied by a smile, raised eyebrows accom-
panied by a smile or the vocalization of “uh-huh”, occurring
at about the same time. For each of these responses we have
marked the so-called onset (start time). The onset of a lis-
tener response is either the stroke of a head movement, the
start of a vocalization, the start of eyebrow movement or the
start of a mouth movement. When different behaviors com-
bine into one listener response, either the head movement
or vocalization was chosen as onset (whichever came first).
If there was no head movement or vocalization present, ei-
ther the eyebrow or mouth movement was chosen as onset
(whichever came first).

During this annotation all different kind responses of the
listener are annotated. We use the 2456 responses from the

Algorithm 1 Response consensus building algorithm

Require: sorted allResponses from all Listeners
Require: consensus window

while allResponses is not empty do
firstResponse = earliest in allResponses
tStart = start time of firstResponse
thisConsensus = all responses starting in (tStart +
consensus window)
lastResponse = latest in thisConsensus
tEnd = start time of thisLastResponse
allConsensus = allConsensus + [tStart, tEnd]
allResponses = allResponses− thisConsensus

end while
return allConsensus

MultiLis corpus with a head movement and/or a vocaliza-
tion as our ground truth labels (from a total of 2798 in-
cluding the smiles and eye brow responses). Having ground
truth labels as homogeneous as possible is a desirable prop-
erty while learning a prediction model in order to model the
cues provided by the speaker as accurately as possible. To
create more homogeneous ground truth labels, we excluded
the responses with only a smile or eye brow movements.
These responses are closer to the concept of what Good-
win [7] refers to as assessments (smiles are usually responses
to funny content or situations and eye brow movements to
surprising (raise) or confusing (frown) content), while the
responses with a head movement and/or a vocalization are
closer to the concept of backchannel continuers [18]. Since
we are not including a representation of the content in our
feature set, we will be unable to model the conditions to
which the assessment responses are a reaction.

3.2 Building Response Consensus
In this section, we present our algorithm to build listener

responses consensus. While the consensus algorithm easily
scale to any number of listeners, for simplicity we present
the algorithm for three listeners.

Our corpus contains the recordings of three individual lis-
teners in interaction with the same speaker. To create our
model we need to establish the consensus which we can use
for learning and evaluating our model. Therefore we need
consensus responses from the three listeners to appear at
the same time. But what is ‘at the same time’? When do
different listeners respond to the same cues from the same
speaker, and how large is the “window of opportunity” to
start a response to a cue?

Our parallel listener consensus is based on the observa-
tion that the window of opportunity is correlated with the
gap between two responses from the same listener. In other
words, the minimum time between two responses from the
same listener gives us a bound for the fusion of parallel lis-
teners. By analyzing the listener interactions in our training
corpus, we found the minimal response gap to be 714ms. To
ensure that our algorithm does not group two responses from
the same listener, the consensus window is set to 700 ms.

In Algorithm 1 the algorithm is presented. A forward
looking search is performed. When an hitherto unassigned
response is encountered, the algorithm checks whether there
are more responses which start within the consensus window
of 700 ms from the start time of this response. If there are,
all of these are grouped together with the response. The
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Figure 3: Example of the consensus building algo-
rithm. At time 1.0s the algorithm has encountered a
listener response from listener 1. It checks whether
there are more responses from other listeners within
the consensus window of 700ms. There is a response
from listener 2 at time 1.2s, thus these are grouped
into consensus instance 1, which starts at time 1.0s
and ends at time 1.2s. The algorithm continues with
the next unassigned response and repeats the pro-
cess and creates a consensus instance from 2.0s to
2.4s in the same way, by combining the three re-
sponses from listener 1, 2 and 3.

start time of the consensus instance is the onset of the first
response the end time of the consensus instance is the onset
of the latest response included in the consensus. This thus
corresponds to the ”‘Window-of-Opportunity”’ as found in
the data that starts with the beginning of the first listener re-
sponse and ends with the beginning of last listener response
in the consensus. Note that this means that if a consensus
of only one response is created the start and end time of
the consensus are identical. After a consensus is created we
continue our forward looking search for the next unassigned
response.

In Figure 3 an example is given of the consensus building
algorithm. Using our corpus, the algorithm created 1733
consensus instances. There are 1140 consensus 1 instances
(instances contain only one response), 465 consensus 2 in-
stances (two responses) and 128 consensus 3 instances (re-
sponses from all three listeners).

3.3 Using Consensus during Learning
The goal of our prediction model is to create real-time

predictions of listener reponses based on features of human
speakers (see Figure 4). For this purpose, we use a machine
learning approach in which we train a sequential probabilis-
tic model from a database of consensus interactions and use
this trained model to generate listener responses. A sequen-
tial probabilistic model takes as input a sequence of obser-
vation features (e.g., the speaker features) and returns a se-
quence of probabilities (i.e., probability of listener response).
During learning, the ground truth labels which mark the ap-
propriate response opportunities are required as well as the
speaker features. How this ground truth labels are estab-
lished is what differentiates our approach from traditional
methods.

We have established several consensus for listener responses
in the corpus. By only considering the displayed listener we
can regard this corpus as any other corpus of recorded one-
to-one interactions with its limitations caused by individual
differences in listening behavior. Some people provide a lot
of listener responses, while others use their responses more
sparsely. When the recorded listener provides only a few re-

sponses during the interaction, it does not necessarily mean
that there are only a few response opportunities. Thus, some
of the data is mislabelled as negative samples, while in fact
these would be valid response opportunities.

But we also have the listening behavior of the concealed
listener at our disposal and can utilize this during learning.
By recording more people less of our data is mislabelled as
negative examples. Using the displayed listeners gave in to-
tal 879 responses to response opportunities, but consensus
building identified 1733 response opportunities. This is al-
most a doubling of the number of positive samples.

The parallel consensus does not only improve the quality
of negative samples and increase the number of positive sam-
ples, but also provides information about the importance of
each response opportunity, reducing the effect of outliers.
To some response opportunities all three listeners respond;
whereas to some others, only two or mostly one of the lis-
teners responds. The response opportunities to which three
listeners respond are more clearly cued by the speaker than
response opportunities to which two listeners respond and
even more than opportunities to which only one listener re-
spond. The speaker will expect a response at these mo-
ments. By emphasizing these response opportunities during
learning your model should be more tuned to predict these
response opportunities and will therefore result in a better
model.

3.4 Using Consensus during Evaluation
The consensus gives us a more reliable performance mea-

sure during evaluation. We propose a new evaluation crite-
ria based on multiple listener consensus which exploits the
parallel consensus to better define the concepts of exact-
ness (mislabels) and completeness (missed labels) for pre-
diction models. The basis of our consensus-based measure
is the F1 measure, which is the weighted harmonic mean of
precision and recall. Precision is the number of correctly
predicted listener responses divided by the total number of
predicted listener responses (correct or not). It is a measure
of exactness, highlighting the effect of false positives (i.e.,
predicted responses mislabeled as positive). Recall is the
number of correctly predicted listener responses divided by
the total number of listener responses (i.e., ground truth). It
is a measure of completeness, highlighting the effect of false
negatives (i.e. listener responses that were not predicted
correctly). The main idea behind our new consensus-based
measure is that precision and recall should not be computed
using the same ground truth elements. We introduce the
concepts of Consensus Exactness and Completeness:

CONSENSUS EXACTNESS The typical approach for
computing the false positives (necessary for the precision
measurement) is to look at the ground truth responses from
the displayed listener. The problem with this approach is
that while the displayed listener may not have given a lis-
tener response at a specific point in time, another person
would have given a response at that moment. With the
multiple listener consensus framework we have the listen-
ing behaviors from concealed listeners at our disposal to
counter this shortcoming. We propose that consensus ex-
actness should take into account all listeners and classify
a prediction as false positive only if none of the listeners
responded at that moment. This concept implies that pre-
cision should be computed using all consensus instances as



Figure 4: Learning using parallel listener consensus. A sequential probabilistic model is trained offline using
as input a sequence of observation features (e.g., the speaker features) and the ground truth labels from the
consensus data (Consensus 2 in this figure). The prediction model returns a sequence of probabilities (i.e.,
probability of listener response) during the online testing.

ground truth.

CONSENSUS COMPLETENESS If all consensus in-
stances were used to compute the false negatives (necessary
for the recall measurement), the perfect model would be
a model which is able to predict all response opportunities
from any listener. This model would end up giving responses
at a much higher frequency then any individual person. The
experiment of Huang et al. [11] has shown that a virtual hu-
man based on the consensus of several listeners is perceived
as most believable when the rate of generated responses is
similar to the average rate of all listeners. Based on this ob-
servation, we propose that consensus completeness should
be correlated with a consensus level which has an average
number of ground truth responses equal to the average rate
from all listeners.

Based on these two concepts, we define our consensus-
based evaluation criteria Fconsensus as follows:

FConsensus = 2 ∗ Precisionall ∗Recallt
Precisionall + Recallt

where the precision Precisionall is calculated using all
consensus ground truth responses and the recall Recallt is
calculated using only the ground truth responses from the
consensus t (i.e., at least t listeners responded at that mo-
ment). t is automatically selected such that the average
rate of ground truth responses is as close as possible to the
desired rate (average rate from all listeners). In our experi-
ments, the average rate was 6.3 responses per minute. The
closest match was Consensus t = 2 (i.e., at least two lis-
teners responded at that moment) with 4.5 responses per
minute. The combination of Precisionall, which takes care
of the mislabelled negative samples, and the Recallt, which
keeps an average response rate, results in a more reliable
performance measurement.

4. EXPERIMENTAL SETUP
In this section, we first describe the machine learning

technique we used to create our prediction model and the
methodology for evaluating it. Then we explain the five
strategies we used used in our experiments for ground truth
and the speaker features used as input.

4.1 Learning Prediction Model
In our experiments, we use Conditional Random Fields

(CRF) [15], which is a probabilistic discriminative model
for sequential data labeling. A CRF learns a mapping be-
tween a sequence of observations and a sequence of labels.
Every gesture class has a corresponding state label. During
evaluation, we compute marginal probabilities for each state
label and each frame of the sequence using belief propaga-
tion. The optimal label for a specific frame is chosen to be
the label with the highest marginal probability. Applying
a threshold on the marginal probability of the gesture, we
assign a positive label to a frame if the marginal probability
was larger than the threshold. We use the hCRF library [10]
for the training of our CRF models.

Testing is performed on an hold-out set of 10 randomly
selected interactions. The remaining 21 dyadic interactions
were used for learning. All models evaluated in this paper
were trained with the same training set and tested on the
same test set. The test set does not contain individuals from
the training set. Validation of model parameters was per-
formed using a 3-fold strategy on the training set. The ob-
jective function of the CRF model contains a regularization
term to prevent overfitting. During training and validation,
this regularization term was validated with values 10k, for
k = −3..3.

In all models the ground truth labels are normalized to
the same length of 700ms. The mean start time of the re-
sponses included in each consensus instance is calculated.
Each instance starts at the 350ms before this mean start
time and ends 350ms after it.



4.2 Prediction Models
As discussed in Section 3.3 the MultiLis Corpus provides

opportunities to improve the prediction of listener responses,
since it includes recordings of parallel listeners. In this sec-
tion we will describe the five different models which we
trained. In each model we used a different strategy to com-
bine the ground truth of the parallel listeners.

DISPLAYED LISTENER ONLY Our first model con-
sists of a CRF chain model trained with using responses of
only the displayed listener as the ground truth labels. This
model is our main baseline for our experiments since most
previous work used this approach (such as [3, 16, 20]). We
refer to this model as the DL only model in the rest of the
paper.

ALL LISTENERS In the second model, we use responses
of both the primary listener and the two secondary listeners
in the same session. For the secondary listeners, we du-
plicate speaker-listener pairs by using the same speaker for
both listeners. These duplicated listener-speaker pairs can
be seen as different sessions in which the speaker has the
same features and listeners have their own responses. We
refer to this model as ALL model in the rest of the paper.

CONSENSUS 1, 2 AND 3 The last three models im-
plement our consensus building strategy described in Sec-
tion 3.2. The Consensus 1 model includes all consensus
instances. So all the response opportunities to which at
least one listener (either the displayed listener or one of the
concealed listeners) has responded are used as ground truth
label. The Consensus 2 model only includes response op-
portunities to which at least two listeners have responded as
ground truth label and the Consensus 3 model only oppor-
tunities to which all three listeners have responded.

4.3 Multimodal Features
Previous research has identified several cues the speaker

gives to elicit a listener response. We extracted the following
features: lexical features (see, for instance [16] for evidence
of these features as cue), pause (see [3, 16]), gaze (see [2, 5,
16]) and prosodic features (see [9, 17, 20]).

LEXICAL AND PAUSES The lexical features were ex-
tracted using the Dutch automatic speech recognition soft-
ware SHoUT [12]. We collect the recognized words with
their start and end times and the start and end times from
silences. From these results we created utterance and pause
features. These features are mutual exclusive, where utter-
ance segments are defined as interpausal units, where the
minimum length of the silence between two utterances is
100 ms. These segments of silence longer than 100 ms are
defined as pauses.

EYEGAZE AND BLINK Eyegaze and blink features
were manually annotated. For eyegaze the human coder
annotated whether the speaker was looking at the listener
(directly into the camera) or not. Gazes at the listener
were occasionally interrupted by blinks of the speaker. Even
though the gaze was interrupted for a moment, the listener
would still have the perception that the speaker is addressing
him/her. Therefore we created the “continued gaze” feature
where the blinks between and after a gaze annotation are

Model F1 Precision Recall

Baseline (DL Only) 0.265 0.268 0.262

All Listeners 0.255 0.188 0.392

Consensus 1 0.225 0.166 0.352

Consensus 2 0.264 0.199 0.391

Consensus 3 0.239 0.170 0.402

Table 1: The performance of our five models mea-
sured using only the displayed listeners ground truth
labels.

Consensus 1 Consensus 2

Model F1 F1

Baseline (DL Only) 0.278 0.253

All Listeners 0.377 0.255

Consensus 1 0.318 0.213

Consensus 2 0.375 0.287

Consensus 3 0.364 0.256

Table 2: The performance of our five models mea-
sured Consensus 1 and Consensus 2 ground truth
labels.

included into the interval. From both the normal gaze and
the continued gaze features we created a “blinked” variant,
which only includes the gaze intervals which were preceeded
by a blink.

PROSODY For the extraction of prosodic features we used
openSMILE [6] to extract the pitch (F0) value at a 10ms
interval. To remove some non-valid values where the pitch
was not computed for short periods of time, we apply a
smoothing filter (size=5) on the whole pitch data of each
speaker. Then these values are discretized into percentiles.

5. RESULTS AND DISCUSSION
During our experiments we have trained five models using

various strategies to establish ground truth. We evaluated
these models on four different performance measures. In
the following sections we will discuss the various results,
starting with the perfomance on Fconsensus (Table 3), then
on displayed listener only (Table 1) and finally on Consensus
1 and 2 (Table 2).

DISPLAYED LISTENER ONLY As a baseline we mea-
sured the performance of our response prediction model on
the Displayed Listener Only (DL Only). Table 1 shows the
performance of our five models on this measure. Our result
with learning on DL Only (F1 = 0.265) on this case (our
baseline model) is comparable to the result of Morency et
al. [16] (F1 = 0.256) but on a different corpus. Looking at
the other approaches which the MultiLis corpus allowed us
to take, we can see that learning on Consensus 2 achieves
comparable performance (F1 = 0.264) and also the perfor-
mance of the ALL model is only slightly worse. The other
approaches perform not as good as the traditional approach
of using DL Only for learning.

CONSENSUS 1 AND 2 As discussed in Section 3.4 this
corpus provides us with more information than only the re-
sponses of the displayed listener. We also have the responses
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Figure 5: Precision and recall graph for the Dis-
played Listener Only (Baseline) model (red striped
line) and the Consensus 2 model (blue line). With
most of the thresholds, including the thresholds
giving the highest Fconsensus score, the Consensus
2 model outperforms the Displayed Listener Only
(Baseline) model.

Model Fconsensus Precisionall Recallt

Baseline (DL Only) 0.347 0.419 0.297

All Listeners 0.425 0.370 0.499

Consensus 1 0.358 0.311 0.421

Consensus 2 0.439 0.373 0.534

Consensus 3 0.417 0.338 0.542

Table 3: The performance of our five models mea-
sured on our Fconsensus measure. The difference
between our Baseline model and Consensus 2 is
marginally significant, p = 0.054.

of the concealed listeners available to us and this informa-
tion can also be used during evaluation to get a more pre-
cise performance measure dealing with exactness and com-
pleteness. Since the production of a listener response is op-
tional, we see in our corpus that the displayed listener and
the concealed listeners do not always respond at the same
time. The displayed listener may miss response opportu-
nities, to which one or both of the concealed listeners did
respond. A prediction of our model at such a missed re-
sponse opportunity should not be a wrong prediction, since
according to our corpus, these are moments where listeners
do provide responses. In our corpus Consensus 1 provides
the broadest coverage of these moments. Therefore, we also
looked at the performance of our models using Consensus
1 as ground truth (see Table 2). On this measure the All
Listeners (F1 = 0.377), Consensus 2 (F1 = 0.375) and Con-
sensus 3 (F1 = 0.364) models perform significantly better
than the Displayed Listener Only (F1 = 0.278) model. The
Consensus 1 (F1 = 0.318) model has a performance in be-
tween the other models.

However, Huang et al. [11] have shown that this does not
result in the most believable and attentive virtual human.
This is because your response rate is too high if you generate

a response on all predicted response opportunities. They
have shown that a virtual human which responds at mo-
ments most people would respond is the most believable.
In our corpus these are the moments were two or three lis-
teners responded to the same opportunity at the same time
(Consensus 2). Using these ground truth labels the response
rate is closest to the response rate of the average listener.
Again, the Consensus 2 model (F1 = 0.287) performs best
on this measure, but the differences with the Displayed Lis-
tener Only (F1 = 0.253), All Listeners (F1 = 0.255) and
Consensus 3 (F1 = 0.256) models are not significant.

F-CONSENSUS Measuring the performance on Consen-
sus 2 re-introduces the problem of the Displayed Listener
Only evaluation, where response opportunities are misla-
belled as negatives. Our Fconsensus measure solves the prob-
lems of exactness (mislabels) and completeness (missed la-
bels) by calculating precision on Consensus 1 and recall
on Consensus 2. The results of our model on this mea-
sure are presented in Figure 5 and Table 3. The Consen-
sus 2 model (Fconsensus = 0.439 performs better than the
DL Only model (Fconsensus = 0.347). The difference is
marginally significant, p = 0.054. Also the models trained
on ALL (Fconsensus = 0.425) and on Consensus 3 (Fconsensus

= 0.417) perform better.
So, overall learning on Consensus 2 performs best in all

cases, which proves the use of parallel listener consensus in
the learning phase. Furthermore using Fconsensus as perfor-
mance measure gives us a more reliable performance mea-
sure which takes advantage of the parallel consensus to bet-
ter define the concepts of exactness (mislabels) and com-
pleteness (missed labels) for prediction models. Especially
on this measure the advantages of using parallel listener con-
sensus shows in the learning phase.

6. CONCLUSION
In this paper, we introduced the concept of parallel lis-

tener consensus where the listener responses from multi-
ple parallel interactions are combined to better capture dif-
ferences and similarities between individuals. We showed
how parallel listener consensus can be used for both learn-
ing and evaluating probabilistic prediction models of listener
responses. To improve the learning performance, the paral-
lel consensus helps identifying better negative samples and
reduces outliers in the positive samples. Across all metrics
learning on the Consensus 2 ground truth labels performed
best.

Furthermore, we proposed a new performance measure
called Fconsensus which takes advantage of the parallel con-
sensus to better define the concepts of exactness (mislabels)
and completeness (missed labels) for prediction models. We
presented a series of experiments using the MultiLis Corpus
where three listeners were tricked into believing that they
had a one-on-one conversation with a speaker, while in fact
they were recorded in parallel in interaction with the same
speaker. We showed that using parallel listener consensus
can improve learning performance and represent a better
evaluation criteria for predictive models.

At this time we only used three parallel recorded listen-
ers, but getting more listeners in parallel and more samples
in general should improve the performance of these tech-
niques even more. More listeners would mean having an even
bigger coverage of the response opportunities and therefore



less false negative samples. Furthermore, a better threshold
would be achieved for the minimum consensus agreement on
the positive samples (for both ground truth labels in learn-
ing and in the Fconsensus measure), reducing outliers.

A broader application of the proposed techniques is on
sequential annotated data with low annotation agreement
between annotators, especially if the cause of the low agree-
ment is the fact that it is hard to recognize the behavior
in the sequence (as opposed to classify it with the correct
label). The structure of that data is very similar to the data
we worked with. There are several ground truths for the
same sequence and some annotators may have missed mo-
ments which other annotators have noticed. A prediction
at the time only one annotator made an annotation might
not actually be wrong, it is maybe so subtle that only that
annotator noticed it. On the other hand high agreement
moments should definitely not be missed by your predictor.
Our techniques are designed to deal with data with exactly
these characteristics.
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