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Abstract— In this paper we propose a method that exploits
3D motion-based features between frames of 3D facial geometry
sequences for dynamic facial expression recognition. An expres-
sive sequence is modeled to contain an onset followed by an apex
and an offset. Feature selection methods are applied in order
to extract features for each of the onset and offset segments of
the expression. These features are then used to train a Hidden
Markov Model in order to model the full temporal dynamics
of the expression. The proposed fully automatic system was
tested in a subset of the BU-4DFE database for the recognition
of happiness, anger and surprise. Comparisons with a similar
system based on the motion extracted from facial intensity
images was also performed. The attained results suggest that the
use of the 3D information does indeed improve the recognition
accuracy when compared to the 2D data.

I. INTRODUCTION

It is widely expected that in the future computing will

move into the background, becoming a part of our everyday

life, with the user moving into the foreground. As a part of

this transition, the interactions between users and computers

will need to become more natural, moving away from the tra-

ditional interface devices, and replicating human-to-human

communication to a larger extent. Facial expressions consti-

tute an important factor of communication, revealing cues

about a person’s mood, meaning and emotions. Therefore

the requirement for accurate and reliable facial expression

recognition systems is a crucial one.

Expression dynamics are of great importance for the

interpretation of human facial behavior [14]. They convey

cues for behavior interpretation [1], and are useful for

distinguishing between spontaneous and posed emotional

expressions[25]. In addition, they are essential for the recog-

nition of complex states such as pain and mood, [29], as

well as of more subtle emotions such as social inhibition,

embarrassment, amusement and shame [5], [6]. It is there-

fore obvious that a system capable of accurate and robust

expression recognition will need to harness the information

available in expression dynamics.

The majority of existing expression recognition systems

are based on 2D static images (either a single image [4] or

several static images [2], [32] taken from image sequences).

A full review of such systems can be found in [14]. In

addition, several methods have used the temporal information
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from facial expressions in various ways. More specifically,

research has been conducted to model the temporal rela-

tionships of different expressions [33], to encode the full

image sequence into a feature vector or tensor [9], [35]

and to recognize particular temporal segments of the facial

expression [12]. However, none of these aim to model the

temporal behavior of the expression and use this information

for recognition. More recently several systems have been

developed that explicitly recognize and model the tempo-

ral segments of either full expressions [3], [11], [12], or

components of expression such as facial action units (AUs)

[10], [15], [23], [26]. These systems make use of complete

2D image sequences, and track the motion between frames,

using either feature-based or appearance-based methods, in

order to perform classification and modeling.

The methods and systems outlined so far are just a small

subset of the many proposed for automatic facial expression

and AU recognition from 2D facial images and video. Unfor-

tunately, these systems are highly sensitive to the recording

conditions such as illumination conditions, facial pose and

others changes in facial appearance like make up, sunglasses

etc. More precisely, in most cases when 2D facial intensity

images are used it is necessary to maintain a consistent

facial pose (preferably a frontal one) in order to achieve

good recognition performance. Even small changes in facial

pose can reduce the effectiveness of the systems. For these

reasons, it is now widely accepted that in order to address the

challenge of accuracy, different capture modalities (such as

3D or infrared) must be employed. Furthermore, advances

in structured light scanning, stereo photogrammetry and

photometric stereo have made the high-end acquisition of

3D facial structure and motion a feasible task [13].

The use of 3D facial geometry data and extracted 3D

features for expression recognition is at its infant stage.

Images and videos of this kind will allow a greater amount

of information to be captured (2D and 3D), including out-of-

plane movement which 2D cannot capture, and remove the

problems of illumination and pose inherent to 2D data. There

are previous research efforts that use 2D images to construct

3D models in order to extract 3D features that can be used

for classification of the facial expression, such as in [4], [8],

[19]. However these methods are susceptible to the problems

of illumination and pose inherent to all 2D methods.

Recently, several methods have been proposed that use

3D facial geometry data for facial expression recognition

[20], [18], [22], [24], [28], [31]. One of the first methods

for 3D facial expression analysis was proposed in [31]. A

deformable model was used for tracking the changes between
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frames. A static 3D facial expression recognition method

was proposed in [28]. This method used a 3D primitive

surface feature labelling for the classification of the six

basic expressions. In [20] researchers used six characteristic

distances between feature points to train a multilayered

perceptron for classification of the seven basic expressions.

The method proposed in [22] is also based on distances

between facial points, but this time AdaBoost classification

was used for classification of the features. The work in

[18] reduces the 3D facial geometry to 2D curvature im-

ages which could be used for feature extraction via Gabor

wavelets, before classification using various techniques. The

work in [24] tracks the movement in the face by using an

active shape model to represent pairs of 2D and 3D images

and identifying points which correspond to the salient facial

features. Rule based approaches were used for classification,

with a previous frame’s information able to influence the

classification of the current frame; in this way, temporal

information was exploited during classification.
Although several of these methods exploited the motion

between frames, and even some temporal information, none

of them aimed to model the temporal dynamics of the

expression for recognition purposes. The only method pro-

posed so far that exploits 3D facial expression dynamics

in this way is [21]. In this work a deformable model was

applied and its changes were tracked to extract geometric

features. Dimensionality reduction was applied via Linear

Discriminant Analysis (LDA), followed by the use of 2-

dimensional Hidden Markov Model (HMM) to model the

spatial and temporal relationships between the features. The

method in [21] requires manual detection and annotation of

certain facial landmarks.
In this paper we propose a fully automatic method for

facial expression recognition that exploits the dynamics of

3D facial motion. The system developed consists of several

stages. Firstly the 3D motion of the face appearing between

frames in each image sequence is captured using Free-Form

Deformations (FFDs) [16]. We extract features by applying

a quad-tree decomposition of the x-y, x-z, y-z, x− t, y − t
and z − t motion fields. Features are then collected using a

GentleBoost feature selection method for the onset and offset

temporal segments of the expression and frame classification.

Temporal modeling of the full expression is performed via

neutral-onset-apex-offset HMM models. These models are

finally used for dynamic expression recognition. We have

also conducted a comparison between the use of motion

extracted from 2D facial intensity and 3D facial geometry

information using a similar methodology in order to prove

the superiority of latter one.
In summary, the novel contributions of this paper are as

follows:

• An extension of the method proposed in [10] to per-

form expression recognition using 3D facial geometry

information.

• Modeling of the temporal segments of the full expres-

sion rather than those of action units.

To the best of our knowledge, this is the first fully automatic

approach for dynamic 3D facial expression recognition.

II. METHODOLOGY

An overview of our system can be seen in Fig. I. In

the preprocessing stage, the 3D meshes in each frame are

aligned to a reference frame using an ICP method [34], and

then cropped. The 3D motion is captured from each set of

frames via FFDs [16], and the 3D vector fields are inter-

polated onto a uniform grid. Vector projections and quad-

tree decompositions are calculated in order to determine the

regions of the images in which the greatest amount of motion

appears. Features are then gathered from each region in each

frame, and are used to train classifiers on the onset and offset

segments of the expression. The outputs are used to build a

HMM of the full expression sequence.

A. Motion Extraction

The motion between each frame in each image sequence

was captured using FFDs. FFDs [17] is a method for non-

rigid registration based on B-spline interpolation between a

lattice of control points. Our aim is given two meshes with

vertices p = (x, y, z) and ṕ = (x́, ý, ź), respectively to find

a vector field given by T(p) such that:

ṕ = T(p) + p. (1)

The basic idea is to deform an object by manipulating an

underlying mesh of control points. The lattice, Φ, is regular

in the source image and consists of nx × ny × nz points

φ(i, j, k) with regular spacing. This is then deformed by

registration of the points in the target image to become

Φ′ with irregularly spaced control points. The difference

between the two lattices is denoted as Φδ . T(p) can be

computed using B-spline interpolation on Φδ .

For any point in the 3D mesh (x, y, z), let the closest

control point have coordinates (x0, y0, z0) and displacement

φδ(i, j, k). The transformation of this point can be given as

the B-spline interpolation of the 64 closest control points:

T(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Ba1,a2,a3φδ(i + l, j + m, k + n)

(2)

where a1 = x−x0, a2 = y−y0, a3 = z−z0, Ba1,a2,a3 =
Bl(a1)Bm(a2)Bn(a3), and Bl is the lth basis function of

uniform cubic B-spline, defined as follows:

B0(a) = 1
6 (−a3 + 3a2 − 3a + 1)

B1(a) = 1
6 (3a3 + 6a2 + 4)

B2(a) = 1
6 (−3a3 + 3a2 + 3a + 1)

B3(a) = 1
6a3.

T(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) is the vector

field used in this work for expression analysis.

The resolution of the grid used determines the sensitivity

of finely motion tracking between the two images. In this

work a grid with control point spacing of 0.5mm is used. Fig.
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Fig. 1. An overview of the full system including motion caption, feature extraction, classification, and training and testing.

(a) Mesh of the
cropped neutral 3D
facial geometry

(b) Mesh of the cropped
apex 3D facial geome-
try

(c) Vector field show-
ing the motion between
these frames

Fig. 2. Mesh representations of neutral and apex frames taken from the
Happy image sequence for subject F004, along with the motion tracked
between them by FFDs.

2 shows a neutral and apex mesh for a happiness expression,

and the motion tracked by FFDs between these frames. The

most highly concentration areas of motion are around the

corners of the mouth and the cheeks, as is expected for this

expression.

B. Feature Extraction

We used motion based features, extracted from the vector

fields captured by the FFDs to train our classifiers. In order to

simplify our approach vector projections, across the different

axes (x, y, z and t), were computed. Furthermore, in order

to focus only on the areas in which the greatest amount of

motion occurs, a quad-tree decomposition was then applied

on these projections to divide the vector field into regions

according to the amount of motion in every region. Finally,

a set of features were extracted from each region.

1) Vector Projections: Vector projections, displayed as an

image, show the areas in the image in which there is a high

concentration of motion in the sequences across a number

of frames (or an axis). Two sets of vector projections were

produced from the dataset, one built from frames in which

the onset segment of the expression occurred, and other

from frames in which the offset segment of the expression

occurred. Six 2D vector projections were created from the

3D facial motion. These consisted of three spatial vector

projections, one for each pair of spatial axes, and three time-

space vector projections.

The spatial vector projections for a window width of θ
were calculated as follows:

P θ
xy(x, y) =

M∑
i=1

∑
τ∈Ωi

τ+θ+1∑
t=τ−θ

∑
z

u2
i,x,y,z,t+v2

i,x,y,z,t+w2
i,x,y,z,t

(3)

P θ
xz(x, z) =

M∑
i=1

∑
τ∈Ωi

τ+θ+1∑
t=τ−θ

∑
y

u2
i,x,y,z,t+v2

i,x,y,z,t+w2
i,x,y,z,t

(4)

P θ
yz(y, z) =

M∑
i=1

∑
τ∈Ωi

τ+θ+1∑
t=τ−θ

∑
x

u2
i,x,y,z,t+v2

i,x,y,z,t+w2
i,x,y,z,t

(5)

where Ωi is the set of frames belonging to the temporal

segment in the ith image sequence, M is the total number

of image sequences of the current expression in the training

set, and

ui,x,y,z,t = ui(x, y, z, t),

vi,x,y,z,t = vi(x, y, z, t),

wi,x,y,z,t = wi(x, y, z, t)

are the vector components, in the x, y and z directions

respectively, at coordinates (x, y, z) and time t in the ith

image sequence. Note the summation is performed over the

window to be used, as well as over the sequence, to ensure

all frames that will be used for gathering features influence

the quad-tree decomposition.

The time-space vector projections were calculated for t
values in the range 0 ≤ t ≤ 2θ − 1 as follows, using only

the vector component in the spatial direction applicable:
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(a) x− y vector projec-
tion

(b) x− z vector projec-
tion

(c) y− z vector projec-
tion

(d) x− y quad-tree (e) x− z quad-tree (f) y − z quad-tree

(g) x− t vector projec-
tion

(h) y − t vector projec-
tion

(i) z − t vector projec-
tion

(j) x− t quad-tree (k) y − t quad-tree (l) z − t quad-tree

Fig. 3. Spatial and space-time vector projections and the quad-trees they
produced for the onset segment of the Happy expression with window width
of 4

P θ
xt(x, t) =

M∑
i=1

∑
τ∈Ωi

∑
y

∑
z

u2
i,x,y,z,τ−θ+t (6)

P θ
yt(y, t) =

M∑
i=1

∑
τ∈Ωi

∑
x

∑
z

v2
i,x,y,z,τ−θ+t (7)

P θ
zt(z, t) =

M∑
i=1

∑
τ∈Ωi

∑
x

∑
y

w2
i,x,y,z,τ−θ+t (8)

Examples of vector projections can be seen in Figs. 3a-

3c and Figs. 3g-3i, here collected from one fold of onset of

the Happy expression with window width of 4. The former

shows the spatial vector projections and the latter the space-

time vector projections.

2) Quad-Tree Decomposition: Before feature extraction

could be performed on each of the image sequences, we

divided the images into regions from which a set of features

was acquired. Instead of dividing the images into evenly

sized regions, the technique that we employed was quad-tree

decomposition. Quad-tree decomposition has been widely

used in computer vision and image processing for image

segmentation and feature extraction. In our case we used

quad-tree decompositions to divide the image into regions

sized according to the amount of motion present in each part

of the vector projection. The algorithm works by measuring

the percentage of total motion in the frame that is contained

in each region. A region is divided into four equally sized

square regions if the percentage it contains is over a certain

threshold. A lower limit is set on the region size, below

which the regions cannot be divided further. The division

continues repeatedly until no further regions can be split. The

threshold used was 70% of the average amount of motion in

the blocks. This was determined to give adequate quad-tree

decomposition results from preliminary testing. Two sets of

quad-tree decompositions were found from the training set

- one from the frames consisting of onset motion, and one

from frames consisting of offset motion. These sets were

then used throughout the training and testing.

We used sliding windows throughout the quad-tree decom-

position and feature extraction in order to allow information

from previous or later frames to be used in the classification

of the current frame. This is useful as the duration of a

certain motion can help with differentiating between two

or more expressions. Various window widths were tested to

identify which size gives the best results for each expression.

A window width of θ will produce a set of 2θ frames in total.

Examples of the quad-trees produced for each of the vector

projections in Fig. 3 can be seen in Figs. 3d-3f and Figs. 3j-

3l. For example, Fig. 3e shows the decomposition created

by dividing the vector projection in Fig. 3b according to

the amount of motion in the image. The smallest regions

correspond to those parts of the image that contain the

highest concentration of the motion, whereas the larger

regions contain very little motion.

3) Features: Once the quad-trees had been produced for

each vector projection they were used to extract features for

every frame in the set of image sequences. For each region

in the quad-tree, one set of 2D features was identified and

stored. Therefore, areas where little motion was present will

be covered by large regions and so produce few features,

whereas areas with a large amount of motion produced

small regions and so gave many features. The features used

included the mean and standard deviation of the distribution

of directions of the vectors in that region, the magnitude of

the total motion, and the divergence and curl of the vector

field in the region. The features from all the regions were

concatenated into one feature vector per frame in the image

sequences, and these were used for classification.

Again, a sliding window was used to allow frames before

or after the current frame to influence the features gathered

for that frame. Hence, the features are extracted for a window

of width θ around the current frame which is at time τ in

the image sequence. The vector field for the frames in this

window were averaged across either space or time using a

similar calculation to that used for the vector projections.

The quad-trees previously computed were used to divide up

each average motion image into appropriately sized regions,
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Fig. 4. Models a sequence consisting of neutral, onset, apex and offset
states, each able to transition to the next.

from which features are collected.

C. Classification

At the next stage, once the features for a set of image se-

quences had been extracted, we used GentleBoost classifiers

[7], an extension to the traditional AdaBoost classification

algorithm, in order to simultaneously select the best features

to use, and perform the training used for classification. We

used two classifiers for each expression: one for the onset

temporal segment, and the other the offset segment.

Target labels were created for each classifier by setting the

labels for frames belonging to the temporal segment to be

1, and all other frames to be −1. These were used, along

with the features matrix produced from each set of quad-

trees, as input to the classifiers. At each iteration in the

training algorithm, the classifier chooses reduces the error

by the largest margin, and then stores this feature and the

associated parameters. This continues until the error rate

no longer reduces, or the maximum number of features is

reached, here set to be 200.

Once the two classifiers had been fully trained they were

used to test the same set of features. This produced a set

of predicted labels for the frames in the training set, along

with confidence levels for these labels. These were multiplied

together to form a to distribution of values suitable which

were suitable as an input for the HMMs.

D. Temporal Modeling

We used HMMs in order to model the temporal dynamics

of the entire expression. These were trained on the output

from the GentleBoost classifiers.

We model a sequence which displays using four different

temporal segments - neutral, onset, apex and offset. These

form the basis for four possible states of the hidden variable.

The general form of the model for one expression can be seen

in Fig. 4.

The three sets of parameters of an HMM are:

• Initial Probabilities - the probability distribution of the

initial states across the image sequences.

• Transition Probabilities - a matrix defining the prob-

abilities of the different transitions between underlying

states in the model.

• Emission Probabilities - the conditional probability

distribution defining how the observed values depend

on the hidden states.

(a) Onset and offset classifier outputs for each frame in the sequence.

(b) Actual and predicted frame labels for this image sequence.

Fig. 5. The two classifier outputs for a Happy image sequence when using
a window width of 8 with the actual and predicted frame labels from the
HMM.

Each of these was determined from the results gathered

from testing the trained classifiers. Let L be a matrix

containing the state labels for the training set of frames,

where each row corresponds to a different image sequence,

and each column to a different frame index in this sequence.

In practise this is stored as an array of cells as the image

sequences are of different lengths and so contain different

numbers of frames. In addition, let Eon and Eoff be

matrices containing the emission values produced by the

onset and offset classifiers respectively. We computed the

initial probability distribution, P, by estimating the prior

probabilities from the state labels of the first frame in each

image sequence in the training set. The transition probability

matrix, T, was also be estimated from the state labels by

using the frequency of each transition between states.

Finally the emission probability distribution must be

calculated using the emission values and the labels. The

distributions used were Gaussian, and so were represented

by a mean, μ, and standard deviation, σ, for the possible

emission values for each of the five possible states. Hence

the distribution was represented by two matrices each with

five rows corresponding to the five states, and two columns

410



corresponding to the two classifiers, onset and offset. The

mean matrix, M, was calculated by averaging the emission

values observed for each of the temporal states:

M(1,s) =
1

Ns

∑
(i,j)∈f(s)

Eon
(i,j),

M(2,s) =
1

Ns

∑
(i,j)∈f(s)

Eoff
(i,j),

where Ns is the total number of frames in L with label s,

and

f(s) = {(i, j)|L(i,j) = s}.
The standard deviation matrix, S, can be calculated as:

S(1,s) =

√√√√ 1
Ns

∑
(i,j)∈f(s)

(Eon
(i,j) −M(1,s))2,

S(2,s) =

√√√√ 1
Ns

∑
(i,j)∈f(s)

(Eoff
(i,j) −M(2,s))2.

Once these properties of the HMM had been estimated

from the training data, the model was ready to be used for

testing new image sequences. This is done by collecting

features from the new image sequence using the same quad-

trees created from the training set, testing the classifiers on

these features, and then using the observed values along with

the standard Viterbi algorithm to determine the most likely

sequence of states. An example of the output from the two

classifiers, and the resulting sequence chosen as most likely

by the HMM can be seen in Fig. 5. Here the actual frame

labels, and predicted frame labels are shown for comparison.

The image sequence is then classified as a positive example

if the apex state is present in the sequence.

III. EXPERIMENTAL RESULTS

We conducted experiments using the BU-4DFE database

[30]. This database consists of 4D data (3D plus time)

collected by asking 100 subjects to act out the six basic

expressions. The 3D data collected consists of the 2D image,

with an added depth map showing the height of each point

throughout the sequence. In these preliminary tests, the

system described above was tested on three expressions:

happiness, anger and surprise. The happiness and anger

expressions were chosen for testing purposes because they

are at either ends of the valence expression spectrum, and

surprise was also chosen as it is at one extreme of the arousal

expression spectrum.

For the purpose of these experiments, datasets were cre-

ated for each expression that was to be tested. A subset of

subjects who were decided to be accurately acting out the

expression was chosen from the database. A balanced dataset

was then constructed by taking equal numbers of postive

and negative sequences for the expression to be tested from

these subjects, where the expressions used for the negative

examples were selected randomly.

TABLE I

RESULTS FROM 2D AND 3D METHODS. CR = CLASSIFICATION RATE,

RR = RECALL RATE, PR = PRECISION RATE

2D Method
Expression Win Size

Frame Results (%)
CR RR PR F1

Happy 4 76.27 61.38 84.32 71.05
Angry 8 67.07 45.67 72.40 56.01
Surprise 8 76.77 60.68 81.00 69.38
Average 73.37 55.91 79.24 65.48

Expression Win Size
Expression Results (%)

CR RR PR F1

Happy 8 80.00 80.00 84.19 82.04
Angry 8 71.88 71.88 79.17 75.34
Surprise 8 82.05 82.05 86.79 84.36
Average 77.98 77.98 83.38 80.58

3D Method
Expression Win Size

Frame Results (%)
CR RR PR F1

Happy 4 80.18 69.58 80.28 74.55
Angry 4 65.35 44.76 70.70 54.82
Surprise 4 75.29 57.79 79.29 66.85
Average 73.61 57.38 76.76 65.41

Expression Win Size
Expression Results (%)

CR RR PR F1

Happy 12 88.75 88.75 89.37 89.06
Angry 16 75.00 75.00 77.71 76.33
Surprise 4 82.05 82.05 85.40 83.69
Average 81.93 81.93 84.16 83.03

Verification of the classification system was performed

using a 10-fold cross-validation testing, where the dataset

was divided by subject into training and test sets, leaving four

subjects out in each fold. Four measures of performance were

recorded: the frame classification rate and F1-measure, the

balanced F -measure [27], and the expression classification

rate and F1-measure. The expression was determined to be

present if one or more frames in the sequence were labeled

as apex.

A. Performance

Table I shows the verification performance of the system

for the three expressions happiness, anger and surprise. The

performance is measured in two ways: by the F1 measure

when comparing the predicted frame labels to the actual

frame labels, and the F1 measure when the expression

labeling is instead considered. Only the window width that

achieved the best F1 measure for each expression is in-

cluded in this table. The average correct classification results

achieved with our method are 73.61% for individual frames

and 81.93% for expressions. The F1 measures achieved are

65.41% and 83.03% for frames and expressions, respectively.

It is clear from all four measures that the happiness

expression is the most accurately recognized expression,

with a frame F1 measure of 74.55%, and an expression

F1 measure of 89.06%. This was expected as happiness is

the expression which consists of the largest motions, and

the one which is acted in the most consistent manner in

this database. Angry is the expression which resulted in the

lowest F1 measure for both frames and expressions, with
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(a) Happy Expression Classfication
Rate

(b) Angry Expression Classfication
Rate

(c) Surprise Expression Classfication
Rate

(d) Legend

Fig. 6. Expression classification rates using both 2D and 3D methods with four different window widths.

(a) Happy Expression F1 Measures (b) Angry Expression F1 Measures (c) Surprise Expression F1 Measures (d) Legend

Fig. 7. Expression F1 measures using both 2D and 3D methods with four different window widths.

values of 54.92% and 76.33% respectively. This was again

expected as the Angry expression consists of more subtle

motions (which may have been removed by the smoothing of

the meshes). Surprise achieves F1 measures of 66.85% and

83.69% respectively for frames and expressions, rates that

are between those of Happy and Angry. This was expected

as this expression consists of significant movements of the

face and is consistently acted in this database.
In all three expressions the frame classification rates

and F1 measures are considerably lower than those of the

expression rates and F1 measures. This was an expected

outcome, and demonstrates that there are significant timing

errors present in the predicted sequences produced by the

classification system, but these often do not prevent the

expression being correctly recognized. As the onset and

offset segments of the expression can start and end gradually

it is not surprising that the classifier will misclassify one or

more frames at the beginning and end of these segments, but

still correctly choose the path containing the apex segment.
The window width which gave the best performance

differed between expressions, suggesting that the optimal

window width varies based on the expression which is being

recognised. However, the results here show some discrepancy

between those favoured by the frame and expression rates,

and also between the 2D and 3D experiments, which suggests

that further testing would be required before a conclusive

decision could be made on the optimal window width for

each expression.

B. Comparison to 2D Method
In order to measure the benefit of using 3D facial ge-

ometries over 2D image sequences for facial expression

recognition, the 2D facial intensities available from the BU-

4DFE were used. The differences in these tests were: the

alignment used between image sequences required manual

eye detection as opposed to that used with the 3D method

which was fully automatic. 2D FFDs were used to compute

the motion between frames in each sequence. For feature

extraction and classification similar lines as in [10] were

followed. Hence a comparison between 2D and 3D facial

motion is feasible. The results using the 2D method can

also be seen in Table I. The average results for 2D were

correct classification rates of 73.37% and 77.98% for frames

and expressions, respectively. This corresponds to a very

small frame rate increase from 2D to 3D (of +0.24%),

but to a much larger one in the expression classification

rate (of +3.95%). The F1 measure is also a similar, with

the frame classification rate being slightly decreased for the

3D method (−0.07%), but the expression rate noticeably

increased (+2.45%). Figs. 6 and 7 respectively show the full

classification rates and F1 measures achieved with both 2D

and 3D methods for all four window widths tested.

IV. CONCLUSIONS

In this paper we capitalized on 3D facial motion from the

BU-4DFE database in order to perform analysis of facial

expression dynamics for the purpose of fully automatic ex-

pression recognition. We based the approach on 3D motion-

based features, captured with FFDs, which were captured

in each pair of dimensions. Best features were picked and

classified by GentleBoost classifiers, and the output of these

was used to build temporal models of each expression using

an HMM. Three expressions were used to train and test

the full system, and the results of these experiments were

examined and compared with the same method performed

on 2D facial motion data extracted from facial intensity

image sequences from the same database (using manual

412



image alignment). The averaged expression recognition rates

indicate that there is a gain when using 3D facial motion data.
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