
From Scripts Towards Provenance Inference
Mohammad Rezwanul Huq, Peter M.G. Apers, Andreas Wombacher

Department of Computer Science, University of Twente
7522NB, Enschede, The Netherlands

Email: {m.r.huq and p.m.g.apers and a.wombacher}@utwente.nl

Yoshihide Wada, Ludovicus P. H. van Beek
Department of Physical Geography, Utrecht University

3584CS, Utrecht, The Netherlands
Email: {y.wada and r.vanbeek}@uu.nl

Abstract—Scientists require provenance information either to
validate their model or to investigate the origin of an unexpected
value. However, they do not maintain any provenance information
and even designing the processing workflow is rare in practice.
Therefore, in this paper, we propose a solution that can build
the workflow provenance graph by interpreting the scripts used
for actual processing. Further, scientists can request fine-grained
provenance information facilitating the inferred workflow prove-
nance. We also provide a guideline to customize the workflow
provenance graph based on user preferences. Our evaluation
shows that the proposed approach is relevant and suitable for
scientists to manage provenance.

Keywords-Data provenance, Inference, Workflow, Hydrology.

I. INTRODUCTION

Scientists from different domains facilitate data intensive e-
Science applications to study and better understand complex
systems like physical, geological, environmental, biological
etc. [1]. In most e-Science applications, scientists might often
go to the field to collect in-situ data. They might also get
sensor readings. Scientists use this data fitting into their
model describing processes in the physical world. During the
execution of the model, they might get occasionally imprecise
or unexpected values due to the anomalies either in their data
or in the model. To investigate the origin of the unexpected
value, scientists need to debug through their scripts used for
actual processing as well as to trace back values of the input
data sources. Maintaining data provenance could help them in
such a situation.

Data provenance refers to the derivation history of data
starting from its input sources [2]. Provenance can be defined
at different levels of granularity [3]. Fine-grained data prove-
nance is defined at the value-level documenting the relation-
ship among the input values, the output value and associated
processes. Coarse-grained or workflow provenance is defined
at the more higher level of granularity. Workflow provenance
only captures association among different processes within the
model.

Existing literatures discussing maintenance of fine-grained
provenance, explicitly document the relationship among input
values, associated processes and output values [4], [5]. Since
e-Science applications involve massive amount of data, both
sampled and streaming, it takes a considerable amount of
storage to store fine-grained provenance data. Sometimes, the
size of provenance data might become a multiple of the actual
data. Since provenance data is ’just’ metadata and less often

used by the end users, this approach seems to be infeasible
and too expensive [6].

Recently, a provenance inference mechanism has been pro-
posed which can generate provenance information without
explicitly documenting them based on a given workflow
provenance [7]. In [8], authors extended the approach to infer
provenance data for a complete processing workflow assuming
that the workflow had been specified before executing the
system.

However, in practice, scientists from other domains rarely
design any processing workflow before executing their model.
Usually, they write scripts and execute these scripts to process
the collected data and to generate the output value. In such
a situation, neither of the aforementioned techniques can be
applied instantly because of the unavailability of workflow
provenance information. It is possible to make a workflow
provenance by analyzing the scripts used for processing.
However, it demands in-depth understanding of the processes
and the underlying domain in cases of complex models.
Furthermore, creating workflow provenance manually requires
a lot of time to handle each script in the model separately.

We propose to infer the workflow provenance information
based on a given script which is used for actual processing.
Later, this workflow provenance could be facilitated to infer
fine-grained provenance information. Since there are many
programming and scripting languages and each has its own
set of programming constructs and syntax, we showcase our
approach using python scripts. Python1 is widely-used to
handle spatial and temporal data in the scientific community
as well as commercial products such as ArcGIS2 which has
inspired us to make this choice.

Our main contribution is to infer workflow provenance
information based on a given script which is used for ac-
tual processing. Moreover, we provide a guideline to further
customize the workflow provenance graph based on user
preferences. Users can also request fine-grained provenance
information based on the achieved workflow provenance. We
evaluate our proposed approach in a use case that estimates
global water demand. Our evaluation demonstrates that the
proposed approach can handle varieties of python scripts as
well as it is relevant and suitable for scientists validating and
investigating their model.

1http://www.python.org/
2http://www.esri.com/software/arcgis



Fig. 1. Different types of data used in the use case

II. USE CASE: ESTIMATING GLOBAL WATER DEMAND

Freshwater is one of the most important resources for
various human activities and food production. During the past
decades, use of water has been increased rapidly, yet available
freshwater resources are finite. Therefore, estimating water
demand and availability on a global level is necessary to assess
the current situation as well as to make policies for future.
In this use case, we focus on the script that estimates the
total water demand from the year 1960 to 2000 at a monthly
resolution.

A. Model Inputs

Source data are collected from different existing datasets.
Irrigated areas are prescribed by the MIRCA2000 dataset [9]
and the FAOSTAT database3. Crop factors, growing season
lengths, and rooting depth are obtained from GCWM [10]. The
irrigated areas are representative for the period 1960-2000 at
a yearly temporal resolution, i.e. remains constant over each
year, while the crop-related data sets are representative for the
year 2000 at a monthly temporal resolution. A map of country-
specific irrigation efficiency factors is also obtained from [11].
In addition, daily potential and actual bare soil evaporation
and transpiration are prescribed from the simulation results
from the global hydrological and water resources model PCR-
GLOBWB [12]. Fig. 1 shows the input and output data
and the dependences between them. The rectangles represent
input data collected from various sources and the shaded
ones represent output data. The edges from source to target
rectangles represent dependences of target data on source data.
All the data are PCRaster4 maps containing 360×720 cells.

B. Computing Processes

The process begins with reading the annual and monthly
input maps described above. First, using irrigated areas, crop
factors, growing season lengths and potential transpiration,
we calculate potential crop transpiration. Then, we calculate
actual crop transpiration and determine the difference between
potential and actual crop transpiration. In addition, we com-
pute the difference between potential and actual bare soil
evaporation for the top soil layer. Net irrigation water demand
thus equals the sum of the differences between the potential

3http://faostat.fao.org/
4http://pcraster.geo.uu.nl/

and actual crop transpiration and between the potential and
actual bare soil evaporation [13]. However, much of this water
is lost to evaporation and percolation during the transport and
application. Therefore, we calculate irrigation loss and add
this to the net irrigation demand. At last, we use country-
specific irrigation efficiency factors and multiply these with
the net irrigation water demand to yield gross irrigation water
demand.

The estimated gross irrigation water demand is then added
to other sectoral water demands, i.e. industrial, domestic and
livestock water demand, that are directly read from maps.
Furthermore, we use gross irrigation water demand to calculate
return flow to groundwater.

C. Model Outputs

Finally, the resulted total water demand, gross irrigation
water demand, and irrigation return flow are reported as output
maps (shaded boxes in Fig. 1) for each year from 1960 to 2000
at a monthly temporal resolution.

III. BASIC CONCEPTS

Fig. 2. Properties of different nodes

After introducing the use case, we describe the model to
represent the output we are aiming to achieve, i.e. workflow
provenance. Workflow provenance could be represented as a
graph, known as workflow provenance graph. A workflow
provenance graph Gwp is a set of (V,E) where V denotes
the set of vertices or nodes and E denotes the set of directed
edges. We introduce a graph model to distinguish different
types of nodes. In our graph model, there are four different
types of nodes. These are:

• Constant: represents any constant value taking part in an
operation.

• Source Process: represents any operation that either
assigns a constant or reads data from the disk.

• Computing Process: represents any operation that either
computes a value based on its parameters or writes data
into the disk.

• View: represents either any variable defined in the script
or intermediate result generated by a process.

A directed edge connecting two nodes represents the data
flow. In our provenance model, every source and computing
process generates a view. Further, a view or constant node
can be used as an input for multiple source and computing
processes.

Each type of nodes has different properties. Fig.2 shows
them. A constant node has an id starting with ’C’, a value,



the type of the value (e.g. integer, string etc.) and a line#
referring to the line number in the code where it is defined.
All the nodes also have this line# property. Since source and
computing processes could be defined over multiple lines, they
have start and end line#.

A view node has an id prefixed with ’V’ and a name
(variable name). It has also two important boolean properties:
i) isPersistent and ii) isIntermediate. When isPersistent=true, it
means that the variable which corresponds to this view is read
from the disk or is written into the disk and hence, persistent.
Otherwise, the view is not persistent and thus isPersistent
becomes false. The property isIntermediate is true when the
view is produced by a process and contains an intermediate
result. Otherwise, isIntermediate becomes false and it indicates
that the view is created because of defining the corresponding
variable in the script.

The set of properties of both source and computing pro-
cesses are almost similar except one property, hasOutput.
This property belongs to a computing process which indicates
whether a computing process produces a result that is per-
sistent, i.e. written into the disk. Since source processes only
read data from the disk, hasOutput is not applicable for a
source process node. Among the other properties, both source
and computing processes have an id prefixed with ’SP’ and
’P’ respectively, a name and type of operation (e.g. binary,
function call etc.).

IV. OVERVIEW OF THE APPROACH

First, we parse a given python script based on a combined
grammar, containing parser and lexer rules. After parsing the
script, it returns an abstract syntax tree (AST) for the given
python script. Then, we traverse through this AST based on
a tree grammar and for each node in the AST, an object of
the appropriate class based on the object model is created.
Then, we build the initial workflow provenance graph based
on our provenance graph model (see Sec.III). Since the initial
provenance graph captures all syntactical details of the code,
the size of this graph becomes quite large. Therefore, we apply
a set of graph re-write rules on the initial graph to reduce the
number of nodes and edges and thus achieve our workflow
provenance graph. We also provide options to customize the
workflow provenance graph to further reduce the graph com-
plexity. Eventually, we infer fine-grained provenance based on
the workflow provenance graph.

We have used an off-the-shelf grammar5 as a starting point
and extend it according to our requirements. In this paper, we
focus on the mechanism of creating an initial graph, building a
workflow provenance graph from the initial graph, customizing
it and inferring fine-grained provenance eventually.

V. GENERATING INITIAL WORKFLOW PROVENANCE
GRAPH

Fig. 3 shows a sample code snippet from the actual script.
Since the complete script is bigger having 120 lines of code,

5http://www.antlr.org/grammar/1200715779785/Python.g

Fig. 3. Code snippet from the use case

Fig. 4. Different sub-graphs in the initial workflow provenance graph

we use this code snippet as our running example. The code
facilitates several functions from the PCRaster library to
calculate irrigation loss for each year from 1960 to 2000 at
a monthly resolution. The functions scalar and readmap are
used to read input data from the disk. The report function
writes the result into the disk. Another function max returns
the maximum value among its parameters.

We generate the initial workflow provenance graph main-
taining the flow of the program code of the script shown in
Fig.3 by facilitating attributed graph grammar (AGG)6 which
is a graph writing engine.

We start by reading the first line where the PCRaster library
is imported and is referenced as pcr through out the code. We
maintain the mapping between library name and referenced
name so that we can retrieve and use the actual library name
to avoid any ambiguity.

Fig.4.a shows the sub-graph created for line#2 in the script
where the value 100 has been assigned to the variable conv1.
We create the following nodes: C1 for the value 100 which
is a constant node, SP1 for the assign symbol which is a
source process node since it assigns constant and V1, the view
node for the variable conv1. These nodes are also connected
accordingly.

Fig.4.b shows the sub-graph created for line#3-4. In line
3-4, for each year starting from 1960 to 2000, data holding
the irrigated areas value is read using the scalar function and
is assigned into a variable, known as irrArea. We consider
the loop as a computing process node (P17) which takes the

6http://user.cs.tu-berlin.de/∼gragra/agg/



range of 1960 − 2001 as input and produces a loop control
variable year represented as a view (V2). The year variable is
used as an argument for the scalar function to read irrigated
area data of that corresponding year. Since the scalar function
reads data from the disk, we represent this function as a source
process node (SP2) that takes the file name (C5) and other
arguments as input and produces a view (V4), holding the
intermediate result. Next, this intermediate result is assigned
into the variable irrArea, represented as a view (V3). The
outgoing edge from irrArea node (V3) to the node created
for the loop (P17) indicates that irrArea is defined within the
scope of the loop.

Line#5-7 in the code read other data from disk nested
around another loop. Since the mechanism of generating sub-
graph for these lines is similar to the approach described for
line#3-4, the sub-graph is not shown. Since the new loop in
line#5 is defined within the scope of the old loop in line#3, in
Fig.4.b, there is an outgoing edge from the computing process
node created for the new loop (P15) to the computing process
node created for the old loop (P17).

At last, we discuss the sub-graph generated for line#8-9.
It is shown in Fig.4.c. Line#8 shows the formula to calculate
irlCrop, the irrigation loss. We create a computing process
(P8), representing the max function, that takes its parameters
as input and produces a view (V15). Applying other operations
result into creation of more computing process nodes (P9, P10,
P11) and eventually the result is assigned into the variable
irlCrop, represented by the view V13. Line#9 shows the use
of the report function to write the values in irlCrop into the
disk. We create a computing process for the report function
(P13) and it is connected to its parameters accordingly.

VI. BUILDING WORKFLOW PROVENANCE GRAPH

Since the initial graph captures all the syntactical details
of the script, the number of nodes and edges are quite
high. Many of them are intermediate nodes which could be
deleted afterwards. Furthermore, identifying the process which
generates final output and transforming any control-flow (e.g.
loop) into data-flow dependences are also necessary to make
the provenance graph more understandable. Therefore, we
propose to use re-write rules to transform the initial workflow
provenance graph. Each re-write rule has two parts: left-hand
side (LHS) and right-hand side (RHS). Once a rule is defined
and is executed, it searches for the pattern mentioned in the
LHS of the rule. If the pattern is found, it is replaced by the
sub-graph in the RHS of the rule.

A. Re-write Rules

Re-write rules are executed one after another. Rule A makes
a view persistent (IsPersistent=true), if another persistent view
is assigned into it. The top portion of Fig.5(a) shows rule A.
The bottom part of Fig.5(a) shows a sub-graph found in the
initial graph which matches the pattern mentioned in LHS of
rule A. The view V4 is persistent and is assigned into the
view V3 via P2. Therefore, executing this rule changes the
IsPersistent property of V3 from false to true.

(a) Rule A. Making view persistent

(b) Rule B. Deleting intermediate views and assignment process nodes

(c) Rule C. Identifying the process generating persistent output

(d) Rule D. Identifying & eliminating ’forLoop’ process

Fig. 5. Re-write rules

Rule B deletes all intermediate views (IsIntermediate=true)
and subsequent assignment process nodes (name=’=’) if they
are followed by a variable, thus a non-intermediate view
(IsIntermediate=false). It has two variants depending on the
type of the node which produces the intermediate view (either
a source process, SP1 or a computing process, P1) shown in
the upper part of Fig.5(b). The lower part in Fig.5(b) shows



the patterns found in the initial workflow provenance graph
and its rewritten versions for both variants. Executing this rule
discards the shaded nodes from the initial graph and makes a
connection between SP2 and V3 as well as between P11 and
V13 for rules B.i and B.ii respectively.

Rule C identifies the computing process node which gen-
erates a persistent result, i.e. the result that is written into
the disk. The top part in Fig.5(c) explicates the rule. V2 is a
persistent but intermediate view produced by the computing
process P2 that writes persistent data in the disk. P2 has a non-
persistent input view V1 which is produced by the computing
process P1. Now, if this pattern matches to any of the sub-
graphs in the initial workflow provenance graph, we change
the value of a few properties of node P1 and V1 by following
the given reasoning: since P2 only writes data into the disk
and do not change the data itself, the input view of P2, V1, is
equivalent to the output view of P2, V2. Since V2 is persistent,
V1 also becomes persistent (IsPersistent=true). The aforesaid
change leads us to make another change. Since V1 is produced
by P1, P1 must be the computing process which produces
persistent and non-intermediate view V1, referring to a variable
defined in the script. Therefore, the value of hasOutput of P1

becomes true. One may argue that since P2 produces persistent
view V2, P2 should have hasOutput=true also. However, it is
not true since V2 is an intermediate view which does not refer
to any variable defined in the script unlike V1. The shaded
nodes in the bottom part of the Fig.5(c) show the nodes with
the changed properties.

In any programming language, loops could be used for
various purposes. In our example, shown in Fig.4.b, the
computing process pointing to the loop in line#3 is P17 and it
produces the view V2 which refers to the loop control variable
year. Later, V2 is used to form the parameter for the source
process SP2 that reads files from disk. Furthermore, the year
variable represented as V2 is not used as an input to any other
operations within the script. Therefore, we conclude that the
loop is used to iterate over data and does not manipulate any
data structures (e.g. variable, array, list etc.). In this case, the
computing processes referring to the loop are eliminated from
the initial workflow provenance graph.

Rule D identifies and eliminates the loop mentioned in
line#3 and 5 in the running example. The upper part in Fig.5(d)
shows the LHS and RHS of the rule. The nodes P17, V2

and SP2 found in the initial workflow provenance graph (see
Fig.4.b) correspond to the nodes P2, V2 and SP4 in the LHS
of the rule. After getting the match to the pattern shown in
the LHS, the nodes P17 and V2 are deleted from the initial
graph. The resulting sub-graph is shown in the lower part in
Fig.5(d).

B. Graph Model Modification Rules

In the provenance graph model described in Sec.III, both
source and computing processes have a view as an output.
Therefore, the initial workflow provenance graph based on this
model could be further reduced by discarding the views and
also constants read by a source process. To ensure that no

Fig. 6. Model modification rules and patterns found in the graph

Fig. 7. Workflow provenance graph

information is lost, we copy the value of a few distinguishing
properties of the nodes to be deleted to the corresponding
source or computing process nodes before the actual deletion
takes place. Therefore, to apply these rules, we change our
provenance graph model described in Sec.III. The new model
has three types of nodes, except view nodes in the old
model. The new model includes a few more properties for
a source and a computing process. For a source process, we
include the following properties with the existing ones: i)
Constant ID, ii) Constant Name, iii) View ID, iv) View Name
v) IsViewPersistent and vi) IsViewIntermediate. On the other
hand, for a computing process, only the properties relevant
to views are included. These are: i) View ID, ii) View Name,
iii)IsViewPersistent and iv) IsViewIntermediate.

Left side of Fig.6 shows all three model modification rules.
Rule MA unifies a constant node with the following source
process node and deletes the constant node. If a match is
found, the rule MA copies the value of ID and value of
constant node C1 to the property Constant ID and Constant
Value of the source process node SP1 and delete the constant
node C1 eventually. The dotted line in SP1 refers to the source
process node based on new modified model.

The other two rules, MB and MC, unifies a view node
with the preceding computing process and source process node
respectively and discard the view node. Rule MB and MC
also ensure that the outgoing edges from the view node, i.e.
e1, ..., en, are now connecting from the computing process and



(a) Customized Workflow: Grouping intermediate computing processes

(b) Customized Workflow: Discarding constants

(c) Customized Workflow: Slicing process P11

Fig. 8. Customized workflows

the source process node respectively. The right hand side of
Fig.6 shows patterns for all three rules described above found
in the initial graph and the sub-graphs which replace these
found patterns.

After applying all these re-write rules and model modifica-
tion rules, we achieve our workflow provenance graph. Fig.7
shows the workflow provenance graph for the running example
(see Fig.3). The graph consists of three types of nodes: i)
constant that is connected to a computing process only, ii)
source process and iii) computing process. However, several
source and computing processes are highlighted with light
shade which means that the views produced by these processes
are persistent (IsViewPersistent=true) and refer to the variables
defined in the script (IsViewIntermediate=false).

VII. CUSTOMIZING WORKFLOW PROVENANCE GRAPH

The workflow provenance graph can be used to satisfy
users with different level of understanding and objectives. To
allow users to have more insight to the workflow provenance
graph based on their choice, we provide a handful options to
customize the workflow provenance graph.

We have observed that there might be several processing
steps involved to produce a persistent view. As for example,
line#8 in the running example involves several operations and
eventually assign the result into a view that is persistent.

Fig. 9. Fine-grained provenance graph

Based on this observation, we decide to group intermediate
computing processes together until we reach a computing
process that produces a persistent view. This method of
customization is termed as grouping process. The resultant
customized workflow provenance graph is shown in Fig.8(a).

The next customization of the workflow provenance graph
is achieved by discarding the constant nodes from the graph,
known as discarding constants. This representation contains
no information about the constants. Fig.8(b) shows the cus-
tomized graph after eliminating all constant nodes.

We provide another option which allows users to put em-
phasize around a particular process node. We call this method
of customization as slicing process. In this technique, the user
can select a process to visualize the nodes connected to the
selected process with varying radius parameter. The radius
refers to the highest level of ancestors and successors displayed
around the selected process. Fig.8(c) shows the customized
graph for P11 with radius = 2. Here, P9 and C12 are 2nd

level ancestors of P11. There are no 2nd level successors of
P11. This customization method is analogous to the generic
zooming in/out feature.

VIII. INFERRING FINE-GRAINED PROVENANCE

Fine-grained provenance information could be inferred
based on the workflow provenance graph and timestamps of
contributed input values. In this use case, there are more
than 3000 PCRaster maps containing input data. We create a
SQLite7 database that contains tables for each persistent view
found in the workflow provenance graph and then populate
these tables with the values transformed from the map files.
Further, we attach a timestamp to every value based on the
data collection time. The size of the database for the use case
(see Sec.II) is around 40GB.

The inference phase is quite straightforward. First, users
choose a particular value for which they want to have fine-
grained provenance from any of the persistent output views.
Each value is characterized by it’s data collection time (year,
month) and cell position in the (x,y) co-ordinates. Having this
input from users, we apply the basic provenance inference
algorithm [14]. This inference method is applicable to static

7http://www.sqlite.org/



data which perfectly suits to our use case. The method infers
input values contributed to produce the chosen output value
based on the given characteristics.

Fig.9 shows the fine-grained provenance graph based on
the workflow provenance. The source computing processes are
highlighted with different shades based on their data collection
frequency. Suppose, both SP3 and SP4 read maps that vary
over each month in every year, i.e. yearly-monthly variable
map. The node SP2 is highlighted in a different shade than
those because it reads a map that varies only over the year,
i.e. yearly variable map. In the fine-grained provenance graph,
the actual data values are visible which help scientists to
understand the origin of an unexpected value.

IX. EVALUATION

We build a workflow provenance graph based on the python
script having 116 lines of code. There are 438 nodes in the
initial workflow provenance graph. After applying the re-
write rules and model modification rules (see Sec.VI), the
workflow provenance graph consists of 139 nodes which
shows a significant reduction in the graph size by more than
300%.

We had several meetings with two scientists who are work-
ing in this use case. In the first meeting, we presented our
approach of inferring provenance information and collected
related data and scripts. Later, we developed our prototype
and tested it with the given script as well as other python
scripts.

After finalizing the prototype, we had another interview with
the scientists to ask them several open-ended questions. We
evaluate the proposed approach on the basis of four features:
i) extensibility, ii) customization, iii) debugging-friendliness
and iv) reproducibility.

A. Extensibility

Extensibility refers to the ability to handle different python
scripts and building workflow provenance graph out of them.
Our prototype can handle varieties of python scripts using
different libraries. However, a user has to provide few basic
information on each method call at the very first run. These
includes whether the function reads persistent data or not (e.g.
true/false) and whether the function writes persistent data or
not (e.g. true/false).

Question: To what extent do you think that the extensibility
of the proposed approach is helpful?

Feedback: The proposed approach is generic in the sense
that it can handle varieties of python scripts and builds work-
flow provenance graph out of those. However, at the very first
run, the user has to enter method-specific information which
might be time-consuming and also requires some training for
users.

B. Customization

Customization refers to the ability to adapt the workflow
provenance graph based on user preferences. In Sec.VII, we
discuss different customization techniques on the workflow
provenance graph in detail.

Question: To what extent do you think that the customiza-
tion on the workflow provenance graph is important?

Feedback: It is an important feature provided to users where
users could customize the graph based on their objectives.
The few basic options chosen for customizations are relevant.
However, grouping process and discarding constants options
could be only useful for representation, not for the modeling
purpose. Moreover, it would be nice to add customization
feature in other dimensions of the graph as well (e.g. node
representation, graph layout etc.) to allow users to modify the
layout or color scheme of the graph.

C. Debugging-friendliness

Both workflow and fine-grained provenance graph could be
used for debugging purpose. The workflow provenance graph
shows the flow of the program thus could be used for code-
level debugging. On the contrary, fine-grained provenance
graph refers to the input values and hence, could be used for
value-level debugging.

Question: Have you ever experienced the need for a graph-
based debugging tool? To what extent do you think that the
provenance graphs are useful as a debugging tool?

Feedback: Usually, the scientists use the debugging tool
which comes with the development environment. However,
they appreciate the idea of debugging their code and the
model using provenance graphs. Code-level debugging could
be useful to determine the efficiency of the code, i.e. finding
out code repetition. It is also useful to compare two different
versions of the code expected to produce the same value. On
the contrary, value-level debugging provides easy access to
the actual data. It proves also beneficial when tracing back for
identifying missing values in the file.

D. Reproducibility

Reproducibility refers to the ability to produce the same
result using the same set of input values, irrespective of the
time of the execution of the involved operations.

Question: To what extent do you think that fine-grained
provenance graph is useful to achieve reproducibility? How
do you use your reproducible results?

Feedback: Fine-grained provenance graph shows original
data values contributed to produce the result which helps to
achieves reproducibility. In practice, reproducible results might
be useful to explain the mechanism of the model to one of the
other scientists from the same group.

E. Discussion

The different features of the proposed approach makes
it more practical for scientists to manage provenance data
with limited knowledge of scientific workflows and database.
The extensibility feature ensures that our solution can handle
python scripts using different libraries. However, the first time
entry of method-specific information must be done only once.
Since it requires only few information, training phase for users
should not be prolonged. The customization feature allows
users to tailor the workflow provenance graph based on their



choice which has been appreciated. However, one of our future
plans is to add further customization on different dimensions.
Scientists could also see the use of provenance graphs for
different levels of debugging. However, this feature provides
static debugging only and cannot be used for debugging at
each step execution. Eventually, scientists admit that the fine-
grained provenance can achieve reproducibility to validate
one’s own model. Overall, the prototype satisfies the scientists
with its simplicity and ease to use.

We demonstrate the mechanism of the proposed approach
by facilitating a use case that involves static data. In case of a
streaming scenario, the loop could be used to manipulate input
data (e.g. array, list etc.) by implicitly defining trigger rate, i.e.
how frequently the process should be executed and window
size, i.e. the boundary over input data considered in a process.
In this case, we could build workflow provenance graph by
adding few properties to a process in the graph model based
on [15].

X. RELATED WORK

There are several existing methods which maintain fine-
grained provenance data explicitly. LIVE [4] is a complete
DBMS which preserves explicitly the lineage of derived data
items in form of boolean algebra. In sensornet republishing [5],
authors used an annotation-based approach to represent data
provenance explicitly which is expensive in terms of storage.
These techniques work on the top of a relational database
system with a specific workflow. Therefore, neither of these
methods are applicable in our use case.

Recently, researchers have paid a lot of attention to make
provenance-aware workflow engine. A provenance model de-
scribed in [16] can collect provenance automatically during
runtime. This model is an extension of Kepler8 workflow
engine. A layered model to represent workflow provenance is
introduced in [17] which facilitates windows workflow founda-
tion9 as workflow engine. A relational DBMS has been used to
store captured provenance data. These techniques assume the
presence of workflow provenance before the execution starts
and thus applicable for a closed system. Since our focus is to
build the workflow provenance graph automatically from the
given script, these methods cannot offer any help to us.

In [18], authors proposed an approach that can reconstruct
provenance of the manipulations done over the data in an open
system like excel sheet or a programming tool like R. This
approach used a library of basic transformations to infer and
reconstruct provenance for a particular value. Since it requires
workflow of transformations prior to the reconstruction of
provenance, this approach is not extensible enough.

Another work is proposed in [19] to document provenance
by modifying the source code of a program automatically.
It provides fine-grained data provenance after executing the
script. However, one distinguishing factor is that our ap-
proach provides both high-level workflow provenance and
fine-grained data provenance.

8https://kepler-project.org/
9http://www.windowsworkflowfoundation.eu/

XI. CONCLUSION AND FUTURE WORK

Scientists feel the importance of provenance data. However,
provenance data have been rarely maintained due to the lack
of proper training to use workflow engines and other tools.
Therefore, in this paper, we propose an approach which
can build workflow provenance graph automatically based on
a given python script and eventually can infer fine-grained
provenance information. The approach is generally applicable
to any procedural languages. We build a prototype of our
system and is demonstrated to the scientists working in the
use case. In future, we plan to improve user interface of the
prototype as well as to add new functionalities. Overall, our
proposed approach could help scientists to manage provenance
with minimal training.

REFERENCES

[1] H. B. Newman, M. H. Ellisman, and J. A. Orcutt, “Data-intensive
e-science frontier research,” Commun. ACM, vol. 46, no. 11, pp. 68–77.

[2] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” SIGMOD Rec., vol. 34, no. 3, pp. 31–36, 2005.

[3] P. Buneman and W. C. Tan, “Provenance in databases,” in SIGMOD
2007. New York, NY, USA: ACM, 2007, pp. 1171–1173.

[4] A. Sarma, M. Theobald, and J. Widom, “LIVE: A Lineage-Supported
Versioned DBMS,” in SSDBM 2010, LNCS, vol. 6187, pp. 416–433.

[5] U. Park and J. Heidemann, “Provenance in sensornet republishing,”
Provenance and Annotation of Data and Processes, pp. 280–292, 2008.

[6] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Facilitating fine grained
data provenance using temporal data model,” in DMSN 2010, ACM
International Conference Proceeding Series, pp. 8–13.

[7] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Adaptive inference of
fine-grained data provenance to achieve high accuracy at lower storage
costs,” in e-Science 2011, IEEE Computer Society Press, pp. 202–209.

[8] M. R. Huq, P. M. G. Apers, and A. Wombacher, “Fine-grained prove-
nance inference for a large processing chain with non-materialized
intermediate views,” in SSDBM 2012, LNCS, vol. 7338, pp. 397–405.

[9] F. Portmann, S. Siebert, C. Bauer, and P. Dll, “Mirca2000 - global
monthly irrigated and rainfed crop areas around the year 2000: a new
high-resolution data set for agricultural and hydrological modelling,”
Global Biogeo. Cyc, vol. 24, 2010.

[10] S. Siebert and P. Dll, “Quantifying blue and green virtual water contents
in global crop production as well as potential production losses without
irrigation,” Journal of Hydrology, vol. 384, pp. 198–217, 2010.

[11] J. Rohwer, D. Gerten, and W. Lucht, “Development of functional types
of irrigation for improved global crop modelling,” PIK Report 104,
Potsdam Institute for Climate Impact Research, 2007.

[12] L. P. H. van Beek, Y. Wada, and M. F. P. Bierkens, “Global monthly
water stress: I. water balance and water availability,” Water Resources
Research, vol. 47 2011.

[13] Y. Wada, L. P. H. van Beek, D. Viviroli, H. H. Drr, R. Weingartner, and
M. F. P. Bierkens, “Global monthly water stress: II. water demand and
severity of water,” Wtare Resources Research, vol. 47, 2011.

[14] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Inferring fine-grained
data provenance in stream data processing: Reduced storage cost, high
accuracy,” in DEXA 2011, LNCS, vol. 6861, pp. 118–127.

[15] A. Wombacher, “Data workflow - a workflow model for continuous data
processing,” CTIT, University of Twente, Enschede, Technical Report
TR-CTIT-10-12, 2010.

[16] S. Bowers, T. M. McPhillips, and B. Ludäscher, “Provenance
in collection-oriented scientific workflows,” Concurrency and
Computation: Practice and Experience, vol.20, no.5, pp. 519–529.

[17] R. Barga and L. Digiampietri, “Automatic capture and efficient storage
of e-science experiment provenance,” Concurrency and Computation:
Practice and Experience, vol.20, no.5, pp. 419–429.

[18] P. Groth, Y. Gil, and S. Magliacane, “Automatic metadata annotation
through reconstructing provenance,” in Semantic Web in Provenance
Management, CEUR Workshop Proceedings, vol. 856, 2012.

[19] S. Miles, “Automatically adapting source code to document provenance,”
in Provenance and Annotation of Data and Processes, LNCS, vol.
6378, pp. 102–110, 2010.


