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Abstract 
Iterative least-squares estimation requires accurate re- 
flectance models t o  retrieve geometrical parameters of 
3-D objects f r o m  a n  image projection. W e  investi- 
gate the use of separating the diffuse (body) reflection 
f r o m  the specular (surface) reflection, where the latter 
as responsible f o r  image hzghlights. The performance 
of several models has been analysed by comparing lo- 
cal hagher-order derivatives of the least-squares error 
function. Experiments show that the (smooth) diffuse 
component yields the best convergence properties, while 
the (sharp) specular component can be utilized to  im- 
prove noise insensitivity. 

1 Introduction 
Retrieving geometrical parameters of 3-D objects in 
a scene from a 2-D image projection is a non-linear 
inverse problem for which iterative least-squares esti- 
mation yields an optimal solution provided that the 
measurement noise obeys an additive Gaussian model. 
The method requires prior knowledge about light, ma- 
terial and camera properties applied in accurate imag- 
ing and reflectance models. Estimates of the parame- 
ters to be retrieved are passed to these models to gen- 
erate an image prediction that will be compared with 
the real image. Local linearization of the model func- 
tion settles the least-squares difference into an update 
of the parameter estimates. This procedure is repeated 
until the difference reaches a minimum. Korsten [l], 
De Graaf et a1 [2] and Lowe [3] have all demonstrated 
that such a model based approach to image under- 
standing yields good results in estimating 3-D object 
parameters from camera pictures. 

The selection of reflectance models, imaging models 
and other submodels of the total measurement model 
will affect the performance of the parameter estima- 
tion process. The overall performance is determined 
by convergence speed and area and by insensitivity t o  
measurement noise. The estimator provides local min- 
imization of the least-squares error between real and 
predicted measurements. While the first-order partial 
derivatives of the error function are zero at  the point 
of convergence, the second-order partial derivatives at 
that place indicate the steepness increase of the er- 
ror function in the direct neigbourhood of the final 
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estimate. A steeper error function implies a smaller 
deviation in parameter values at  the same deviation 
in the measurements. Therefore, local second-order 
deriv<atives of the error function can be used to assess 
the noise insensitivity of the measurement model. 

DiiTerences in the convergence properties of the es- 
timation process are mainly depending on the mea- 
sure of linearity of the model function. Increasing 
non-linearity of the model will increase the number 
of iterations required to converge, because the itera- 
tive estimator is driven by local linearization of the 
model function. The non-linearity annuls the con- 
stancy of the second-order partial derivatives of the 
least-squares error, which is quantified by the magni- 
tude of the third-order partial derivatives. Therefore, 
the local third-order derivatives of the error function 
can be used to  measure the convergence speed of the 
iterative least-squares estimator in the neigbourhood 
of the point of convergence. 

The use of local derivatives of the error function en- 
ables us to analyse the convergence speed and insen- 
sitivity to measurement noise of our estimation prob- 
lems without the experimental effort of running the 
iterative estimator for many different initial estimates 
and noise realizations. Furthermore, the analysis may 
be restricted to  a limited number of points in param- 
eter ispace that are considered to  be representative for 
the estimation problems that have to be solved. Anal- 
ysis of the local derivatives in these points offers the 
possibility to compare different (sub)models and select 
the one with the best performance. We applied this 
method to  compose our reflectance model. 

1.1 Reflection component separation 
The reflectance from the surface of an object can be 
considered as a sum of diffuse (body) reflection and 
specular (surface) reflection (see e.g. Nayar et a1 Ill]). 
The former component can be modelled by the well- 
known Lambertian reflectance model. The Torrance- 
and-Sparrow model [12] for (off)-specular reflection of 
rough surfaces has been applied to  model the latter 
comlponent. It accounts for the occurrence of shiny 
spots upon curved surfaces. We consider these so 
called highlights to  be useful clues for shape from shad- 
ing rather than inconvenient image disturbances. Fig- 
ure 1 shows the image irradiance profile of such a spec- 
ularity taken by a line-scan camera. 

The sharpness of the specular reflection component 
increases the steepness of the error function which im- 
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plies that the measurement model should become less 
sensitive to  noise. Compared to  the smoothness of 
the diffuse reflection model however, that same sharp- 
ness is also responsible for a significant increase in the 
non-linearity of the model function. It would explain 
the convergence problems of the estimator as expe- 
rienced while taking measurements directly from an 
image that contains highlights. This duality in the 
usefulness of highlighted images to the estimation pro- 
cess leads to  the hypothesis that separating diffuse and 
specular reflection components in advance may benefit 
the overall performance of the estimator. 

Inherent differences in the spectral distribution 
and/or polarization of diffuse and specular reflectance 
offer possibilities to  separate reflection components in 
images that contain highlights. The spectral density 
of the diffuse component is the product of the spectral 
densities of the light source and the surface reflectance, 
while the spectral density of the specular component 
originates from the light source only. Gershon [4] and 
Klinker [5] utilize this distinction to separate reflec- 
tion components in colour images. Wolff and Boult [SI 
demonstrated how the unpolarized diffuse reflectance 
can be separated from the partially polarized specu- 
lar reflectance. Nayar et a1 [7] have integrated both 
separation methods. 

Our paper tentatively assumes that the separation 
between the diffuse and specular reflection components 
can be established. Figure 1 shows the result of this 
operation on the output of a line-scan camera. We con- 
centrate on the use of separated reflection components 
to  the convergence properties and noise insensitivity of 
estimating geometrical parameters of 3-D objects from 
a highlighted image. A local derivatives comparison of 
reflection models has been performed to  demonstrate 
that the best convergence is obtained from estimation 
with the (smooth) diffuse component only, but that 
final assistance of the (sharp) specular component im- 
proves the accuracy of the estimates. 

2 Parameter estimation 
The parameter estimation of 3-D objects from a 2-D 
image is performed by a general method to  determine 
an optimal estimate of an unknown parameter vector d 
from a measurement vector 8 given the forward model 
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@Z) of the non-linear relationship between them: 

The notation has been adopted from Korsten [l]. In 
case the additive measurement noise 2 has a zero-mean 
Gaussian distribution and prior knowledge about d 
is not available, the maximum a posteriori estimate 
of 3 results from minimization of the weighted least- 
squares error l ( Z )  of the measurement vector: 

e'= G(Z) + g (1) 

(2) 
1 -  + 

2 !(a) = -(e - s(a))*ce:'(e'- d(&)) 
The weighting matrix is given by the inverse of the 
measurement covariance matrix C;, which equals the 
noise covariance Cz. 
2.1 The Gauss-Newton method 
If the model is piecewise differentiable, the Gauss- 
Newton method (see e.g. Sorensen [SI) can be applied 
to minimize Eq. (2) by iterative linearization around 
the previps  estimate 3, of parameter vector d. Lin- 
earizing e (d )  from Eq. (1) results in the following mea- 
surement error vector &,: 

The first-order partial derivatives of model e'(d) 
around Gn form a Jacobian matrix B g  , whose numer- 
ical approximation B p n  may be defined as follows: 

I .  .) (4) 
e'(& + A&) - e'(&) B4" = ...  

i=l ... m 
A,& ( Ai 

Elements A1 to  A, of vector A contain the finite dif- 
ferences of the m parameters to  estimate and ZI to  e', 
are the unit vectors of parameter space. 

If the prior uncertainty about parameter vector 15 is 
expressed by an infinite covariance CB = col, an unbi- 
ased weighted least-squares estimator can be derived 
for the parameter error vector 62, from Eq. (3): 

+ 
6a, = G -  (?in = ( B ; n c p L ) - l B T  cep3, (5) a* 

In case of uncorrelated measurement noise, covariance 
matrix CeT' is diagonal and may be ignored. The pos- 
terior covariance matrix C : which equals the param- 
eter covariance Cs, is given by: 

601, 

Iterative application of Eq. (5) yields the Gauss- 
Newton method. Figure 2 shows a schematic overview. 
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3 Performance analysis 
Local higher-order derivatives of the least-squares er- 
ror function were recommended for measuring param- 
eter estimation performance. Tarantola [9] derives the 
following Hessian matrix which contains the second- 
order partial derivatives of error function l(3) as de- 
fined in Eq. (2): 

Z 
-2 -1,s -I -os o 0.5 I 1.5 z -z -1,s .I -0.5 o 0.5 I I S  z .Z.I.S .I -0.5 n 0.5 I IS z 

Local linearization of the model assume: local second- 
order derivatives of the model function @(a) to be zero. 
The second term of the Hessian matrix from Eq. (7) 
vanishes in that case, after which rewriting the first 
term gives Hessian matrix Hk. that contains the local 
second-order derivatives around estimate 2,: 

Matrix H k n  is symmetric and positive-semidefinite [8]. 
An attending reader may have observed that H2, is 
the inverse of the posterior parameter covariance ma- 
trix C6k from Eq. ( 6 ) .  Steepness increase of the error 

function around h, is inversely proportio_nal to the co- 
variance of this estimate. If error vector Sa has a Gaus- 
sian distribution, its probability density is defined by 
the quadratic form in equation: 

(9) 

It decribesAan error ellipsoid in parameter space around 
estimate G,. This contour of constant probability 
bounds the c-n confidence interval [8]. An example in 
Figure 3-(a) shows error ellipsoids of the 2-D matrices 
HO and H I  for equal value of c2. 

3.1 Comparing Hessian matrices 
A comparison of two (or more) Hessian matrices orig- 
inating from different estimates or measurement mod- 
els is not a trivial procedure, because each matrix con- 
tains m2 partial derivatives in different directions of 
the m-dimensional parameter space. Defining an ar- 
bitrary n o m  on H,., to weigh the contributes of all 
partial derivatives is meaningless when dealing with 
a parameter space that spans parameters of different 
physical dimensions (e.g. meters and radians). The 

criterion to  compare Hessian matrices has to  be inde- 
pend'ent of the physical dimensions of parameter space 
[9]. !Such a relative comparison between a pair of those 
matrices can be established by examining one of them 
on a metric defined by the other. 

Representing Hessian matrix H1 on a metric defined 
by Hessian matrix HO requires a matrix transforma- 
tion that normalizes the Iatter one. The transition 
matrix of the corresponding co-ordinate transforma- 
tion is given by the root R = VAi  of matrix Ho: 

H~ = V A V ~  = ( v A + ) ( v A * ) ~  = R R ~  ( io)  
The columns of the (orthonormal) matrix V are the 
eigenvectors of Ho,  which align with the principal axes 
of the HO ellipsoid. Rotation matrix V brings the axes 
of parameter space in coincidence with these principal 
axes. This first step of the co-ordinate transformation 
is shown in Figure 3-(b). Diagonal matrix A i  contains 
the roots of the (real and positive) eigenvalues of Ho, 
which are the reciprocal half-lengths of the principal 
axes of the HO error ellipsoid. Matrix A4 scales the 
paratmeter space to normalize these half-lengths. This 
second step of the co-ordinate transformation is shown 
in F'igure 3-(c). The unit circle representing the HO 
ellipsoid corresponds with the unit matrix I obtained 
by alpplying transition matrix R from Eq. (10) in the 
matrix transformation of Ho to its new metric. 

[ H ~ ] ~ O  = R - ~ H ~ R - ~  = R - ~ R R ~ R - *  = I (11) 
The same transformation is performed on H I  to obtain 
its representation on the metric defined by H o :  

= R - ~ H I R - ~  = A- iVTHIVA- i  (12) 

It can be derived from this equation that matrix 
[H1]lHo has adimensional elements. It maps a space 
into itself (automorphism), where Hessian matrices 
map dual spaces [9]. Determining the eigenvalues of 
[H1:IHO has mathematical significance, because their 
independence of the physical units of parameter space 
guarantees a fair comparison of the Hessian matrices. 

3.2 Measuring convergence speed 
The non-linearity of the model function which mainly 
determines the convergence speed of the estimator was 
leacling to inconstancy of second-order partial deriva- 
tives of the least-squares error ^function. The local in- 
constancy around an estimate 5, can be measured by 
comparing two Hessian matrices H - A , ~ ,  and H + A , ~ ,  
from neigbouring points in parameter space. These 
numerical approximations are obtained by evaluating 
Eq. (8) with numerical Jacobian matrices B - L , ~ ,  and 
B+6,zn respectively. Clever use has been made of the 
possibility to vary the finite differences vector from 
Eq. (4). Disparities between H - A , ~ ,  and H+s,k, are 
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representative forl the third-order partial derivatives 
around estimate dn in the directions parallel to the 
axes of parameter space. A fair Hessian matrix com- 
parison will proceed in accordance with Section 3.1: 

[ H - ~ , ~  a n  I ~ + X A  = ursniyT (13) 
The columns of matrix U contain the eigenvectors of 
H-J on a metric defined by H+A and diagonal matrix 
I'Sn contains the corresponding eigenvalues. Local lin- 
earity of the model function would yield equal Hessian 
matrices and in that case the [H7~lH+X disparity el- 
lipsoid coincides with the unit sphere. Therefore, the 
measure of non-linearity around estimate Gn is deter- 
mined by the half-axis deviating most from unit length 
in a relative sense, which meets its numerical corre- 
spondence in the maximum of the eigenvalue roots 

1 

2 2 , f f n  
and their reciprocals: 

The value of 12n equals one in the linear case and be- 
comes larger as the non-linearity around estimate d, 
increases. Specifying n -+ 00 yields l2- as a measure 
for the convergence speed around final estimate km 
when using a least-squares Gauss-Newton estimator. 
An increasing value of 12- puts a number of different 
measurement models into decreasing order of conver- 
gence speed. 

3.3 Assessing noise insensitivity 
Noise insensitivity of different measurement models 
had to  be assessed by the local second-order deriva- 
tives from the Hessian matrix of the least-squares error 
function. The comparison of Hessian matrices from 
two different measurement models boils down to de- 
termining whether the error ellipsoid of one matrix 
encloses, intersects or is enclosed by the error ellipsoid 
of the other. It requires the adimensional comparison 
procedure from Section 3.1 to  ascertain this. 

[ H ~ , ~ ~ ] ~ o A  = Ur2_uT = [C O,% 1 ~ 1 ~ 2 ~  (15) 
The columns of matrix U contain the eigenvectors and 
diagonal matrix ran contains the corresponding eigen- 
values of the Hessian matrix H I  on a metric defined 
by Ho, which is equivalent to  the covariance matrix CO 
on a metric defined by Cl. 

Comparing two arbitrary error ellipsoids has now 
been simplified to  a comparison of the [HI]" ellipsoid 
with the unit sphere. Their intersection or mutual 
enclosure is determined by the (reciprocal) half-lengths 
of the principal axes, which are represented by the 
range of eigenvalue roots r:,an of matrix [ H ~ I H O :  

Figure 4: 
The zy-plane 

c projection of 
the cylinder 
scene. 

The positioning of unit length with respect to  this 
range L2n may indicate which of the HO and H I  mea- 
surement models is least noise-sensitive around esti- 
mate ?in. If all eigenvalues exceed unity, the HO er- 
ror ellipsoid encloses the H I  error ellipsoid, so the 
H I  model provides better noise insensitivity in all di- 
rections of parameter space. The opposite holds if 
all eigenvalues are smaller than unity. However, if 
unity falls into the range L2n, the HO and H I  error 
ellipsoids intersect and pointing out the least noise- 
sensitive model is depending on the viewing direction 
of parameter space. Making a choice based on one sin- 
gle direction would be equivalent to  defining a norm 
on a Hessian matrix (see Section 3.1). 

Quantitative interpretation of the roots in L2. as 
well as judgement of the overall noise insensitivity in 
case of intersecting error ellipsoids requires knowledge 
from the application domain. The question whether a 
covariance improvement of a parameter with a certain 
physical dimension will outweigh a covariance worsen- 
ing of another parameter with a different physical di- 
mension can not be answered unconditionally. But re- 
alizing that the many-dimensionality of the parameter 
space may hinder the visualization of error ellipsoids, 
the root range La, still provides us with a useful tool 
for judging the noise insensitivity of two different mea- 
surement models around the final estimate dm. Noise 
insensitivity analysis of more than two measurement 
models generally requires the mutual comparison of 
each pair to  get a complete overview. 

4 Modelling 
The scene model we use for the estimation of geomet- 
rical parameters consists of one solid opaque cylin- 
der aligned with the z-axis of the world. Figure 4 
shows a top view of such a scene. The cylinder is 
irradiated by a single isotropic point light source L. 
The imaging model supplies a perspective projection 
of the reflectance onto the CCD-elements of a pinhole 
line-scan camera C aligned with the zy-plane (see e.g. 
Van der Heijden [lo]). Figure 1 showed an example of 
the camera output without measurement noise. The 
cylinder surface consists of a plastic material, which 
guarantees both a significant diffuse and (off)-specular 
reflection component. 
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Table 1: Measurement vectors e' and covariances C+ 

4.1 Measurement models 
The use of separated reflection components will be Tablle 3 

stu$ed by applying four different measurement mod- 
els O ( 6 )  in the parameter estimation process. Table 1 
lists the measurement vectors produced by these mod- 
els in conformity with Eq. (1). Measurement vector 
e'd+s contains the unseparated irradiance, e'd the dif- 
fuse component, _the specular component and the 
double-sized vector 6dl ls  both reflection components in 
parallel. A separation algorithm hasJo filter these vec- 
tors from the vectorized irradiance E of the 1-D array 
of CCD-elements (see Figure 1). 

The model approximations e'(&,) of the measure- 
ment vector are generated by a ray-tracer. The lack 
of a physical+scene implies that the process gene_rat- 
ing the real 8 has to be simulated by ray-tracing e (G)  
%nd adding noise 3. The measurement vectors 8 d  and 
8, are considered to be affected by additive zero-mean 
Gaussian noise with no spatial correlation and with 
constant standard deviations u d  and us respectively. 
Thermal and fixed pattern noise in CCD-elements sat- 
isfies these properties [lo]. If separation of reflection 
components is established by means of multiple colour 
or polarization channels, it may be aszumed :hat no 
correlation exists between the noise in Od and Os. This 
leads to the definition of the covariance matrices C,- as 
listed in Table 1. 

5 Experimental results 
All our performance experiments refer to the simulta- 
neous estimation of the geometrical parameters from 
the scene of Figure 4. The 3-dimensional parameter 
vector ii! consists of the radius T of the cylinder, its 
distance q to the camera and its angle 4 with the op- 
tical axis. All other parameters in the imaging and 
reflectance models are assumed to  be known. 

Although the behaviour of a non-linear estimator 
varies in its parameter space, relevance is preserved 
when confining the analysis to a retresentative point. 
Therefore, our measurement vector 8 always originates 
from the irradiance profiles of Figure 1 that is assumed 
to  be a representative image of a highlight on the cy$- 
der surface. Instead of estimating final estimate &, 
for a whole set of noise realizations, we may expect 

Hdlls H ,  H d  

E d + , ]  (0.62,0.82) (0.74,2.27) (0.68,4.53) 
L) (0.16,2.77) 

34,0.99) 

: Root range Lk-of matrix [ H I ]  for U d  = U,. 

a representative estimator performance from realiza- 
tion 5 = 6. It converges to the real parameter vector 
13, which is the mean final estimate for an unbiased 
estimator. 

5.1 Convergence measurements 
The non-linearity measure 12- from Section 3.2 which 
determines the convergence speed around final esti- 
mate a, has bee: listed in Table 2 for all four mea- 
surement models O ( 6 ) .  Figure 5 shows intersections of 
the corresponding [H-d] H+g disparity ellipsoids with 
the principal planes of the 3-D parameter space after 
the co-ordinate transformation. Notice that in gen- 
eral the principal axes of the ellipsoids do 5ot coincide 
with those planes. The diffuse component 8d  will yield 
the best convergence speed, because its 12- value and 
disparity ellipsoid are closest to unity. The specular 
component 8, participating in the three other measure- 
menit models definitely increases their non-linearity. 
These analytical results are consonant with the exper- 
imental convergence measurements reported by Glas 
and Van der Heijden [13]. 

5.2 Noise insensitivity analysis 
The root range Lgm from Section 3.3 which contains 
the eigenvalue roots of the [H1IHO matrix around final 
estimate d, has been listed in Table 3 for all pairs of 
measurement models. Measurement noise of the dif- 
fuse and specular reflection components is given by 
fixed standard deviations U d  = U, (see Table 1). The 
first column of Table 3 attributes :he best noise in- 
sensitivity to  measurement model 6)dl/,(ii!), because it 
proves that on a metric defined by Hessian matrix Hdlls 
the unit sphere is enclosed by the ellipsoids of all other 
measurement models. Putting those three models into 
order of noise insensitivity is disputable for their mu- 
tual intersection that follows from the last two columns 
of Table 3. 

Fiigure G_shows principal plane intersections through 
the centre & of the error ellipsoids of all measurement 
modiels. These intersections correspond with the error 
ellipses of estimation problems in which two param- 
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Figure 5 :  Principal Figure 6:  Principal 
plane intersections of plane intersections of 
the [H-gIH+h dispar- the 1-a error ellipsoids 
ity ellipsoids. for g d  = as. 

eters of G are unknown and the third one is known. 
Notice that in general the enclosure of a 3-D ellipsoid 
is not guaranteed by enclosure of its principal plane in- 
tersections. Neverthe$ss, these pictures confirm that 
measurement model f ? ~ ~ ~ s [ G )  yields the best noise in- 

in diffuse and specular reflection components, that 
would harm noise insensitivity. Quantum noise from 
CCD-elements and fluctuations with respect to  the re- 
flectance model provide signal-dependent noise [ lo] .  
The least-squares estimator is not optimal in that case, 
but its performance may still benefit from reflection 
component separation. 

Comparing local higher-order derivatives of the 
least-squares error function appears to  be a useful 
tool to analyse the estimation performance of differ- 
ent measurement models. It surmounts the difficulties 
in visualizing many-dimensional parameter spaces and 
reduces the amount of experimental effort required to 
cover non-linearity of the model and uncertainty in its 
measurements. When adapting the order of the deriva- 
tives to be compared, similar methods can be applied 
to analyse the performance of estimators with other 
error criteria like least-absolute-values 191 or other it- 
eration methods like Newton-Raphson [Si. 
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