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Abstract— This paper studies the synchronization problem
for undirected, weighted networks where agents are non-
introspective (i.e. they have no access to any state or output) and
do not need another communication layer to exchange internal
controller states. The more significant is that this paper deals
with weakly-non-minimum-phase agents. We consider heteroge-
neous networks with linear agents. A purely decentralized linear
dynamical protocol based on a low-and-high gain methodology
is designed for each agent, where the only information available
for each agent is a weighted linear combination of its output
relative to that of its neighboring.

I. Introduction

In the last decade, many researchers have worked on

the synchronization problem of networks. The area spreads

from the theoretical research to different applications, such

as robot networks, sensor networks, power networks, social

networks, and so on. The goal of synchronization is to secure

an asymptotic agreement on a common state (state syn-

chronization) or output trajectory (output synchronization)

among agents of the network through decentralized control

protocols. Part of earlier works can be seen in [8], [9],[11] for

the state synchronization problem of homogeneous networks

(i.e. agents are identical), and in [1], [2], [13] for the output

synchronization problem of heterogeneous networks.

For heterogeneous networks, with higher-order, non-

introspective agents, it becomes more challenging to achieve

synchronization among agents. Grip et al solve the output

synchronization problem for such a kind of network in [4]

by using a distributed high-gain observer, but an extra layer

of communication to exchange the internal controller states

is needed as introduced in [5]. This additional layer is later

dispensed in [3], where a purely distributed linear time-

invariant protocol with a low-and-high gain is used. Zhang et

al extend that work to more complex networks with external

disturbances in [14], [15], [7].

However, all the above mentioned references which do not

use an exchange of controller states require that agents are

minimum-phase. That means all invariant zeros of agents are

in the open left half complex plane. In [10], we studied
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weakly-non-minimum-phase agents for homogeneous net-

works, that is invariant zeros of agents can be located on

the imaginary axis. The agents considered in that paper are

single-input-single-output (SISO) and non-introspective.

This paper continues our studies on output synchroniza-

tion. We consider networks of heterogeneous, weakly-non-

minimum-phase linear agents with the property that the

weakly-non-minimum-phase zeros are the same for each

agent. The only information accessible for each agent is a

linear combination of its output relative to its neighboring

agents, and agents do not exchange their internal controller

states.

A. Notations and definitions

Given a matrix A ∈ Cm×n, a′ denotes its conjugate trans-

pose, ‖A‖ is the induced 2-norm. We denote by blkdiag{ai},

a block-diagonal matrix with a1, . . . , an as the diagonal

elements, and by col{xi }, a column vector with x1, . . . , xn
stacked together, where the range of index i can be identified

from the context. A ⊗ B indicates the Kronecker product

between A and B.

Definition 1: A matrix pair (A,C) is said to contain the

matrix pair (S, R) if there exists a matrix Π such that ΠS =

AΠ and CΠ = R.

Remark 1: Definition 1 implies that for any initial condi-

tion ω(0) of the system ω̇ = Sω, yr = Rω, there exists an

initial condition x(0) of the system ẋ = Ax, y = Cx, such

that y(t) = yr (t) for all t ≥ 0 ([6]).

Definition 2: A system (A, B,C) is weakly-non-minimum-

phase if all the invariant zeros are in the closed left half

complex plane and the system has at least one invariant zero

on the imaginary axis which is not simple.

II. Network communication

In this paper we will consider networks composed of N

SISO agents, with the state and output of agent i ∈ {1, . . . , N }

denoted by xi and yi , respectively. The agents are non-

introspective; hence, agent i does not have access to its own

state or output. The only information available to each agent

is a linear combination of its own output relative to that of

the other agents:

ζi (t) =

N
∑

j=1

aij (yi (t) − yj (t)), (1)

where aij = a ji ≥ 0 and aii = 0.
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The communication topology of the network can be de-

scribed by an undirected graph G with nodes corresponding

to the agents in the network and edges given by the co-

efficients aij . In particular, aij > 0 implies that an edge

exists between agent j to i and a ji = aij . The weight of the

edge equals the magnitude of aij . A path from node i1 to

ik is a squence of nodes {i1, . . . , ik } such that (i j, i j+1) ∈ E

for j = 1, . . . , k − 1. A graph is connected if there exists a

path between every pair of nodes. A connected subgraph is

a subset of nodes of G such that the subgraph is connected.

For a weighted undirected graph G, the matrix L = [ℓij ] with

ℓij =

{
∑N

k=1
aik, i = j,

−aij, i , j,

is called the Laplacian matrix. In the case where G is

undirected and has non-negative weights, all eigenvalues of

L are real and located in the closed right half complex plane;

moreover at least one eigenvalue at zero associated with right

eigenvector 1. In terms of the Laplacian matrix L, ζi can be

rewritten as

ζi (t) =

N
∑

j=1

ℓij yj (t). (2)

III. Heterogeneous networks of linear agents

In this section we will consider heterogeneous networks

where the agents are linear, SISO, non-introspective and

weakly-non-minimum-phase. We will formulate the output

synchronization problem and present the protocol design.

A. Problem formulation

The agents, denoted by Σ̃i with i ∈ {1, . . . , N }, have this

form

Σ̃i :

{

˙̃xi = Ãi x̃i + B̃iũi,

yi = C̃i x̃i,
(3)

where x̃i ∈ R
ñi , ũi ∈ R, yi ∈ R are the state, input and output

of agent i. Moreover, the order of the infinite zero for agent

i is ρ̃i .

Note that the dimension of each agent state is ñi , which is

different for all agents, and so is the order of infinite zeros

ρ̃i . We make the following assumptions regarding the agent

dynamics.

Assumption 1: For each i ∈ {1, . . . , N }, the triple

( Ãi, B̃i, C̃i ) is stabilizable and detectable. Moreover, each

agent is weakly-non-minimum-phase.

Assumption 2: We assume all agents have the same in-

variant zeros (counting multiplicity) on the imaginary axis.

Since the agents in the network are non-identical, state

synchronization is not a realistic objective. Thus, we turn

to pursue regulated output synchronization among agents.

In other words, our goal is to regulate the outputs of all

agents asymptotically towards an a priori specified reference

trajectory. The reference trajectory in this paper is generated

by an autonomous exosystem
{

ẋr = Sxr, xr (0) = xr0,

yr = Rxr ,
(4)

where xr ∈ R
nr , yr ∈ R. We make the following assumptions

on the exosystem.

Assumption 3: We assume that

• (S, R) is observable;

• All eigenvalues of S are in the closed right-half complex

plane and do not intersect with the invariant zeros of the

agents.

Remark 2: It is worth noting that stable eigenvalues of S

are excluded here, because stable modes vanishes asymptot-

ically and hence play no role asymptotically.

Let ei = yi − yr denote the regulated output synchroniza-

tion error for agent i (i = 1, . . . , N ). In order to achieve our

goal, it is clear that a non-empty subset of agents must have

knowledge of their output relative to the reference trajectory

yr generated by the reference system. We denote such a

subset of agents by π. Specially, each agent has access to

the quantity ψi = ιi (yi − yr ) with ιi = 1 for agent i ∈ π and

otherwise ιi = 0. In the following, we will refer to the node

set π as the root set. In order to achieve regulated output

synchronization for all agents, every node of the network

graph G shouls be a member of a connected subgraph which

has one node contained in the set π (when the network graph

G is connected, the set π is completely arbitrary as long as

it contains at least one agent).

Based on the Laplacian matrix L of our network graph G,

we define the expanded Laplacian matrix as

L̄ = L + blkdiag{ιi } = [ℓ̄ij].

Note that L̄ is clearly not a Laplacian matrix associated to

some graph since it does not have a zero row sum. From [4,

Lemma 7], all eigenvalues of L̄ are in the open right-half

complex plane.

We would like to note that, in practice, precise information

of a network communication topology is usually not available

for controller design and only some rough characterization

of the network can be obtained. In our case, we assume only

a lower bound on the smallest eigenvalue of the expanded

Laplacian is given:

Definition 3: For given real number β > 0, the set Gπ
β,N

consists of all weighted and undirected graphs composed of

N nodes satisfying the following property:

• The eigenvalues of the expanded Laplacian matrix L̄,

denoted by λ1, . . . , λN , which are real, satisfy λi > β.

Remark 3: We note that the fact that all eigenvalues of the

expanded Laplacian are positive guarantees that every node

of our undirected network graph is a member of a connected

subgraph which has one node contained in the set π.

We will define the regulated output synchronization prob-

lem for heterogenous networks of weakly-non-minimum-

phase, non-introspective agents as follows.

Problem 1: Consider a multi-agent system (3), (1) and ref-

erence system (4) satisfying Assumptions 1 and 3. Moreover,

all agents in the network are weakly-non-minimum-phase.

Let β > 0 and let a root set π be given. The regulated output

synchronization problem is to find, if possible, a linear time-

invariant dynamic protocol such that the regulated output
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synchronization error satisfies

lim
t→∞

ei (t) = 0, (5)

for all i ∈ {1, . . . , N }, for all initial conditions x̃i (0), xr (0)

and for any network graph G ∈ Gπ
β,N

.

B. Protocol design

Our protocol design is composed of two phases. We

know that all agents may have different state dimensions

and orders of infinite zeros; hence it is difficult to compare

agents’ outputs. To realize the regulation of their outputs,

we will add the mode of exosystem (4) to each agent.

Moreover, we want all agents to have the same order for

their infinite zero. This will be achieved in Phase 1 by

designing a pre-compensator for each agent. We will then

consider the network of expanded agents (each original agent

with associated pre-compensator. Then, we will design a

distributed controller that achieves our goal: regulated output

synchronization.

Phase 1: In this phase, we will generate a pre-compensator

for each agent such that the interconnection of each agent (3)

with its pre-compensator has three properties

• the order of the infinite zeros (i.e. the relative degree)

is the same.

• the dynamics contain the dynamics of the reference

system (4).

• the marginally unstable zero dynamics is the same.

Note that the second property is defined according to Def-

inition 1. Regarding the third property note that having the

same zero dynamics is a stronger property than sharing the

same marginally unstable zeros (which was guaranteed by

Assumption 2).

It can be shown (details are ommitted due to page limits)

that there exists for each agent a linear pre-compensator of

the form
{

żi = Aip zi + Bipui,

ũi = Cip zi,
(6)

for i = 1, . . . , N such that interconnection of agent (3) and

pre-compensator (6) is of the form:

{

ẋi = Aixi + Biui,

yi = Cixi,
(7)

where xi ∈ R
ni , ui ∈ R, yi ∈ R are states, inputs and

outputs of the interconnection system of agent (3) and pre-

compensator (6). Moreover,

• (Ai,Ci ) contains (S, R), i.e., there exists matrix Πi such

that ΠiS = AiΠi, CiΠi = R;

• (Ai, Bi,Ci ) has relative degree ρ.

Finally, we can guarantee that (Ai, Bi,Ci ) is in the Special

Coordinate Bases (SCB) form, where xi = [x−
ia

; x0
ia

; xid],

with x−
ia
∈ Rni−r−ρ representing the stable invariant zero

structure, x0
ia
∈ Rr representing the marginally unstable

invariant zero structure and xid ∈ R
ρ the infinite zero

structure, such that (7) can be written as:



ẋ−
ia
= A−

ia
x−
ia
+ L−

iad
yi,

ẋ0
ia
= A0

ax0
ia
+ L0

ad
yi,

ẋid = Adxid + Bd(ui + E−
ida

x−
ia
+ E0

da
x0
ia
+ Eiddxid ),

yi = Cdxid,
(8)

for i = 1, . . . , N , where Ad, Bd and Cd have special

structures, i.e.,

Ad =

(

0 Iρ−1

0 0

)

, Bd =

(

0ρ−1

1

)

, Cd =

(

1 0′
ρ−1

)

.

(9)

Note that the marginally unstable zero dynamics in the above

are the same for each agent in the sense that (E0
da
, A0

a, L0
ad

)

are the same for each agent (and hence we do not use an index

i). This extra structure will be crucial in our design and while

Assumption 2 might guarantee that A0
a can be assumed to

be identical among agents, it is our precompensator design

which guarantees that we can ensure that E0
da

and L0
ad

are

the same for each agent.

Here, we assume the dimension of this marginally stable

invariant zero dynamics is r. Together with the relative

degree ρ, the stable invariant zero dynamics of agent i has

dimension ni − r − ρ, which can clearly be different for each

agent.

Phase 2: In this phase, we will design a purely decentral-

ized controller for each interconnection system (7), which

has the SCB form of (8). As mentioned at the beginning, all

agents are non-introspective. So the only information utilized

by the controller is ζi (provided by the network) and ψi

(relative output information from the reference system only

available for root set agents). The controller for agent i is

designed as



˙̂x0
ia
= A0

a x̂0
ia
+ L0

ad
Cd x̂id + K1 (ζi + ψi − Cd x̂id ),

˙̂xid = Ad x̂id + K2 (ζi + ψi − Cd x̂id )

+Bd(F1 x̂0
ia
+ F2 x̂id + E0

da
x̂0
ia
+ Eidd x̂id ),

ui = F1 x̂0
ia
+ F2 x̂id

(10)

with i = 1, . . . , N . Note that we find the estimates x̂0
ia

and

x̂id through high-gain observers. However, we need to realize

that they are not estimates of x0
ia

and xid , but estimates of

N
∑

j=1

ℓ̄ij x
0
ia and

N
∑

j=1

ℓ̄ij xid,

respectively. Because the stable zeros dynamics x−
ia

in (8) do

not affect synchronization, there is no need for an observer

to estimate that part of the dynamics. Choose

F1 = ε
−ρ+1F̄1, F2 = ε

−ρF̄2Sε, K1 = ε
−ρK̄1, K2 = ε

−1S−1
ε K̄2,

where ε ∈ (0, 1] is a high-gain parameter and Sε =

blkdiag{1, ε, . . . , ερ−1}. Moreover, K̄2 is selected such that

Ad−K̄2Cd is asymptotically stable while F̄2 = −B′
d

Pd, where

Pd is the solution of the algebraic Riccati equation:

A′dPd + PdAd − βPdBdB′dPd + δI = 0, (11)
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where β is the lower bound for all eigenvalues of the

expanded Laplacian matrix L̄ and δ ∈ (0, 1] is a low-

gain parameter which needs to be chosen sufficiently small.

Finally F̄1 and K̄1 will be chosen later.

In order to prove our main result, we use the following

two technical lemmas, whose proof is ommitted because of

page limits.

Lemma 1: There exists δ∗ > 0 such that for all δ ∈ (0, δ∗],

we have that
(

Ad λiBdF̄2

K̄2Cd Ad + Bd F̄2 − K̄2Cd

)

(12)

is asymptotically stable for all λi with Re(λi ) ≥ β.

Lemma 2: Assume (A, B,C) is stabilizable and detectable

and all eigenvalues of A are in the closed left-half plane with

all Jordan blocks associated with imaginary axis eigenvalues

have size at most 2. There exists F̄, K̄ and ε∗ > 0 such that

for all ε ∈ (0, ε∗], the matrix
(

A ελ−1BF̄

K̄C A − K̄C + εBF̄

)

(13)

is asymptotically stable for any λ ∈ R with λ > β.

If A is stable (all Jordan blocks associated with imaginary

axis eigenvalues have size at most 1), then there exists F̄, K̄

and ε∗ > 0 such that for all ε ∈ (0, ε∗], the matrix (13) is

asymptotically stable for any λ ∈ C with Re λ > β.

We have the main result in the following theorem:

Theorem 1: Consider a multi-agent system (3), (1), and

reference system (4), where all agents in the network are

weakly-non-minimum-phase. Let Assumptions 1, 2 and 3

hold. Let β > 0 and root set π be given.

If all Jordan blocks associated with imaginary axis zeros

have size at most 2 then the controller described by (10)

solves the regulated output synchronization problem for

suitably chosen F̄1 and K̄1.

In particular, there exists a δ∗ ∈ (0, 1] such that, for each

δ ∈ (0, δ∗], there exists an ε∗ ∈ (0, 1] such that for any

ε ∈ (0, ε∗],

lim
t→∞

ei (t) = 0 (i = 1, . . . , N ).

for all initial conditions and for any graph G ∈ Gπ
β,N

.

Remark 4: In [10], we also studied weakly minimum-

phase and weakly non-minimum-phase agents however for

homogeneous networks. However that paper contained some

technical issues that were corrected in this paper. Beyond

that, this paper extends the previous work because it ad-

dresses heterogeneous networks.

Remark 5: If, additionally, the agents are weakly

mimimum-phase (Jordan blocks associated with imaginary

axis zeros have size at most 1) then the controller described

by (10) for suitably chosen F̄1 and K̄1 also solves the

regulated output synchronization problem when the network

is directed.

Proof: Let x̄i = xi − Πixr . Then we have
{

˙̄xi = Aixi + Biui − ΠiSxr = Ai x̄i + Biui,

ei = Cixi − Rxr = Ci x̄i,
(14)

which has the the same dynamics as in (7). Hence, we get

the same SCB decomposition form as in (8) with x̄ia =

[x̄−
ia

; x̄0
ia

; x̄id]:



˙̄x−
ia
= A−

ia
x̄−
ia
+ L−

iad
ei,

˙̄x0
ia
= A0

a x̄0
ia
+ L0

ad
ei,

˙̄xid = Ad x̄id + Bd(ui + E−
ida

x̄−
ia
+ E0

da
x̄0
ia
+ Eidd x̄id ),

ei = Cd x̄id .
(15)

Let

ξ−ia = x̄−ia, ξ
0
ia = x̄0

ia, ξ̂
0
ia = x̂0

ia,

ξid = ε
−1Sε x̄id, ξ̂id = ε

−1Sε x̂id .

Then equations (15) and (10) can be written as

ξ̇−
ia
= A−

ia
ξ−
ia
+ V ε−

iad
ξid,

ξ̇0
ia
= A0

aξ
0
ia
+ V ε0

ad
ξid,

εξ̇id = Adξid + Bd F̄1 ξ̂
0
ia
+ BdF̄2 ξ̂id + V ε−

ida
ξ−
ia

+V ε0
da
ξ0
ia
+ V ε

idd
ξid,

where

V ε−
iad = εL−iadCd, V ε−

ida = ε
ρ−1BdE−ida,

V ε0
ad
= εL0

ad
Cd, V ε0

da
= ερ−1BdE0

da
,

V ε
idd
= ερBdEiddS−1

ε .

Moreover, since the Laplacian has a zero row sum, we have

ζi =

N
∑

j=1

ℓij yj =

N
∑

j=1

ℓijej and ζi + ψi =

N
∑

j=1

ℓ̄ijej .

Then, equation (10) can be written as

˙̂ξ0
ia
= A0

a ξ̂
0
ia
+ V ε0

ad
ξ̂id +

∑N
j=1

ℓ̄ijεK1Cdξid − εK1Cd ξ̂id,

ε ˙̂ξid = Ad ξ̂id + BdF̄1 ξ̂
0
ia
+ Bd F̄2 ξ̂id + V ε0

da
ξ̂0
ia
+ V ε

idd
ξ̂id

+

∑N
j=1

ℓ̄ij K̄2Cdξid − K̄2Cd ξ̂id .

Then, we define

ξ−a = col{ξ−ia }, ξ
0
a = col{ξ0

ia }, ξ̂
0
a = col{ξ̂0

ia },

ξd = col{ξid }, ξ̂d = col{ξ̂id }.

The dynamics of the whole network system looks like

ξ̇−a = A−aξ
−
a + V ε−

ad
ξd,

ξ̇0
a = (IN ⊗ A0

a)ξ0
a + (IN ⊗ V ε0

ad
)ξd,

˙̂ξ0
a = (IN ⊗ A0

a)ξ̂0
a + (IN ⊗ V 0

ad
)ξ̂d + ε(L̄ ⊗ K1Cd )ξd

−ε(IN ⊗ K1Cd )ξ̂d,

εξ̇d = (IN ⊗ Ad)ξd + (IN ⊗ BdF̄1)ξ̂0
a + (IN ⊗ BdF̄2)ξ̂d

+(IN ⊗ V ε0
da

)ξ0
a + V ε

dd
ξd + V ε−

da
ξ−a,

ε ˙̂ξd = (IN ⊗ Ad)ξ̂d + (IN ⊗ BdF̄1)ξ̂0
a + (IN ⊗ BdF̄2)ξ̂d

+(IN ⊗ V ε0
da

)ξ̂0
a + V ε

dd
ξ̂d + (L̄ ⊗ K̄2Cd)ξd

−(IN ⊗ K̄2Cd)ξ̂d,

where

A−a = blkdiag{A−ia }, V ε−
da = ε

ρ−1 blkdiag{BdE−ida},

V ε−
ad = ε blkdiag{L−iadCd}, V ε

dd = ε
ρ blkdiag{BdEiddS−1

ε },
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Define L̄ = U JU−1, where J is the Jordan form of L̄. Clearly,

the eigenvalues of L̄, denoted by λi (i = 1, . . . , N), are exactly

the diagonal elements of J. Now we define

v
−
a = ξ

−
a, vd = (JU−1 ⊗ Iρ)ξd,

v
0
a = (JU−1 ⊗ Ir )ξ0

a, ṽd = vd − (U−1 ⊗ Iρ)ξ̂d .

ṽ
0
a = v

0
a − (JU−1 ⊗ Ir )ξ̂0

a,

Then we get

v̇
−
a = A−av

−
a +Wε−

ad
vd,

v̇
0
a = (IN ⊗ A0

a)v0
a +Wε0

ad
vd,

˙̃v0
a = (IN ⊗ A0

a)ṽ0
a +Wε0

ad
vd − Ŵε0

ad
(vd − ṽd)

−ε(J ⊗ K1Cd)ṽd,

εv̇d = (IN ⊗ Ad)vd + (J ⊗ BdF̄2)(vd − ṽd)

+(IN ⊗ Bd F̄1)(v0
a − ṽ

0
a) +Wε−

da
v
−
a +Wε0

da
v

0
a +Wε

dd
vd,

ε ˙̃vd = (IN ⊗ (Ad − K̄2Cd))ṽd + (J ⊗ Bd F̄2)(vd − ṽd)

+(IN ⊗ BdF̄1)(v0
a − ṽ

0
a) +Wε−

da
v
−
a +Wε0

da
v

0
a

−Ŵε0
da

(v0
a − ṽ

0
a) +Wε

dd
vd − Ŵε

dd
(vd − ṽd)

−(J−1 ⊗ BdF̄1)(v0
a − ṽ

0
a) − (IN ⊗ BdF̄2)(vd − ṽd),

(16)

where

Wε−
ad = V ε−

ad (U J−1 ⊗ Iρ),

Wε0
ad = (JU−1 ⊗ Ir )(IN ⊗ V ε0

ad )(U J−1 ⊗ Iρ)

= ε(IN ⊗ L0
adCd),

Ŵε0
ad = (JU−1 ⊗ Ir )(IN ⊗ V ε0

ad )(U ⊗ Iρ) = ε(J ⊗ L0
adCd),

Wε−
da = (JU−1 ⊗ Iρ)V ε−

da = ε
ρ−1(JU−1 ⊗ Bd) diag(E−ida),

Wε0
da = (JU−1 ⊗ Iρ)(IN ⊗ V ε0

da )(U J−1 ⊗ Ir )

= ερ−1(IN ⊗ BdE0
da),

Ŵε0
da
= (U−1 ⊗ Iρ)(IN ⊗ V ε0

da
)(U J−1 ⊗ Ir )

= ερ−1(J−1 ⊗ BdE0
da

),

Wε
dd = (JU−1 ⊗ Iρ)V ε

dd (U J−1 ⊗ Iρ)

= ερ(JU−1 ⊗ Bd) diag(Eidd)(U J−1 ⊗ S−1
ε ),

Ŵε
dd = (U−1 ⊗ Iρ)V ε

dd (U ⊗ Iρ)

= ερ(U−1 ⊗ Bd) diag(Eidd)(U ⊗ S−1
ε ),

In order to prove stability of this system we are going to
use singular perturbations. We first note that we can ignore
the stable dynamics for v

−
a since this part of the dynamics

clearly does not affect the stability of the overall systems.
Note that the stability of the fast dynamics is determined by
the stability of the following matrix:

(

IN ⊗ Ad + J ⊗ BdF2 −J ⊗ Bd F̄2

(J − IN ) ⊗ Bd F̄2 IN ⊗ (Ad − K̄2Cd) − (J − IN ) ⊗ Bd F̄2

)

+

(

Wε
dd

0

Ŵε
dd
−Wε

dd
Wε

dd

)

(17)

Since Wε
dd

and Ŵε
dd

are both of order ε, the stability of the

first matrix is determined by the stability of the matrix:

(

Ad + λiBdF̄2 −λiBd F̄2

(λi − 1)BdF̄2 Ad − K̄2Cd − (λi − 1)BdF̄2

)

=

(

I 0

I −I

) (

Ad λiBd F̄2

K̄2C̄d Ad + BdF̄2 − K̄2Cd

) (

I 0

I −I

)

for i = 1, . . . , λN . The stability of this matrix follows from

Lemma 1 for suitably chosen δ. The stability of the matrix

in (17) then follows for ε small enough.

Since the fast dynamics is asymptotically stable, it remains

to show that the slow dynamics is asymptotically stable.

Recall that we ignore the asymptotically stable dynamics for

v
−
a . To obtain the slow dynamics we set v̇d and ˙̃vd to zero

and replace the differential equations for vd and ṽd by the

following algebraic equations:

0 = (IN ⊗ Ad)vd +Wε0
da
v

0
a + (J ⊗ BdF̄2)(vd − ṽd)

+(IN ⊗ BdF̄1)(v0
a − ṽ

0
a) +Wε

dd
vd,

0 = (IN ⊗ (Ad − K̄2Cd))ṽd +Wε0
da
v

0
a − Ŵε0

da
(v0

a − ṽ
0
a)

+((J − IN ) ⊗ BdF̄2)(vd − ṽd)

+((IN − J−1) ⊗ BdF̄1)(v0
a − ṽ

0
a) +Wε

dd
vd − Ŵε

dd
(vd − ṽd)

(18)

Let vd =

(

v1d, v2d, . . . , vNd

) ′
and let vid j ( j = 1, . . . , ρ)

denote the j th element of vid . We decompose ṽd in the same

way.

We find that

A
′

dAd =

(

0 0

0 I

)

, A
′

dBd = 0.

Then, by multiplying (18) by (IN ⊗ A
′

d
) on the left we get

*...
,
vid2

...

vidρ

+///
-
= 0, K̄21 ṽid1 =

*...
,
ṽid2

...

ṽidρ

+///
-
, (i = 1, . . . , N )

or

vid = C′dvid1, ṽid = K̃2 ṽid1

where

K̄2 =

(

K̄21

K̄22

)

, K̃2 =

(

1

K̄21

)

,

and K̄22 is a scalar. Similarly, we decompose F̄2 =
(

F̄21 F̄22

)

and F̄21 is a scalar. Multiplying (18) by IN ⊗ B′
d

on the left and using the structure of vid and ṽid found above

we get:

0 = (J ⊗ F̄21)vd1 − (J ⊗ F̄2K̃2)ṽd1 + (IN ⊗ F̄1)(v0
a − ṽ

0
a)

+ ερ−1(IN ⊗ E0
da)v0

a

+ ερ(JU−1 ⊗ I ) diag(Eidd)(U J−1 ⊗ C′d )vd1,

and

0 = −(IN ⊗ K̄22)ṽd1 + ε
ρ−1((IN − J−1) ⊗ E0

da
)v0

a

+ ερ−1(J−1 ⊗ E0
da

)ṽ0
a

+ ερ(JU−1 ⊗ I ) diag(Eidd)(U J−1 ⊗ C′d)vd1

− ερ(U−1 ⊗ I ) diag(Eidd)(U ⊗ C′d)vd1

+ ερ(U−1 ⊗ I ) diag(Eidd)(U ⊗ S−1
ε K̃2)ṽd1

+ ((J − IN ) ⊗ F̄21)vd1 − ((J − IN ) ⊗ F̄2K̃2)ṽd1

+ ((IN − J−1) ⊗ F̄1)(v0
a − ṽ

0
a)

where vd1 = vec{vid1} and ṽd1 = vec{ṽid1}. Subtracting (IN−

J−1) ⊗ I times the first equation from the second equation
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yields:

0 = −(IN ⊗ K̄22)ṽd1 + ε
ρ−1(J−1 ⊗ E0

da
)ṽ0

a

+ ερ(U−1 ⊗ I ) diag(Eidd)(U (J−1 − IN ) ⊗ C′d)vd1

+ ερ(U−1 ⊗ I ) diag(Eidd)(U ⊗ S−1
ε K̃2)ṽd1

We obtain:

(X1 + X2 + X3)

(

vd1

ṽd1

)

= Y

(

v
0
a

ṽ
0
a

)

where

X1 =

(

(J ⊗ F̄21) −(J ⊗ F̄2K̃2)

0 −(IN ⊗ K̄22)

)

X2 = ε
ρ blkdiag

(

(JU−1 ⊗ I ) diag(Eidd)(U J−1 ⊗ C′d),

(U−1 ⊗ I ) diag(Eidd)(U ⊗ S−1
ε K̃2)

)

X3 = ε
ρ

(

0 0

(U−1 ⊗ I ) diag(Eidd)(U (J−1 − IN ) ⊗ C′
d

) 0

)

Y =

(

(IN ⊗ F̄1) + ερ−1(IN ⊗ E0
da

) −(IN ⊗ F̄1)

0 ερ−1(J−1 ⊗ E0
da

)

)

Noting that X1 is independent of ε and invertible while X2

is at least of order ε while X3 is of order ερ we find that:

(X1+X2+X3)−1
=

(

(J−1 ⊗ F̄−1
21

) −(IN ⊗ F̄−1
21

F̄2K̃2K̄−1
22

)

0 −(IN ⊗ K̄−1
22

)

)

+

(

εX̃11(ε) εX̃12(ε)

ερ X̃21(ε) εX̃22(ε)

)

with X̃11(ε), X̃12(ε), X̃21(ε) and X̃22(ε) bounded functions

of ε. Here we exploit that X1 and X2 are upper triangular and

hence (X1 + X2)−1 has an upper triangular structure. Finally,

we noted that (X1 + X2 + X3)−1 is an ερ perturbation of an

upper triangular structure. Their approximate solutions are

vd1 = −(J−1 × F̄1F̄−1
21 )(v0

a − ṽ
0
a) + O(ε)

ṽd1 = ε
ρ−1(J−1 ⊗ K̄−1

22 E0
da

)ṽ0
a + O(ερ)

(19)

Furthermore, (16) implies that

v̇
0
a = (IN ⊗ A0

a)v0
a + ε(IN ⊗ L0

ad)vd1

˙̃v0
a = (IN ⊗ A0

a)ṽ0
a + ε((IN − J) ⊗ L0

ad)vd1

+

[
ε(J ⊗ L0

ad
) − ε−ρ+1(J ⊗ K̄1)

]
ṽd1

(20)

Using

K̃1 =
K̄1

K̄22

, and F̃1 = −
F̄1

F̄21

.

and ignoring higher order terms we obtain:

v̇
0
a =

[
(IN ⊗ A0

a) + ε(J−1 ⊗ L0
ad

F̃1)
]
v

0
a − ε(J−1 ⊗ L0

ad
F̃1)ṽ0

a,

˙̃v0
a = −ε

[
(IN − J−1) ⊗ L0

ad
F̃1

]
v

0
a +

[
(IN ⊗ (A0

a − K̃1E0
da

))

+ε((IN − J−1) ⊗ L0
ad F̃1)

]
v

0
a.

Define

v̌
0
a =

(

I 0

I −I

) (

v
0
a

ṽ
0
a

)

and we get:

˙̌v0
a =

(

IN ⊗ A0
a ε(J−1 ⊗ L0

ad
F̃1)

IN ⊗ K̃1E0
da

IN ⊗ (A0
a − K̃1E0

da
+ εL0

ad
F̃1)

)

v̌
0
a

which clearly is stable if:
(

A0
a ελ−1

i
L0
ad

F̃1

K̃1E0
da

A0
a − K̃1E0

da
+ εL0

ad
F̃1

)

is asymptotically stable for all i = 1, . . . , N . Since λ−1
i

are

bounded, we can use Lemma 2 to design F̃1 and K̃1 such

that this matrix is asymptotically stable.

Since both the slow and fast dynamics are asymptotically

stable for ε small enough, singular perturbations guarantees

that the closed-loop system is asymptotically stable for small

enough ε.
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