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Abstmcf - A CMOS neural network integrated circuit is discussed, which was designed for very high 
speed applications. This full-custom, mixed analog-digital chip implements a fully connected feedforward 
neural network with 70 inputs, 6 hidden layer neurons and one output neuron. The neurons perform inner 
product operation and have sigmoid-like activation function. The 70 network inputs and the neural signal 
processing are analog, the synaptic weights are digitally programmable with 5 bit (4 bits + sign) precision. 
The synaptic weights are stored on onchip static RAM cells. The combination of analog and digital 
techniques results Unique computing power with ease of use. Progrrunming can easily be performed with the 
help of a spreadsheet or other suitable Interface program from a PC. The resolution of the input signals is 
mainly determined by the signal to noise ratio which lies typically between 8-12 bits. Therefore the 
equivalent Input bandwidth can be as high as 28-42 GbiWsecond. The system is designed for very high speed 
vector classification and the feasibility of a Single chlp neural network photon trigger for nudear research is 
shown. Because of the fully parallel architecture and the fast analog signal processing the network achieves 
unique computing performance and clasdfles up to 70 dimensional vectors within 20 nanoseconds, 
performing 20 billion (2*1010) multiply-and-add operations per second. The circuit occupies l0r9mm2 
silicon area with 1.5p.m CMOS process and Bissip8tes only 1W at SV supply. 

I. INTRODUCTION 

Although neural networks (NN~) compute 
exceptionally parallel manner, this valuable 
characteristic has not been exploited as successhlly as 
their learning capability. In case of hlly parallel 
hardware, the processing time is independent of the 
amount of data to be processed by the network. 
Furthermore only a few computing steps have to be 
performed in serial manner, therefore computation time 
can be extremely short. This work concentrates on the 
benefits of unique parallel processing. One of the most 
challenging tasks of hardware realisation of neural nets 
is the inner product operation. Since it consumes too 
large chip area with digital circuitry, hlly parallel 
digital architectures do not exist for large NN-s. If high 
precision is not required, the compact and high speed 
analog approach has great advantage. With analog 
technique low cost, low power dissipation, single chip 
architectures of complex neural networks are possible. 
Although such systems are commercially available [4], 
[5], offering as low as several microsecond processing 
time for as large as 128 dimensional input vector, it is 
almost impossible to find any solution for application 
domain demanding tens of nanoseconds processing 
delay for similarly large input vectors. The integrated 
circuit presented here is intended to provide the high 
computing performance needed for such applications. 

II. NETWORK ARCHITECTURE 
The implemented NN architecture is shown on 

figure 1. It is a fully interconnected feedforward 
structure with 70 analog inputs, 6 hidden layer neurons 
and one output neuron. The neurons are inner product 
type, and have sigmoid-like activation function. The 
neural signal processing is fully analog, yielding high 
speed operation and compact circuitry for inner product 
operation. The synaptic weights are stored digitally on 
static RAM (SRAM) cells, to enable simple 
programming even from a personal computer. Digital 
weight storage also helps to eliminate weight decay and 
increases reproducibility. The SRAM cells are located 
nearby each synapse circuit to minimise wiring for 
communication. Downloading the approximately 3.5 
Kbit synaptic weight and configuring information is 
relatively slow compared to normal operating speed of 
the NN circuit, and takes a few milliseconds. The chip 
block diagram is shown on figure 2. The largest area is 
occupied by the 70x6 synapse array, including the 70x6 
differential voltage to current converters as synapses 
and 70x6~5 SRAM cell for weight storage. Each 5 bit 
synaptic weight can be selected, red and written by the 
row-, column decoders and, read, write circuitry. A 
programmable voltage source array is located nearby 
the synapse array which enables programmable biasing 
and control of the gain of neural activation functions. 
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Figure 1. Implemented NN architecture 

111. CIRCUIT DESCRIPTION 
Figure 3 shows the analog circuitry along the 

signed signal path of figure 1. The processing delay of 
the NN pattern classifier is merely the delay introduced 
by this circuitry, since the rest of signal paths are 
parallel. The synapse circuit is a differential pair 
formed by T1 and T2, with a single ended voltage 
input and a reference voltage, which is equal for all the 
synapses in the NN. The outputs of synapses are 
differential currents, which are summed on the 
(differential) summing node of the corresponding 
neuron. Variable synaptic weight is achieved by 
programmable current source for the differential pair. 
The current source transistors T6, T7 ... T8 are properly vddm 

Vgainl 

Figure 2. System block diagram 

sized to deliver current with respect to the smallest, or 
unity current, according to ascending powers of 2. Any 
combination of these currents can be obtained by using 
the switch transistors T3,T4 ... T5. The sign of the 
synapse can be varied by interchanging Vin and Vref, 
using an 8 transistor switch, which is not shown in 
figure 3. Synapse characteristic, obtained by PSPICE 
simulation is shown in figure4. The sum of synaptic 
currents is transformed to voltage by the load 
transistors T9 and T10. T11 controls the differential 
load. The saturating, sigmoid-like activation function, 
shown in figure 5,  is obtained by the saturating 
characteristic of the second layer synapse, rather than 
by a separate non-linear circuit. 

w 1 f(AZ(wVin)) 

Vgain2 

1 st layer synapses amplifier 2nd layer synapse 

Figure 3. Circuitry along the signed signal path of figure 1 
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This method simplifies the circuitry and increases 
speed. Note however, that this simplification is valid 
only for NNs with one neuron in the second layer. The 
second layer synaptic weight is obtained by the number 
of parallel connected active synapse stages, formed by 
T17, T18, T19, T20. This stage is activated by the 
switch transistor T19. Every switch transistor of the 
circuit is wired to a separate SRAM cell. There are 
altogether 3750 SRAM cells on chip. 
The current summing node has intrinsically large 
parasitic capacitance, since all the synapse outputs and 
the common load are connected to this node. To 
increase the speed of the circuit, the node impedance 
has to be kept low. The consequence of low node 
impedance is a small voltage swing on the summing 
node. A voltage amplifier stage scales this voltage 
properly for the second layer synapse stage. 
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Figure 4. Synapse characteristic 
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Figure 5.  Activation function 

Iv. NETWORK PERFORMANCE 
CASE STUDY: "A Neural Network Photon Trigger" 

The feasibility of a single chip NN photon trigger for 
the LHC' experiment in C E M  have been studied. We 
used a database containing 'TGT calorimeter 
preshower" information3, generated by photons and 
pions. The NN photon trigger should recognise data 
which was generated by photons. Real-time data 
processing alluws less than 25 nanosecond time period 
for the decision making. Within this time period a 32 
dimensional analog input v-r has to be evaluated. A 
similar high-energy physics application is doscribed for 
an experiment at DESY', in [I], [3], with higher 
dimensional analog, time discrete input vectors. 
We trained a BackProp. network with the "labelled" 
database. The total set with more than 7000 samples, 
was divided into training and test sd. The learning 
curve is shown in figure6. The small difference 
between curves oftraining- and test set indicate good 
generalisation. The percentage of incorrectly classified 
patterns is smaller than 4%, even for the test set. 
Synaptic weights obtained by the training procedure, 
can be downloaded to the NN chip. 
Examining the decision making process of fsedforward 
neural nets for pattern classification, reveals why and 
how this type of computation tolerates the non-ideal 
e&ts of anaIog hardware. Here only quantitative 
results are presented for the discused application, one 
may refer to [ 11, [2], [3] for more detailed discussion. 
Figure7 shows the effect of discretization. As it is 
expected, classification error decreases with increasing 
number of discrete levels. Surprisingly, the 
performance changes only slightly above 20 discrete 
levels for synaptic weights. This is due to the large 
distance between the pattern classss in the input space. 
The applied, simple discretization procedure results 
"lucky" and "unlucky" cases, thcroforc the curve on 
figure 7 is not monotonous. Careful discretization 
improves performance and would result smoother 
curve. 

'LHC: Large Hadron Collider ut CERN 
2CERN: Conseil europken pour la recherce nucliraire 
3"TGT calorimeter preshower information, developed 

4DESY: Deutsches E l e h n e n  Synchrotron (Hamburg) 
on the basis of CERNRD33 project. 
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Figure 6. Learning curve 
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Figure 7. Error due to discretization (test set) 

Figure 8 shows, the histogram of analog classifier 
outputs over the test set. We can see, that although 
there is an overlap between the two classes, photon and 
pion data is clearly separated. Above or under a certain 
network output the data is classified "photon" or "pion" 
respectively. We call this value of network output 
"decision threshold". Figure 9 shows the classification 
efficiency as a function of the decision threshold. For 
example if we choose the decision threshold, where the 
percentage of misclassified photon patterns equals the 
percentage of misclassified pion pattems, the correctly 
classified data is 96% for both classes. When 
decreasing the decision threshold to correctly classify 
99% of photon data, 15% of pion data is misclassified. 
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Figure 8. Histogram of classifier responses 
(test set, optimal) 
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Figure 9. Classification error (test set, optimal) 

(arbitrary unit) 

Figure 8 and figure 9 show performance in case of ideal 
hardware. Simulations have been made to examine the 
non-ideal effects, introduced by our analog NN 
hardware. Noise, synapse non-linearity, weight 
discretization and the effect of sigmoid-like shape of 
the activation function have been taken into account. 
Figure 10 and figure 11 show the results. The overlap 
between the two classes increases compared to the 
ideal case. In contrast to the 96% correctly classified 
data at the crossing of curves in figure 9, we get 93% 
with our hardware. The 75% increase of misclassified 
patterns is mainly due to the applied simple 
discretization technique. We expect even better 
performance with careful weight discretization. 
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Figure 10. Histogram of classifier responses 
(test set, hardware) 
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Figure 12. Transient response 

PSPICE simulations, based on elaborate layout 
extraction, including parasitic effects and paramoter 
spread, verify the expected 20 ns processing delay for 
the entire NN circuit. We can see the result of transient 
analysis on figure 12. Both the stimulus and the NN 
hardware response are shown on the figure. Table 1. 
shows more details about the chip specifications. 
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Figure 11. Classification error (test set, hardware) 

Figure 13. Chip Layout 

Equivalent input bandwidth was calculated by 
assuming 12 bit resolution (signal to noise ratio) and 
50 MHz input rate for the time discrete analog input 
signals. Dividing the number of synapses on chip by 
the processing delay we get the computing 
performance in terms of multiplications and additions 
per second. The chip layout is shown in figure 13. 
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Table 1. Specifications of the programmable chip under fabrication 

Synapse size 40Ox70p2 
No. of transistors: 40 000 - 

Network architecture: 70x6~1 feedfonvard 
Equivalent input bandwidth 4 GBytedsecond 
Chip size 
Number/resolution of synapses 

1 O"x9mm (1.5pm DLM CMOS) 
426, 5 bits (4 bits + sign) 

PGA package: 144 pins 
Total processing delay: 
Computation speed: 
On-chip static RAM 3750 bits 

< 20 nanoseconds 
20 billion multiplications and additions per second 

Power dissipation: 1 w  

V. CONCLUSION R E F E ~ C E S  

A digitally programmable, analog neural network 
processor is presented. Although the chip does not take 
advantage of a state-of-the-art technology, it provides 
unique computing performance, due to the architecture 
and analog processing. Considering the attractive 

[l] P. Masa, K. Hoen, H. Wallinga, "High-speed 
Analog Neural Network Processor", Submitted to 
IEEE Micro, Special Issue on Analogue VLSI and 
Neural Networks, June 1994 

- -  - - 
points of analog approach such as high speed, compact [2] P. Masa, K. Hoen, H. Wallinga, "20 Million 
inner product operation, we conclude, that analog Patterns Per Second Analog CMOS Neural Network 
hardware is attractive for the implementation of high Pattern Classifier", Proc. European Con$ on Circuit 
speed neural networks. The feasibility of a single chip Theory and Design, Davos, Switzerland, 1993 
neural network photon trigger for nuclear research have 
been confirmed. The circuit clearly demonstrates the 
strong attributes of analog VLSI neural networks. The 
single chip pattern classifier performs 20 billion 
(2* 1O'O) multiplications per second, with merely 1 W 

[3]P. Masa at. al., "20 Million Pattems Per Second 
vLsI Neural Network Pattern Classifier,, proc. 
Intemational Conference on Artificial Neural 
Networks, Amsterdam, 1993 

power dissipation and has 4 GBytes per second input [4] M. Holler et al., "An Electrically Trainable 
bandwidth. With this performance classification up to Artificial Neural Network," Proc. h t .  Joint Con$ 
70 dimensional vectors within tens of nanoseconds Neural Networks , 1989 
becomes possible. [5] Hernan A. at al., "Implementation and Performance 

of an Analog Nonvolatile Neural Network," Analog 
Integrated Circuits and Signal Processing 4, 97- 
113 (1993) 
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