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Abstract - In this note we formulate the Kal- 
man-YakuboviE-Popov Lemma for generalized 
first-order systems, both in continuous- and 
discrete-time. 

1 Introduction 

The Kalman-YakuboviE-Popov (KYP) Lemma is a pri- 
mary tool for the analysis of linear systems in state- 
space description. It provides a link between quadratic 
performance questions and the existence of a solution 
to a Linear Matrix Inequality (LMI). A demonstra- 
tion of this connection, and some background about 
the KYP Lemma may be found in Willems [4]. 

In this note we formulate the KYP Lemma for 
continuous-time, generalized first-order systems of the 
form 

GW = F w ,  (1 )  

Analogously, it turns out that the discrete-time sys- 
tem 

G w ( t + l )  = F w ( t )  (5) 
satisfies the performance criterion 

M 

w T ( t ) M w ( t )  5 0 
-m 

if and only if there exists a symmetric solution P to 
the discrete-time LMI 

M + F ~ P F  - G ~ P G  5 0. (7) 

When the system description (1) or ( 5 )  includes al- 
gebraic constraints, the behaviour of the system is re- 
stricted to  a linear subspace, and we show how the 
quadratic performance problem may be reduced to an 
equivalent problem on a subspace. 

2 Quadratic performance 

Before we formulate the main results, we first charac- 
terize controllability of a system in kernel represents- 
tion (Willems [5]). 

where w E C2 (W, Wq) are the variables associated with 
the system, and G and F are real-valued, P by 9 ma- 
trices. Such a description allows for specification of a 
number of algebraic constraints, i.e., cbnstraints of the 
tvDe 

U .  

HW = 0,  
Lemma 2.1 The system R (g) w = 0 is controllable 
i f  and only i f  the rank of R(X) is constant for all X E C. (2) 
The KYP Lemma for continuous-time, generalized 
first-order systems is formulated as follows. 
Theorem 2.2 Assume that the system = FW is 
controllable, and that the matrix G has full row-rank. 

where H is a real-valued matrix. In this respect (1) 
is a generalization of a state-space description, which 
consists of dynamic restrictions only. Note also that 
contrary to what havvens in state-mace theorv. we do 

.,I 

not a priori split ub t h e  variables into inputs and Then the following two statements are equivalent: 
outputs. An introduction to different kinds- of first- 
order models, and some motivation for studying them 
may be found in Kuijper [I]. 

The quadratic performance criterion that we are in- 
terested in has the form 

(3) 
J-00 

where M is a symmetric, real-valued, q by q matrix. It 
is instructive to think of the integral in (3) as the energy 
enclosed in the signal w.  It turns out that a controllable 
system (1), without algebraic constraints, satisfies (3) 
if and only if there exists a symmet,ric solution P to 
the LMI 

For all w E C2 (W,Rq) such that GW = F w ,  

wT( t )Mw( t )d t  I O .  
m 

J-00 

There exists a symmetric solution P to the LMI 

M + F T P G  i G T P F  5 0. (9) 

Proof: It is possible to prove the result directly along 
the lines of the proof in Rantzer [2]. Here we convert 
the problem into state-space form instead. By Parse- 
Val’s Theorem, ( 8 )  is equivalent to 

VW E C2 ( W , W q )  s.t. GW = FW : 
P o 0  

6 T (  -iw)M?i(iw)dw 5 0. (10) 
M + F ~ P G  + G ~ P F  5 0. (4) I-, 
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By a continuity argument, (10) is equivalent to  

‘dw E IFS : ‘dv E C? s.t. (iwG - F ) v  = 0 : 
v*Mv 5 0. (11) 

Since G has full row-rank, there exist invertible matri- 
ces U and V such that UGV = ( I  0). Define 

U F V  =: ( A  B )  , and V - l v  =: (E) .  (12) 

Then ( A , B )  is a controllable pair, and (11) is equiva- 
lent to  

V u  E R : ‘d (E) E @q s.t. iwx = Ax + Bu : 

(E)* V T M V  (3 5 0. (13) 

The KYP Lemma for continuous-time systems in state- 
space form may be found in Yakubovich [7]. By this 
Lemma, (13) is equivalent to 

3Q = QTs.t .  

V T M V  + (ATQ + Q A  “B> 5 0. (14) 
BTQ 0 

Take P = UTQU. Then (14) is equivalent to  (9). 0 

Remark: Note the similarity between Theorem 2.2 
and the so-called Projection Lemma, see e.g. Scherer 

The discrete-time counterpart of Theorem 2.2 is the 
following. 

Theorem 2.3 Assume that the system Gw(t+1)  = 
F w ( t )  is controllable, and that the matrix G has full 
row-rank. Then the following two statements are equiv- 
alent: 

(R,Rq) such that Gw(t + 1) = 

131. 

0 For all w E 
F w ( t ) ,  

cc 

WT( t )MW(t )  I 0. 
--oc 

0 There exists a symmetric solution P to the LMI 

M + F ~ P F  - G ~ P G  5 0. (16) 

Proof: The proof is analogous to that of Theorem 
2.2, using the KYP Lemma for discrete-time systems 
in state-space form. 0 

3 Algebraic constraints 

The condition that G has full row-rank is equivalent 
to excluding algebraic constraints on the system (1). 
If the system description does include algebraic con- 
straints, the behaviour of (1) is restricted to  live on 
a linear subspace of Rq, and Theorem 2.2 should be 
adjusted accordingly. 

Theorem 3.1 Say that the description GW = F w  in- 
cludes algebraic constraints restricting the behaviour to 
image(W) C Rq. Assume that the system is control- 
lable on image(W). Then the following two statements 
are equivalent: 

0 For all w E .&(R,Rq) such that GW = F w ,  
03 1, w T ( t ) M w ( t ) d t  5 0. (17) 

0 There exists a symmetric solution P to the LMI 

W ~ ( M  + F ~ P G  + G ~ P F ) W  I 0. (18) 

3.1 Reduction procedure 
The following procedure may be used to  detect any 
algebraic constraints in the description GW = F w .  As- 
sume that the matrix G does not have full row-rank. 
Then there exists an invertible matrix U such that 

UG = (:I, and U F  = (i) , (19) 

where G has full row-rank. The behaviour of the sys- 
tem is equivalently described as 

Gw = F w ,  and H w  = 0. (20) 

The algebraic constraints H w  = 0 may be rewritten in 
image representation as w = image ( H I )  . 

Remark: In Theorem 2.2, the quadratic function 

T 

f ( w )  := W T ~ T ~ ~ W  (21) 

is a storage function in the sense of dissipative sys- 
tems theory. It is possible to  prove the equivalence 
in Theorem 2.2 by finding t,his storage function us- 
ing the results in a forthcoming paper by Willems and 
Trentelman [GI. 
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