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Quadratic performance of generalized first-order systems
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Abstract — In this note we formulate the Kal-
man-Yakubovi¢-Popov Lemma for generalized
first-order systems, both in continuous- and
discrete-time.

1 Introduction

The Kalman-Yakubovié-Popov (KYP) Lemma is a pri-
mary tool for the analysis of linear systems in state-
space description. It provides a link between quadratic
performance questions and the existence of a solution
to a Linear Matrix Inequality (LMI). A demonstra-
tion of this connection, and some background about
the KYP Lemma may be found in Willems {4].

In this note we formulate the KYP Lemma for
continuous-time, generalized first-order systems of the
form

G = Fuw, (1)

where w € £ (R, R9) are the variables associated with
the system, and G and F are real-valued, p by ¢ ma-
trices. Such a description allows for specification of a
number of algebraic constraints, i.e., constraints of the

type
Hw =0, (2)

where H is a real-valued matrix. In this respect (1)
is a generalization of a state-space description, which
consists of dynamic restrictions only. Note also that
contrary to what happens in state-space theory, we do
not a priori split up the variables w into inputs and
outputs. An introduction to different kinds of first-
order models, and some motivation for studying them
may be found in Kuijper [1].

The quadratic performance criterion that we are in-
terested in has the form

/ > wl (t)Mw(t)dt < 0, (3)

-0

where M is a symmetric, real-valued, ¢ by ¢ matrix. It
is instructive to think of the integral in (3) as the energy
enclosed in the signal w. It turns out that a controllable
system (1), without algebraic constraints, satisfies (3)
if and only if there exists a symmetric solution P to
the LMI

M+ FTPG + GTPF <0. (4)
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Analogously, it turns out that the discrete-time sys-
tem

Guw(t+1) = Fw(t) (5)

satisfies the performance criterion
o
> wT () Mw(t) <0 (6)
-0

if and only if there exists a symmetric solution P to
the discrete-time LMI

M+ FTPF-GTPG <0. (7)

When the system description (1) or (5) includes al-
gebraic constraints, the behaviour of the system is re-
stricted to a linear subspace, and we show how the
quadratic performance problem may be reduced to an
equivalent problem on a subspace.

2 Quadratic performance

Before we formulate the main results, we first charac-
terize controllability of a system in kernel representa-
tion (Willems [5]).

Lemma 2.1 The system R (%) w = 0 is controllable
if and only if the rank of R(\) 1s constant for all X € C.

The KYP Lemma for continuous-time, generalized
first-order systems is formulated as follows.

Theorem 2.2 Assume that the system Gw = Fw is
controllable, and that the matrix G has full row-rank.
Then the following two statements are equivalent:

o For all we Lo (R,RY) such that Gir = Fuw,
/ T () Muw(t)dt < 0. (8)

o There erists a symmetric solution P to the LMI
M + FTPG + GTPF <0. 9)

Proof: It is possible to prove the result directly along
the lines of the proof in Rantzer [2]. Here we convert
the problem into state-space form instead. By Parse-
val’s Theorem, (8) is equivalent to

Yw € L3 (R,R?) s.t. G = Fw :

/ ” DT (—iw) M (iw)dw < 0. (10)

-0



By a continuity argument, (10) is equivalent to

YweR:VveClst (iwG-Flw=0:
v*Muv <0. (11)

Since G has full row-rank, there exist invertible matri-
ces U and V such that UGV = (I 0). Define

UFV =: (A B),and V''y =: (2) : (12)

Then (A, B) is a controllable pair, and (11) is equiva-
lent to

VwER:V(i) € C?s.t. twz = Az + Bu:

(i) vTMV <i> <0. (13)

The KYP Lemma for continuous-time systems in state-
space form may be found in Yakubovich [7]. By this
Lemma, (13) is equivalent to

3Q = QT s1.
VT MV + (ATgTJFQQA QOB ) <0. (14)

Take P = UTQU. Then (14) is equivalent to (9). O

Remark: Note the similarity between Theorem 2.2
and the so-called Projection Lemma, see e.g. Scherer
3.
The discrete-time counterpart of Theorem 2.2 is the
following.

Theorem 2.3 Assume that the system Gw(t+1) =
Fuw(t) is controllable, and that the mairiz G has full
row-rank. Then the following two statements are equiv-
alent:

o For all w € £y (R,R?) such that Guw(t + 1) =
Fw(t),

in(t)Mw(t) <0. (15)

o There exists a symmetric solution P to the LMI
M+ FTPF-GTPG <. (16)

Proof: The proof is analogous to that of Theorem
2.2, using the KYP Lemma for discrete-time systems
in state-space form. o

3 Algebraic constraints

The condition that G has full row-rank is equivalent
to excluding algebraic constraints on the system (1).
If the system description does include algebraic con-
straints, the behaviour of (1) is restricted to live on
a linear subspace of R%, and Theorem 2.2 should be
adjusted accordingly.
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Theorem 3.1 Say that the description Guw = Fw in-
cludes algebraic constraints restricting the behaviour to
image(W) C RY. Assume that the system is control-
lable on image(W). Then the following two statements
are equivalent:

o For allw € Lo(R,R?) such that G = Fuw,

/oo w? ($) Mw(t)dt < 0. (17)

o There exists a symmetric solution P to the LMI
WT(M + FTPG+GTPFYW <0. (18)

3.1 Reduction procedure

The following procedure may be used to detect any
algebraic constraints in the description Guw = Fw. As-
sume that the matrix G does not have full row-rank.
Then there exists an invertible matrix U such that

ve=(C , and UF = F , (19
(<) (i) )

where G has full row-rank. The behaviour of the sys-
tem is equivalently described as

G = Fw, and Hw = 0. (20)

The algebraic constraints Hw = 0 may be rewritten in
image representation as w = image (H l)T.

Remark: In Theorem 2.2, the quadratic function
f(w) := wTGTPGw (21)

is a storage function in the sense of dissipative sys-
tems theory. It is possible to prove the equivalence
in Theorem 2.2 by finding this storage function us-
ing the results in a forthcoming paper by Willems and
Trentelman|6].
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