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Abstract 

This paper presents an elegant contact dynamics model 
in screw bondgraph form. It can model the contact be- 
tween any two objects of finite curvature. It does so by 
defining a Gauss frame on the surfaces of both objects in 
the points that are closest to each orhes Then it describes 
how the Gauss frames move as the objects move relutive 
to each othes This is called the contact kinematics. The 
contact kinematics detect when two objects touch, then 
describe how they mll and slide over and along each 
other, and then detect when they get loose again. With the 
contact kinematics a dynamic screw bondgraph model is 
build. This dynumics model is verifred in two simulations. 
The first simulation shows two objects of nontrivial cur- 
vature, eggs, mlling over each other: The second shows a 
mbotic hand manipulating an object. 

1 Introduction 

1.1 Twin Arm Robot 

Fokker Space is prime contractor for the European 
Robotic Arm (ERA) [ll]. ERA is a 12 m long, 600 kg 
ann that can handle payloads of upto 8000 kg. It will help 
in the assembly and maintenance of the Russian segment 
of the International Space Station (ISS). It is not intended 
and suitable for smaller, more human-scale, maintenance 
and repair tasks. Those tasks are now performed by cos- 
monauts in Extra Vehicular Activity (EVA) which is both 
dangerous and costly. For this reason Fokker Space is 
researching a small, relatively autonomous robot called 
Twin Arm Robot (TAR) [lo]. TAR is to replace and as- 
sist cosmonauts in EVA. The TAR has two 7 DOF arms 
and two 3 linger, 12 DOF Compact Dexterous Gripper’s 
(CDG) as hands. Figure 1 shows a prototype of a CDG 
linger. 

Most tasks that the TAR will have to perform, involve 
contact between the robot and the environment. This 
holds not only for TAR but for most useful tasks that 
robots can perform in general. The CDG for example 
can grasp an object, and manipulate the object between 
its fingers. To understand the contact, and to simulate the 
contact we need a contact model. A contact model can 

Figure I :  Pmtotype of Compact Datemus Gripper fin- 
ger 

for example be used to study different grasping and ma- 
nipulation schemes. 

1.2 Existing contact models 

In litemture different contact models can be found. Most 
of them assume that the contacting objects have very 
specific shapes like for example the contact models de- 
scribed in [4] and [6]: [4] which is used inside the ERA 
Simulation Facility (ESF), can only model the contact 
between points and planes, while Ma [6] assumes that 
the surfaces of the objects are linear or quadratic. Mon- 
tana [ I ]  on the other hand only assumes that the objects 
have finite curvature, which means that the objects may 
not have infinetely sharp edges. This is the most general 
model because in reality edges are never infinitely sharp. 
Montana’s model however has the following two l i t a -  
tions. 

First it assumes that the objects are in contact. It cannot 
detect contact while [4] and [6] can. For the points and 
planes in [4] the contact detection is trivial and [6] uses a 
numerical optimization algorithm to detect contact. Sec- 
ondly Montana’s model is only a kinematic model while 
141 and [61 are fully dynamic models. [4] treats the ob- 
jects as infinitely stiff but [6] takes the finite object stiff- 

0-7803-73987/02/$17.00 WOO2 IEEE . 2239 

mailto:s.stmmigioli@ieee.org


ness into account. Both contact detection and dynamics 
are essenstial in creating controllers for dexterous robots 
performing contact tasks. 
This paper generalizes Montana’s contact kinematics so 
that it can also detect contact, and then uses the gen- 
eralized contact kinematics in a dynamic screw bond- 
graph model. The rest of this paper is organized as fol- 
lows. First in section 2 some background on twists and 
wrenches and geometry of surfaces is reviewed. In sec- 
tion 3 the contact kinematics are generalized to include 
the contact detection. In 4 the contact kinematics are 
used in a dynamic screw bondgraph model. In section 
5 the dynamics model is verified in simulations. Finally 
in section 6 the conclusions are presented. 

2 Background 

2.1 Msts and wrenches 

Let SE(3) be the special Euclidean Lie group. Let Hi E 
~ ( 3 )  be the pose that relates frame 2 to frame 1. Hd 
is both a coordinate transformation and a motion. It is a 
coordinate transformation that transforms coordinates of 
points p and vectors v from frame 2 to frame 1. It is a 
motion that moves frame 1 to frame 2. pi are the coordi- 
nates of the origin of frame 2 in frame 1. The columns of 
R: are the coordinates of the axes of frame 2 in frame 1. 

Let 4 3 )  be the special Euclidean Lie algebra associated 
t o S E ( 3 ) .  LetT~*bethetwistofframe3relativetoframe 
2 expressed in frame 1 with angular part ai2 and linear 
part vi’. vi’ is the velocity of a point that is fixed in frame 
3 but momentarily coincides with the origin of frame 1 
relative to frame 2. This is not the same as the velocity of 
the origin of frame 3! 

12 
GI2 = [ :$ 3 

The big advantage of twists over velocities is that each 
point on the same rigid body can be described with the 
same twist but not the same velocity. If frame 1 is the 
same as frame 2 then T:’ is called the world twist. If 
frame 1 is the same as frame 3 then T:’ is called the body 
twist. The relation between the world and body twists on 
the one hand, and the time derivative of the pose is as 
follows. 

T’2 = H i H ;  and T32 3 - 2 3  - H3H2 (3) 

The adjoint map Ad,: transforms twists from frame 2 to 
frame 1, where 

Its transpose transforms wrenches from frame 1 to frame 
2. For more information on twists and wrenches see (71. 

2.2 Geometry of surfam 

Consider S be the surface of an object embedded in 3 di- 
mensional Euclidean space E ( 3 ) .  Let the surface be on- 
ented in such a way that the normal is pointing away from 
the object. Let c(q) be an orthogonal (not orthonormal) 
parameterization of the surface around a point p E S, with 
local coordinates q = (U,.) and that is compatible with 
the orientation. Such a parameterization always exists in 
a neighborhood around p .  For a proof sk [ 5 ] .  Then a 
coordinate frame can be attached to p in the following 
way: the X axis of the coordinate frame is the unit vector 
pointing in the direction of the first coordinate U of the 
parameterization c. In the same way the Y axis is the unit 
vector pointing in the direction of the second coordinate 
v. The Z axis is the unit normal vector N. 

ac 
aU. where the notation c, means - This frame is called the 

normalized Gauss frame H ( q ) .  

Because the surface is embedded in E(3) it inherits a Rie- 
mannian metric. From this metric follow the first and the 
second fundamental forms and the Christoffel symbols. 
The 6rst fundamental form is a measure for the length of 
a vector tangent to the surface. Montana [l] uses the first 
fundamental form to define the metric matrix M. Because 
the parameterization is orthogonal the metric matrix is di- 
agonal. 

(7) 

The second fundamental form is a measure for the curva- 
ture of the surface along a tangent vector. Montana uses 
the second fundamental form to define the curvature ma- 
trixK. 

Finally Montana defines the torsion vector T that is a 
measure for how the Gauss frame twists as it moves 
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pairsof localcoordinates ( u ~ , Y I )  and ( U Z , Y Z ) ,  therelative 
angle a and the relative distance d .  The relative angle a is 
the angle from x1 to x2 measured about z1. Of come the 
number of coordinates necessary to describe the relative 
pose of two objects is 6 because the dimension of SE(3)  
which is the space of relative poses is 6. 
By definition the pose of the contact frames relative to the 
object frames H: are given by (6). Using (3) we compute 
their body twists TEo. This is were the properties intro- 
duced in section 2.2 come in useful. Writing out and sub- 
stituting (7) through (9) we get for the angular part (again 
see [11) 

K M q  and ( O E O ) ~ = T M ~  (IO) 
Figure 2: Shortest distance between hvo objects and 
their Gauss frames 

across the surface. The torsion vector is related to the 
Christoffel symbols. 

" 

whereq= (u,v),andforthelinearpart 

By definition the contact frames C1 and C2 have common 
2 axes pointing towards eachother's origin and therefore 

(12) 

(9) T = y T [  - - 1  
Montana calls M, K and T tensors but they are not really HFi = [ 'i; pFi ] 
tensors as is explained in [12]. The metric, curvature and 
torsion together fully describe the geometry of the sur- 
face. They will be used to derive the contact kinematics. 
For more information on the geometry of surfaces see [51. 

with 

r n i  

3 Contact kinematics 

Montana [ l ]  first derived the contact kinematics for the 
case when two objects are in contact. For a coordinate- 
free, intrinsic derivation see [12]. Here we will generalize 
the kinematics to the case where the two objects need not 
be in contact. 

Consider two objects 1 and 2 with surfaces SI and S2. 
The shortest distance between the surfaces of two objects 
is along a line that is perpendicular to both surfaces. Lets 
call the points where this line intersects the surfaces p1 
andp? andtheirdistanced. Letcl(u1,vl) andcz(uz,vz) 
be parameterizations of S1 and S2 around PI and p z ,  that 
satisfy the conditions in section 2.2. 
We define the following frames: frame W is the world 
frame that is ked. Frames 01 and 02 are the object 
frames that are fixed relative to the objects. The object 
frames can for example be chosen in the centers of grav- 
ity with their axes along the principal axes of inertia. C1 
and C2 are the contact frames, which are the normalized 
Gauss frames of CI and cz in PI and p z ,  and move with 
the contact point. 

The relative pose of objects 1 and 2 that are in contact, is 
uniquely defined by the six contact coordinates: the two 

where 

Using (3) we compute the body twist. As expected it has 
only an angular and linear component about and along 
the common 2 axis. 

To compute the twist of 02 relative to 01 we go from 01 
to CI to CZ to OZ. Expressing all the twists in the chain in 
CZ we can easily sum them 

(16) 

Using (4) and the fact that the twist of Cz relative to CI is 
the same as the twist of 0 2  relative to Cz but with opposite 
sign, we get 

TCZ01 = TCZcZ + f2cl + TCZOI 
0 2  0 2  c2 Cl 
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Figure 3: Contact d y m i c s  in screw bondgraph form 

Using (4) and substituting (10) through (15) we get after 
laborious rearranging for the rates of the contact coordi- 
nates as a function of the body twist of 0 2  relative to 01 

d = v, (21) 

ports connected to two objects, and one input, namely 
the object frame of one of the objects, for example HE.  
The power-conjugate variables of the ports are the world 
twists of both objects TZW and TEw and their respective 
wrenches. 
The twists are subh-acted to get their relative twist T F '  . 
Then, using the using adjoint map (4) the relative twist is 
expressed in one of the contact frames to get TZ:O1. For 
this we need H g  which we build from ff: and Hi:. e is input to the contact kinematics, which compute 
the rates of the contact coordinates, that are integrated to 
get the contact coordinates themselves. XO is a switched 
junction: depending on whether there is contact (when 
the distance, which is the sixth contact coordinate, is 
greater than zero), it switches the power flow to the rest 
of the model on or off. 
If there is contact, so the model is switched on, the dif- 
ferent DOF's of TZ;" are split into free and constrained 
DOF's. For rolling contact 0, and o?, are free and the 
other DOF's are constrained. For sliding contact w,, v, 
and vy are free and the other DOF's are constrained. For 
rolling and sliding contact all DOF's except v, are free. - 

The free DOF's are connected to an effort source Se of 
zero (zero torque or force). The constrained DOF's are 
connected to springs C and dampers R. The stiffness of 
the spring and damping of the damper depend on mate- 
rial properties of both objects, a relation for which can 
be found in [61. If the springs are pressed the object is 
slightly deformed. We have assumed that these deforma- 
tions are small relative to the size of the object, so that 
the shape of the objects given by the parameterization, 
remains approximately the same. 
Because a bondgraph model can be automatically trans- 
lated into causal equations, it can be simulated easily. In 
the next section we will show some simulations. 

where M,, Kt, Ti and q, are the metric, curvature, torsion 
and local coordinates of object i. 
Equations (18) through (21) are the generalized contact 
kinematics. They are very similar to Montana's contact 
kinematics for two objects that are in contact. The only 
difference is the term ( W K i R  + I )  to account for the dis- 
tance d .  If d = 0, that is if the objects are in contact, 
the generalized contact kinematics reduce to Montana's 
contact kinematics [l]. 
Now we will extend the generalized contact kinematics 
to a dynamic screw bondgraph model. 

4 Contactdynamics 

In figure 3 we see the dynamic screw bondgraph con- 
tact dynamics model. For a background on screw bond- 
graphs see [91. The bondgraph model has two power 

Figure k Sirnulotion of hvo eggs rnlling over each other 
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Figure 5: Distance and force between two eggs 
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Figure 7: The object follows the virtual object which fol- 
lows the reference 

5 Simulations 

In order to verify our dynamic model we simulate two 
objects rolling over each other. For the objects we take 
Cartesian ovals because they have a nontrivial curvature. 
A Cartesian oval is a special kind of oval which looks like 
an egg. Just as a regular oval is the collection of points 
where the sum of the distances to its two focal points is 
constant, a Cartesian oval is the collection of points where 
the sum of the distance to one focal point plus twice the 
distance to the other focal point is constant. In figure 4 
we see the two eggs, their object frames and their Gauss 
frames. In figure 5 we see the distance and the force be- 
tween them as a function of the time. When the distance 
becomes zeros there is contact and we see an impact in 
the force. The shape of the rest of the force is because of 
the shape of the eggs: the “humps” are when one of the 
eggs rolls over its top. 

As an application we show a simulation of the CDG ma- 
nipulating an object, in this case a sphere. The fingers 
are the same as the one in figure 1. In figure 6 we see 
three frames: the first one is the reference frame, the third 
the object frame and the second the virtual object frame 
which exists only in the controller. The used controller 
is a special form of impedance control. For more infor- 
mation on the controller see [9]. The hand has to make 
the object follow the reference by rolling it between its 
fingers and without dropping it. In figure 7 the reference 
position, object position and virtual object position are 
plotted as a function of the time. In the beginning the 
fingers tum, then they move with the object in the right 
direction and finally stop as the reference moves outside 
the reach of the hand. 
The simulations have been performed with 20-sim [13], 
which is a powerful modeling and simulation package 
which supports bondgraphs. 

6 Conclusions 

In this paper the contact kinematics as first derived by 
Montana [l] have been generalized to include the case 
when the objects are not (yet) in contact. They can model 
contact between any two objects of finite positive relative 
curvature. They can detect when two objects touch, how 
they roll and slide over eachother and when they come 
loose again. 
The generalized contact kinematics have been used in a 
dynamic bondgraph model. When the objects are in con- 
tact certain DOF’s are constrained and the others are free. 
Depending on which DOF’s are constrained the objects 
roll and I or slide over each other. The constrained DOF’s 
are modeled by a spring and a damper in parallel, the 
stiffness and damping of which depend on material prop 
erties. 

The contact dynamics model has been verified with a sim- 
ulation of two objects of nontrivial curvature (Cartesian 
ovals or eggs) rolling over each other. An example of an 
application has been given for a hand that manipulates an 
object, by rolling the object between its fingers, using a 
special form of impedance control. 

In the future research we will extend the model to in- 
clude friction. That is rolling contact which above a 
certain force also becomes sliding contact. We will use 
this model to study different grasping and manipulation 
schemes, an example of which has already been given in 
section 5. 
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Figure 6: Robotic hand manipulating a n  object 

-References (111 R. B o u r n s  and Cock Heemskerk “European Robotic 
Arm forthe International Space Station”, Robotics and Au- 
tonomous System vol. 23 pp. 17 - 27,1998 [ I ] .  D&d J. Montana: ‘The kinematics of contact and grasp”, 

Intemational Journal of Robotics Research vol. 7 no. 3 pp. 
17-32, June 1988 [I21 Vmcent Duindam and Stefano Stramigioli: “Coordinate 

free derivation of contact kinematics”, subm’ned to the [2] David J. Montana: “The kinematics of contact with com- JEEE International Conference on Intelligent R o b s  and pliance”, Proceedings of the IEEElnremational Conference 
Systems, Lausanne, Switzerland, October 2002 on Robotics and Automation pp. 776774,1989 

131 Arlene B.A. Cole, John E. Hauser and S. Shankar Sas- 
try: “Kinematics and control of multi-fingered hands with 
rolling contact”, IEEE Transactions on Automatic Contml 
vol. 34 no. 4 pp. 398404, April 1989 

[4] Marcel Ellenbmk: “CJn the fast simulation of the multi- 
body dynamics of Rexible space structures: the recursive 
thought”, PhD thesis from mente University, Enschede, 
the Netherlands, November 1994 

15) M.P. do C m o :  “Differential geometry of curves and SUT- 

faces’; E n g l e w d  Cliffs, Rentice Hall, 1976 
[6] Ou Ma: “Contact dynamics modeling for the simulation of 

@e space station manipulators handling payloads”, submit- 
ted to the LEEE International Conference on Robotics and 
Automation, Nagoya, Japan, May 1995 

171 Stefano Stramigioli and Herman Bruyninckx “Geometry 
and screw theory for robotics”, mtorial from LEEE Inter- 
national Conference on Robotics and Automation, Seoul, 
Korea, 2001 

[8] Stefano Shamigioli: “A novel impedance grasping suategy 
based on the virtual object concept”, JEEE Meditemanean 
Conference on Contml and Systems, Alghero, Italy, lune 
1998 

191 Stefano Stramigioli: “Modeling and IPC conuol of inter- 
active mechanical systems: a coordinate-free approach”, 
Springer, Londen, 2001 

[IO] Cock J.M. Heemskerk and Martijn Visser: “TAR a twin 
arm robot for dexterous assembly and maintenance tasks 
on ISS”, Proceedings of the ESA Workshop on Advanced 
Space Technologies for Robotics and Automation, Noord- 
wijk, the Netherlands, December 2000 

[I3] h ~ ~ ” w w w ~ 2 0 s i ~ ~ c o d  

2244 


