
——.. .. ———— ,,.,<.-,.— ——-— -.,. ..-

Road Collapse in Magnum

Annita N. WilschutO Roelof vau Zwo1° Jan FlokstraO Nick Brasa’ Wilko Quak”

0 Universityof Twente * Smalhvorld Systems BV e University of Amsterdam

P.O.Box 217, 7500 AE Enscheck+the Netherlands the Netherlands the Netherlands

{mit% Zwol, flokstra}@rs.umrlte.nl niek@smalhvorld.rd qusk@Nvins.uva.nl

Abstract

This paper describes the implementation of a triangulation
based collapse algorithm in the general-purpose object or-
iented DBMS Ma.mum. The contribution of the paper is
twofold. Firss., we show that true integration of complex
spatial functionality in a DBMS can be achieved. Second,
we worked out a collapse algorithm to be used in the com-
plex area of map generalization.

1 Introduction

Map genetilzation ~rB96,Wei96b] is a difficult prob-
lem, which has been on the agenda of GIS researchers for a
long time. Many papers have appesred that either review
the complexity of the problem from a theoretical viewpoint
lDeP96,117ei96a]or give a technical solution of a part of the
problem fPTM96,RuP96].

Although the current state-of-th~art do= not allow a
technical solution that covers all aspects of map general-
ization, the problem is urgent. Manual map production is
very costly, and even computerizing certain aspects of this
process may lead to a reduction of those costs. Also, auto-
matic map generalization paves the road towards producing
a larger variety of map products.

ThE paper tackles a single issue in map generalization
from a practical viewpoint generalizing roads horn 2-dimens-
ional area features (in a very detailed topographic map)
into l-dimensional line f-tures keeping the underlying polyg-
onal map closed. The work on this problem was inspired by
the map production process of the Dutch topographic soci-
ety that produces topographic maps at various scales.

Integration in a general purpose DBMS. The work
is done in the conta~% of the hIaagnumresearch project
~WK9S,117QB97]. In the Magnum project, a structurally
object-oriented DBMS proto@pe is developed. The work
in this project is inspiied by the fact that it has become
apparent that integration of spatial and thematic data in a
single data manager has many advantages. Such a system
offers a single data model for spatial and thematic dat~
base-type extensibti~ is typically used to implement spa-

Penmssicm to make digital or hard copies of all or part of thii work for
personal or classroom use is granted without fee provided that
copies am not made or d~iuted for profn or commercial advan-
Iage and that copies bear thii notice and ths full citation on the first page.
To copy otherwise. lo repubIiih, to post on servers or to
redistribute to Iiis, requires prior specific psrm”~ion an-dlor a fee.
ACM GIS ,9S 31 /sS Washington; D.C., USA
@ 19SS ACM 1-5S1 13-115-1/9S/007 1...$5.00

tial types, like points, polylines, and polygons. Research
proto~es that elaborate th= idea are GEO++ [OOV94],
GeOz [SCV92], and Paradwe ~KL94]. However, it is shown
in [OOV94] and [SCV92] that full and efficient integration of
GIS functionality in an extensible relational or an object-
oriented DBMS is dficult, because it is hard to model and
fully exploit the structure that is typically imposed on spa-
tial data.

In Magnum, we are building a DBMS prototype that
is specially suited for the management of spatial data. As
a DBMS, the system is able to manage all sorts of data.
However, the fact that spatial data is managed by the sys-
tem has influenced its design. The goal is to study true
and efficient integration of a wide range of possibly complex
GIS-functionality in the a DBMS. Decomposition and cxc-
tensibilitg are the key features of the design of the Magnum
prototype.

The contribution of this paper is twofold. We have worked
on an algorithm that describes the road generalization pro-
ces in five phases, but more importantly, this algorithm has
been adapted such that it could be implemented as part of
the Magnum DBMS prototype.

This paper is organized as follows: Section 2 describes
the map products of the Dutch topogxaphlc society. Sec-
tion 3 describes the road collapse algorithm in general terms.
Section 4.1 outlines the Magnum prototype DBMS, its phys-
ical storage server, Monet, and the ways in whkh Magnum
provides support for spatial applications. Section 4.2 is on
the representation of polygonal maps in Magnum and it
shows that the algorithm of Section 3 can directly be im-
plemented on that representation. Section 4.4, shows the
results of our algorithm on a sample of a real topographic
map, and Section 5 concludes the paper.

2 TDN topographic maps

The “Topograiische Dienst Nederland” (TDN)l is a Dutch
company that produces topographic digital raster and vec-
tor maps at diHerent scales for the Netherlands. In th=
paper, we look at their vector source map, which has scale
1:10000 and is called TOPIOVector, and its first derivative,
the TOP50Vector, at scale 1:50000. The TOP50Vector map
is derived from the TOP IOVector map via manual and auto-
matic generalization. Figure 1 shows a sample of both data
sets.

*The “Topogrtische DienstNederland”(TDN) kindlysuppliedus
with a sampleof their data to test the algorithm describedin this
paper. The TDN has the copyrighton the data usedto producethe
figuresin this paper.

——— —.-—. .——--———— *.—

Fia-e 1: An example of the TOPIOVector and TOP50Vector map of the same area

Both the TOPIOVector and the TOP50Vector maps con-
sist of a base map -which, is a polygonal map (a complete and
disjoint subdivkion of the plane into polygons). The parts
of the subdivkion are area features. A describing code is as=
sociated with each area feature. The boundaries are labeled
with codes as welk some boundaries just serve as boundary
of an mea feature, others also represent a line feature. This
is indicated by their label. All line features are integrated in
the base map. Apart from the polygonal base map, there are
separate layers that contain houses (represented as polygons
that are not integrated in the polygonal base map) and var-
ious symbols This paper concentrates on the area features
making up the base map.

An important diKerence between the TOPIOVector and
the TOP50\7ector maps is the fact that roads are stored
in the former as area features in the polygonal map and
in the latter as line features. So, the derivation of the
TOP50Vector from the TOPIOVector requires (among many
other generalizations):

● Generalizing the area features that represent roads into
line features, which are the road hartlines.

. propagating the description codes associated with the
roads in the generalization process to the line feature
roads.

● Restoring the polygonal base map.

This paper shows how a general approach, described b
~aW97,JBW95] in a different context, is reiined into a road
collapse algorithm the roads are wllapsed from area fea-
tures to line features. The result consists of a closed road
network and a new complete polygonal base map in which
the area covered by roads is distributed over neighboring
area features.

3 The road collapse algorithm

The road collapse algorithm uses triangulation to iind the
skeleton of the road and to restore the polygonal base map.
The algorithm conssts of 5 phasas. The phases are described
below and illustrated in Fiame 2. Figure 2a shows the initial
map, which represents a road (grey) enclosed by three white
polygons.

‘I!&ngulation (see Figure 2b) Fwst, a triangulation of the
road polygon is constructed. Any triangulation of the
polygon will result in a skeleton, however, a Delauney
triangulation, that is constrained or conformed to the
polygon boundaries, yields the best results. ThB is a
skeleton that is close to the hartline of the road. The
triangles in the triangulation may have O, 1, or 2 edges
that coincide with the boundary of the polygon. We
will call them O-, 1-, and 2-triangles. The edges that
coincide with the boundary will be called boundary
edges, the others are internal edges.

Construction of the skeleton (see Figure 2c) The mid-
dles of the internal edges and their comections form
the skeleton. So, in each l-triangle, the middles of
both internal edges are connected by a line segment.
In the O-triangles, the middles of the internal edges
(which are all three edges) are calculated. There are
three possible segments to connect them. The shortest
two of these are chosen. A 2-triangles adds a point to
the skeleton. As can be seen from Figure 2c, the seg-
ments drawn in the road polygon in this way (dotted
line in the figure) forma skeleton for the polygon. Also
note that a 2-triangle marks an endpoint of the road,
a l-triangle is part of a linear piece of the road, and a
O-triangle marks a thre~way junction. Two adjacent
O-triangles mark a 4way junction, and three adjacent
O-triangles mark a &way junction, etc. The skeleton
that is produced in th= way is marked as a line fea-
ture and it is labeled with the label that was associated
with the original road area feature.

Integration of the skeleton in the triangulation (see Fig-
ure 2d) The introduction of the skeleton leaves a subdL
vkion of the road polygon in triangles and quadruples.
Each quadruple is split into two triangles by inserting
the shortest diagonal. In this way, the skeleton is in-
tegrated in the triangulation of the road polygon. We
are now ready to d=tribute the area covered by the

- road over the neighboring area features. “

Restoration of the polygonal base map (see Figure 2e)
The triangles making up the road are now d~tributed
over the neighboring area features. Each triangle is
added to the feature with which it shares the longest
edge that is not part of the skeleton.

.—— .. —--..--k .—— . _. —— —-—_ _ -— — -—.—.——.

a b. c.

u.

Figure 2

e.

Road collapse

cleanin g up (see F@re 2f) Finally, the edges that are not
needed anymore (the boundary of the original poly-
gon), and the internal edges of the trian~ation tie
removed from the database. No-w, the road collapse
algorithm is ready.

3.1 integration of the skeletons

Application of the collapse algorithm to a collection of roads
results in a collection of skeletons, one for each road, that
are not connected. This is caused by the fact that, as can
be seen in Figure 2d, the skeletons do not fully reach the
=dpoiuts of the roads. The skeletons produced may easily
be connected, though, by adding those boundaries from the
polygonal map that connect two skeleton endpoints, to the
collection of skeletons @wo9S]. In this way, a closed road
network is produced. An alternative-way to produce a closed
road network is to &t integrate all roads that need to be
collapsed into one area fmture in the map and then apply
the collapse algorithm to the result to produce a single closed
road network.

4 Road collapse in Magnum

The road collapse algorithm has been implemented in the
Magnum DBMS for spatial applications ~QK96,BWK98,
WQE97]. This section describes the implementation. First,
the Maagnumprototype environment is described. Then we
show how a suitable datastructure for polygonal maps and
triaq-ulations, the Double Gonnected Bdge List (DCEL)
)33K097] is implemented as a structure in the Magnum pro-
totype DBMS. Finally, we show how this datastructure is
used to support the road collapse algorithm.

4.1 The Magnum DBMS

Magnum is a DBMS prototype that is developed by two
cooperating universities in The Netherlands. It is a struc-
turally Object Oriented DBMS that is specially suited for
the management of spatial data. As a DBMS, the system
is able to manage all sorts of data. However, the fact that
spatial data is managed by the system has influenced its
design. The eventual goal of the Magnum research project
is to study efficient integration of a wide range of complex
GEMunctionality in a general DBMS. Magnum has success-
fully been extended with a wide range of spatial base types
@QK96] and it performs well on the Sequoia benchmark
[SFG93]. We equipped the system with a structurally Ob-
ject Oriented data model and implemented the Object Al-
gebra MOA @VK98]. In this paper, we illustrate the struc-
tural extensibfity of the system with the implementation of
the road collapse algorithm. This section will sketch the the
architecture of Magnum as far as needed to understand the
implementation of the road collapse algorithm.

4.1.1 Architecture

Figure 3 shows the architecture of the prototype. The sys-
tern is built in a modular extensible way. Monet, the storage
server is implemented in C, all other components are in im-
plemented in Java. The functionality of the components in
Figure 3 is as follows.

User Interface The User Interface, at the top of the ar-
chitecture provides an interactive interface to users.
Users have access to the various tools that have been
built in the system.

Monet Monet is the storage system used in Magnum. Monet
is described in more detail below.

..—..- .— ___ — -.———- .— --—------------- _.-—. —.——.— .— - . .____ _~,-.:-...: _

I UserInterface
I

I Monet Server I
Figure 3: The architecture of the Magnum
prototype DBMS

MOA The Maagnum Object Algebr+ implements a struc-
turally Object Oriented data model and an algebraic
query interface to the data model. The datamodel al-
lows base type and structural extensibtity.

TEXX%TOO1me t~~%tool provides a standard textual inter-
face to MOA and Monet-

NlapTool The maptool is the mapp-mg interface to the sys-
tem. It allows the user to present query results as a
fiat map that consists of several superimposed layers.
MapTool supports an extensible legend system. A leg-
end is a software module that specifies how data is to
be presented on the map. LTsersmay add new legend’s
to the system for specialized graphical presentation of
query resmlts.

ReliefTool This tool is currently being constructed- It al-
lows 3-dimensional presentation of digital terrains.

MsmetTool The monet tool allows the user to directly ac-
cess the Monet physical database. This tool is meant
for debugggmg only.

Essential for the work described in this paper are the binary
relational data storage of Monet, and the extensible object
data model in MOA.

4.1.2 hfonet, a binary relational database system

Monet is a high-performance FQK96,BWK98] extensible
pmdlel database kernel that has been developed at the UVA
and CWI siuce 1993. Monet implements a binary relational
data model, in which all data is stored in binary tables.
Structured data is decomposed over narrow tables [COKS.5].
This fi-.aa=entation helps reduce chunk sizes to fit memory
and sa~-= a lot, of 10. &Ionet accesses only those attributes
that are actually used in a query. The interface to Monet
consists of an algebra on binary tables, called the binary
algebra. This algebra comes down to a simplified version
of the relational algebr~ adjusted to work on bmexy tables
only. The simplicity of the data model and the algebraic
interface allows simple and very efficient implementations of
the operations in the algebra. The superior performance of
Monet. has been demonstrated in various contexts l’BQK96,
ENWW]. In this paper, vie use hlonet’s binary tables to
store the highly structured data that describe a polygonal
map.

4.1.3 An extensible object data model

MOA provides the user with a structurally object oriented
data model that can be extended in two ways. First, the sys-
tem can be extended with new base typee and their access
functions. This sort of extensibility is quite common in mod-
em DBMSS ~QK96,DKL94,Gue89,ScV92,SM90]. Mag-
num’s base type extensibility is implemented by Monet. It is
used to provide primitive spatial types like points, lines and
polygons, and large set of spatial operations on the primh
tive spatial type. A description of the spatial extensions to
Monet is found in ~QK96].

Magnum also provides a novel feature, which we call
structural extensibility. It is possible to extend the data
model with structuring primitives, other than then the con-
ventional tuple, set, list, etc [Cat94]. So, in fact, the struc-
tural extensibility allows users to extend the data model
supported by the system. We use structural extensibility in
the context of spatial applications to support structures like
polygonal maps, triangulations, and rasters.

MOA implements the structures in the Magnum data
model, the standard ones and the extensions, via mapping
structured data on Monet’s binary datamodels. ThE means
that highly structured data is decomposed over many bl-
nary tables. The structural extensibility is implemented by
MOA via the implementation of extensions to this mapping
of structured data on binary tables. A detailed descrip-
tion and a formalization of the mapping process is found in
~WK98].

In this paper, we extend the Magnum data model with
the FeatureMap. To do so, we show how Polygonal Maps
are stored in Monet’s binary tables. Also, operations on the
Polygonal Map are translated into binary algebra programs.
In this paper, we focus on the implementation of the collapse
algorithm.

Example

This section illustrates the data modeling and the integrated
query facilities of the system. Space limitations prohibit to
give an extensive description of the model and query lan-
guage. The standard data model provided is simLsr to the
structural part of the ODMG model [Cat94]. The query
language ~WK98] is a standard object algebra. It contains
the select, project, join, sernijoin, union, intersection, diier-
ence, subset, in, nest, unnest, and aggregates that operate
on se@ it allows access to attributes of tuples and objects.

A database around the TOPIOVector base map may look
as follows:

P : FeatureMap

CUSS Hap : TUPLE<code: int,
owner : Person,
featssre : int>

class Person : TUPLRneme : string,
age :j.nt>

ThM code segment states that there is a variable P re-
ferring to a polygonal map. FeatureMap is a structure that
has been added to the system aa a structural extension.2
Then, there is a CISSSMap with TUPLE structured objects.
The tuples have three attributes, one contains a describing
code, one describes the owner, and the last one contains the

2We assume that a filleddatabaseie available.Currentlythe data
is loaded via a loader directly into the storage system Monet.

— —.—— ——__ -—. _ —— -+-- —.

identifier of an area feature in P. Class Person describes the
people -who may be owning land.

Let’s now --~e that we want to collapse all streets,
that is all area features with code 3533. The algebra expres-
sion

mapDUPLE<cOde,
collapse (P, f eature)>l (

select Icode = 3533] (Map))

fist selects those tuples from the map that describe street
and then collapses the area feature from the selection. The
result comsist of a set of TUPLES containing the describing
code and the identifier of a line feature in P. This piece of
code uses the collapse function on extension structure Fea-
turellap. The implementation of this function is described
below.

Another example is a query that wants to know the areas
of the features owned by old people:

map[TUPLE<code,
owner,
area(P, feature)>] (

select [ouner. age > 65] (Map))

Here me assume that a function area is implemented on
extension structure FeatureMap.

The &samples in this section show how the extension
structure FeatureIUap and its operations is integrated in a
standard object algebra.

4.2 A datastructure for Polygonal Maps

FO

b a
i

F1

-.--.
edge_source.- ‘.

7
.

,’
c vertex~eomstry

I edge_reverse
edge_face ~

‘.edge_nexl --

A

Figure & A Doubly Connected Edge L~t

The Doubly Connected Edge List (D=) is a well known
main memory data structure to store and manipulate polyg-
onal maps. An exlensive and formalized description is found
in ~K097]. The data structure records data about the ver-
tices, the edges, and the faces in the subdi~lon (see Fig-
ure 4. I’ertices are points in the plane, edges are straight line
seagnents connecting two vertices. A face is part of the plane
enclosed by edge+ the interior of which does not contain
edges or vertices. In a DCEL, each edge is represented by

two half-edges, directed in opposite directions. The datas-
tructure records for each vertex, the geometry of its point.
For each edge, the reverse edge, the next edge, the source
vertex, and the right-side face are recorded as illustrated in
the right-hand diagram of Figure 4.

edge-src

T
::
CB
dC
eC
fD
gD
hA
iB
jD

m
edge-next

T

db

ga
fd

jc
hf

M
ig
e j
ai

edge-rev

T

ab
ba
cd
dc
ef
fe
gh
hg
ij
ji

edgeface

T

h FO
d FO
b FO
f FO
g F1
a F1
j F2
C F2
i F1
e F2

Figure 5: Storage of a DCEL in Monet’s bi-
nary tables

Figure 6: Data set used in the example

In our prototype, Monet’s binary tables are used to store
a DCEL, as described in [QuK981. To do th~, each vertex,
each half-edge, and each f;ce gets ‘a unique identifier. In this
text, we will use capital letters to indicate an identifier as-
sociated with a vertex, small letters are used for half-edges,
and faces are indicated with a number prepended with F.
Figure 5 shows how the DCEL from Figure 4 is stored in
Monet’s binary tables. Note, that identifier FO indicates the
iniinite outer face.

A Feature Map is modeled in a level on top of the DCEL.
A number of adjacent faces may form an area feature. Each
area feature gets its own identifier and there is an binary
table called feat-f ace that records which face belongs to
which feature. In a polygonal map, each face belongs to
exactly one feature. Often, an area feature is represented
with a single face. In that case, the Feature Map is called

— —-. ——--. — . —— —_. —————. —.,. — ..

a. b. c.

a. e. f.

FQure fi Road mllapse as performed by Magnum

.%mpIe. Line features that are intea~ted in the polygonal
map are represented by a number of connected edges. Again,
line feature gets a unique identifier, and there is a binary
table called feat-edge that records which edge belongs to
Which line fwture.

So, in total, 7 binary tables are used to store a Feature
I@p, 5 for the underlying DCEL, and 2 for the area features
and line f~tures. We implemented a variety of operation on
the Feature Map. Among those operations are simple ones:
split an edge at a new vert~~ merge two adjacent faces into
one, and there are more complex ones like collapsing an
area feature. As the data belonging to the Feature iMap is
stored in Monet’s binary tables, all Feature Map operations
result in updates on those binary tables. Many of those
updates ~<e Monets set oriented executions techniques. A
more detailed description is found in [Zwo9S].

4.3 The road collapse algorithm

The implementation of the road collapse algorithm is illus-
trated with the small part of the TDN-TOPIOVector map
that shows the streets in the Dutch village “Boekelo” (see
Fiawe Sa). This fibgureshows the MapTool presentation of
the database. In the figure, area features are i31ed with dif-
ferent grayscaks or colors. The D(IEL edges are presented
with lines, and the vertices are indicated with tiny circles.
The roads are easily recognizable in the map. J%reillustrate
the collapse process on the road indicated dark in F@re 6
and zoom in to the box indicated in that figure. F&ure 7a

shows the starting point, which is a simple Feature Map. In
Figure 7b the road feature is triangulated. Obviously, this
triangulation results in updates on the binary tables that
store the DCEL and the Feature Map. The road feature is
not simple anymore because it consists of a number of trian-
gular faces. The creation of the skeleton and the restoration
of the triangulation is done in one step, in which the trian-
gular faces are split in 2,3, or 4 triangles. The result of thii
step is in part c of the figure. Remark, that in the steps
described until here, three dtierent representations of the
same polygonal map are computed. F@re 7d shows how
the road triangles are d~tributed over the neighboring area
features. ThE step does not affect the DCEL, only the as-
sociation of faces to features in the Feature Map is updated.
Yet, this step changes the polygonal map in the way needed
to collapse the road. This steps results in the neighboring
faces to consist of their original face, and a number of tri-
angles that originally belonged to the road. In the following
step, the faces that make up a single feature are integrated
into a single face [e). Finally (Figure 7f), the resulting roads
may be simplified via a Dougl-Peucker Line-Simplification
Algorithm ~eS92,VlW95]

4.4 Results

In Figure 8 the polygonal base map of Boekelo is used for
the road wllapse algorithm. Part a of the figure shows the
original base map, and in part b the result after the road
wllapse algorithm iashowed. Part b is the result of executing
query (see the example in Section 4.1.3)

25

a.

b.

Fib-e 8: Road collapse on the roads in the
Dutch village “Bmkelo”

napfTUPLE<code,
simplify (collapse (P, feature))>1 (

select [code = 35331(Map)).

After applying the algorithm, all the road areas have dis-
appeared and all the surrounding areas have been extended
so that a new polygonal base map is constructed. The ver-
tices and edges, belonging to the old road areas have been
removed and the new vertices and edges belonging to the
boundary of the areas have been inserted. Although the
number of area features has been reduced, the size of the
database is only reduced slightly. As can be seen in Fig-
ure 7 the vertic= on the resulting hartline are very densely
located. In fact, the algorithm almost doubles the density
of vertices along the hartline, compared to the density of
vertices along the boundary of original road area feature-
Therefore we uwd a line simplification algorithm to reduce
the denssty of vertices This algorithm signiikantly reduces
the density of the vertices, ad thus the size of the database,
even if applied with a vq tight tolerance.

We plan to do an extensive evaluation of the performance
of the collapse implementation in Magnum. Just to give
an indication of various aspects of the performance we give
the following figures. The original map of Boekelo consists
of 669 vertices. There are 15 road polygons in the map.
The road collapse algorithm takes about 4 seconds 3. The
resulting map contains 648 vertices. Applying a Douglas-
Peucker algorithm on the result with a tolerance of 50 cm
reduces the number of vertices to 423.

This paper presents the result of a straightforwardly im-
plemented fairly simple algorithm for the road collapse. The
simplicity results in a robust implementation which also is
fast. In most cases, the results of the algorithm are quite
good, however, sometimes the results leaves room for im-
provement. This is especially true for road junctions, as the
reader should be able to find out from Figures 7 and 8. We
plan to experiment with various extensions to the straight-
forward base algorithm. Basically, there are three ways to
improve the result:

●

●

●

Increase the density of vertices along the boundary of
polygons that need to be collapsed. A careful study of
the “Boekelo” map, shows that anomalies in the result
may be caused by a low density of vertices along the
road boundaries. In the DCEL structure it is quite
simple to split long edges prior to applying the road
collapse algorithm. We expect better results, obvi-
ously at the cost of more processing time.

Adjust the algorithm. We chose to split O-triangles
along the two shortest segments that connect the mid-
dles of its edges. In the model map in F@ure 2, this is
the right choice, but in the junctions in Figure 7, we
may also connect the O-triangle vertices to the point
of gravi~ of thw triangle to produce a better result.
It might be a good idea to have the algorithm choose
between these two and may be other choices.

Improve the result. The final option is to recognize bad
sol;tions in the result and co~ect them. The-problem
in this option is that it maybe hard to find out whether
a presumed anomaly ia produced by the algorithm or
whether it is an odd feature of the map.

5 Conclusions and Future work

In this paper, we described the implementation of a road
collapse algorithm in Magnum, an extensible object oriented
DBMS. The goal of the Magnum project is to provide true
and efficient integration of spatial functiontilty in a DBMS.
The contribution of this paper is twofold. First, we showed
that the collapse algorithm, which we regard to be an ex-
ample of complex spatial functionality, can be integrated in
Magnum. Second, we thti that the algorithm per se pro-
vides anew piece for the complex map generalization puzzle.

The main achievement of th= paper is the fact that we
showed that compl~~ spatial functionality, in this case gen-
eralization in a topological environment, can be integrated
in a DBMS in a natural way. To do thw, we developed an
extensible object data model. The data model is extensi-
ble at the level of base types, and th~ sort of extensibility is
used in Magnum to provide support for atomic spatial types,
like points, lines and polygons. As a novel feature, we also
supply structural extensibility. This feature may be used to
support structures other than the standard SET, TUPLE,

3For these experiments, Magoum runs on a SUN SPARCstation
20 with 128 Mbytas of memory

and LIST, whkh are the main structural building blocks for
many object-oriented data models. In this paper, we show
how a new structure, the FeatureMap, may be .mpported in
Magnum. We illustrated its use with the implementation of
a collapse algorithm on area features in such a map.

The collapse algorithm described in this paper is based
on triangulation. It is a simple straightforward algorithm
that allows robw~t and efficient implementation and the r~
suit is satisfactory. As described in the previous section, the
redts of the algorithm leave room for improvement and ob-
-rious]y this is on our research agenda Also, we plan to do
an exlensive evaluation of the perfommnce of the algorithm.
Finally, we will use our approach to support other complex
spatial functionality in the Mao~um 00 DBMS.

References

~a11797] M. Bader & R Weibel, “Detecting and Resolving Siie
and Pro.sin@ Conflicts in the Generalization of Polygonal
Maps,” in Proceedings of l~th ldernati-onaf Cartographic
Conference, Stockholm, Sweden, 1997.

~K097] M. de Berg, M. van Kreveld, M. Overnmm & O.
%h-waakopf, Computational Geomehy, Algorithms and Ap-
pk.aths, New York–Heidelberg-Berlin, 1997.

~QK96] P. A. Boncz, C. W. Quak & M. L. Kersten, “Monet and
its Geographic extensions,” in Proceedings of the 1996EDBT
Conference, AE@zon, .E-ante.

~WK98] P. A. Boncz, A. N. Wiidmt & hL L. Keraten, WIatten-
ing arIObject Algebra to Provide Performan~” in Proceed-
ings of the 14thInternationalConference on Data and KnowL
edge En@mxing, Orlando, Flon”dq USA, Febrwuy 1998.

~rB96] A. 13regtSz J. Bulens, “Application-Oriented General-
ization of Area Objects,” in Methods for the Generalisation
of ~Dat.abL<es, Nether3andeGeodetic Commiss-ion, DeIft,
The Netkrkmds, February 1996, 57-64.

[Cat94] 1% G. G. Cattell, e~, The Object Database Standard:
0DMCA93, Morgan Kaufmann Publishers, San hlateo, Cali-
fomi~ USA, 1994.

[COK85] G. P. Copeland & S. N. Koshafian, “A decomposition
storage model.,” .m Proceedings of ACM-SIGMOD 1985 In-
ternational Conference on Akmagementof Da% Austin, TX,
May 26-31, 19S5, 268-279.

~KL94] D. J. DeWitt, N. Kab~ J. Luo, J. hl. Patel & J. B.
l%, “Client-Server Paradise,” in Proceedings of Twentieth
International Conference on Irxy LargeData Bases, Santiago,
Chile, September 12-15, 1994.

~eP96] G. Dettori & E. P.ppo, “How Generalization Interacts
with the Topological and Metric Structure of hfaps,” in Pro-
ceedings of %h .Wemationa.i Symposimn on Spatial Data
Fkd,!ing, SDW96, Delft, The Netherlands, 1996, 9A27-9A38.

[GueS9] FL H. Gueting, “Grak an extensible relational database
system for geometric applications,” in Proceedings of Fif-
temth International Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 22-25, 19S9.

~eS92] J. Hershberger& J. Snoeyinlq “Speeding Up the Douglas+
Peud:er Lme-SimplificationAlgorithm,” in Proceedings of5th
iktemational SJmposiurn on Spatiai Data Handling, SDH’92,
1992, 134-143.

1JBW95] C. B. Jones, G. L. Bundy & J. hi. War% “Map general-
ization with triangulated data structures,” Cartography and
Geographic Wonnation Systems22 (October 1995), 317–331.

100V94] P. van Oosterom & T. lfijlbri~ %tegrating complex
spatial analysis functions in an ec-ensible GIS,” in Proceed-
ings of the 6th International Symposium on Spatial Data
Handling, Edinburgh, Scotland, September 1994,277-296.

~Th196] W. Peng, K. Tempfli & M. Molenarr, “Automated Gen-
eralization in a GIS Context,” in Proceedings of Interna-
tional Symposium on Remote Sensing, Geographic Informat-
ion Systems and Global Positioning Systems, GEOINFOR-
MATICS’96, Florida USA, 1996.

[QuK98] W. Quak & M. Kereten, “Combining Computational
Geometry and Databases< technical report, University of
Amsterdam, The Netherlands,submitted to the BNCOD 1998
conference, 1998.

~uP96] A. Rues & C. Plazanet, ‘Strategies for automated gen-
eralization,“ in Proceedings of 7th International Symposium
on Spatial Data Handling, SDH’96, Deb%, The Netherlands,
1996, 601-619.

[SCV92]hi. Scholl & A. Voisard, “Geographic Applications An
experiencewith 02,” in Building an ObjecGOriented database
System. The story of 02, F. Bancilhon, C. Delobel & P.
Kanellakis,eds., Mergan Kaufmann, San Mateo, California,
1992.

[SFG93] M. Stonebraker, J. Frew, K. Gardele & J. MerecEth,
“The Sequioa 2000 storage benchmarkfl in Proceedings of
ACM-SIGMOD 1993 international Cotierence on Manag+
ment of Data, Washington, DC, May 26-28, 1993, 2-11.

[SRH90] M. Stonebraker, L. A. Rowe &M. Hwohama, “The im-
plementation of POSTGRES,” IEEE !lkansactions on Knowd-
edge and Data Engineering2 (March 1990).

~1W95] M. Viigam & P. 3. Williamson, “Simplificationand
Generalization of Large Scale Data for Roads A Compari-
son of Two Filtering Algorithms ,“ in Cartography and Geo-
graphic Wormation Systems, volume 22 number 4, American
Congress on Surveying and Mapping, Bethesda, Maryland,
USA, 1995.

~Vei96a] R Weibel, ‘A typology of constraintsto line simplificat-
ion,” in Proceedings of 7th Intemationd Symposium on Spa-
tial Data Handling, SDH’96, Delft, The Netherlands, 1996,
9A1-9A14.

~Vei96b] R Weibel, “Generalization of Spatial Dat~” in Course
Notes for the CISM Advanced School on Algorithmic Fonn-
dationa of Gwgraphic Information Systems, 1996, 1-44.

~VQB97] A. N. Wilsch.t, C. W. Quak & P. A. Boncz, “Magnum,
an ObjecGOriented DBMS for spatial applications,” Naxpri
INFO (june 1997).

[Zwo98] R wan ZWOI, Generafisatie van GIS data, MSc-Thasis,
University of Twente, 1998.

27

