
Goal and model driven design of an architecture for a care
service platform

L.O. Meertens
University of Twente

P.O. Box 217
7500 AE Enschede
+31 (0) 53 489 3500

l.o.meertens@utwente.nl

M.E. Iacob
University of Twente

P.O. Box 217
7500 AE Enschede
+31 (0) 53 489 3500

m.e.iacob@utwente.nl

L.J.M. Nieuwenhuis
University of Twente

P.O. Box 217
7500 AE Enschede
+31 (0) 53 489 3500

l.j.m.nieuwenhuis@utwente.nl

ABSTRACT

Service-Oriented Architecture holds the potential of allowing the
development on-the-fly of flexible applications that can adapt
rapidly by combining and reusing existing services. We believe
that in order to react swiftly and coherently to changes, an
architecture must provide a capability to capture how services,
and the more complex applications based on them, realize
business motivations. This research develops a framework and a
method for goal-driven, model-driven, and service-oriented
design. The framework includes goal modeling in the MDA stack,
from CIM to code. By using this framework, we are able to create
a system that is compatible with its business goals, and thus is
flexible when business demands change. A case study
demonstrates how our framework can be used to combine MDA,
SOA, and goal modeling with business rules as an architecture for
a care service platform.

Keywords

MDA, Goals, Business Rules, SOA, Web Services, Healthcare,
Architecture.

1. INTRODUCTION
Large information systems, such as care systems, are hard to
implement and maintain. Important reasons for this are the ever-
changing demands from the business and various and different
needs from the end users. Such demands can be captured in goal
models, which makes goal modeling, and analysis critical in early
design phases. In this paper, we claim that in the context of
model-driven and service-oriented design, goal models may
become an integral part of the system design.

In this article, we present a framework that includes goal
modeling in the model-driven architecture (MDA)[17][26] stack,
from CIM to code. By using this framework, we are able to create
a system that is compatible with its business goals, and thus is

flexible when business demands change. A service-oriented
architecture (SOA) supports further flexibility by distributing
functionality over individual components. In addition, we apply
and illustrate the framework in the context of the U-care
project [29], by means of a case from the healthcare sector.
Within this project, our goals are to create an architecture for a
platform for integrated homecare systems, which provides
tailorable, evolvable, and non-intrusive care services. In U-care, a
user-centric approach is taken. Therefore, the architecture will be
based on a goal model that reflects primarily the functional
concerns of end users and caregivers. In a second phase, also
business modeling aspects (e.g., value, profitability, etc.) will be
incorporated in the goal model and in the resulting platform
architecture.

With the background set, the rest of the article is organized
as follows. The next section presents the problem statement, as
well as the general methods. Section 3 provides the methodology.
Section 4 first explains the case to which we applied the
methodology and then supplies the results of this exercise, it also
discusses the domain specific languages used in this research to
handle the problem. Section 5 relates other research to this article.
Finally, section 6 concludes this article with a discussion and
some directions for further research.

2. Research background
As we said in the introduction, our goal in this research was to
develop a framework and a method for goal-driven, model–

driven, and service-oriented design that is applicable in the
development of the U-care service platform. One may easily
notice that three paradigms are essential in the statement above,
namely goal-driven and model-driven design and service-
orientation. Their choice is motivated by the nature and desired
properties of the future U-care service platform in which
tailorability, adaptability, composability, and loose coupling of
applications are critical. The U-care vision assumes that, since
each patient is different and has specific needs, it should be
possible to create and adjust software applications, using atomic
services that suit each end-user. Our claim is that this vision of a
service-based application can be realized, if the goals of each user
can be captured in goal models, which are then incorporated in
design models in an (partly) automated fashion (as proposed by
the MDA). Before describing the framework in Section 2.3, which
is the embodiment of the claim above, we give some background
information about the three paradigms on which it relies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

2.1 Model-Driven Architecture
In most traditional software application development practices,
the ultimate product of the design process is the realization",
deployed on available realization platforms. In several model-
driven approaches, however, intermediate models are reusable and
are also considered final products of the design process. These
models are carefully defined so that they abstract from details in
platform technologies, and are therefore called computation-
independent models (CIMs) and platform-independent models
(PIMs), in line with OMG's MDA [2][17][26]. MDA (Model-
Driven Architecture) has emerged as a new approach for the
design and realization of software, and has eventually evolved
into a collection of standards that raise the level of abstraction at
which software solutions are specified. Thus, MDA fosters a
design process and tools, which support the specification of
software in modeling languages such as UML, rather than in
programming languages such as Java.

The central idea of MDA is that design models at different
levels of abstraction are derived from each other through model
transformations. More specifically, different platform-specific
models (PSMs) can be derived (semi-) automatically from the
same PIM, making use of information contained by a platform
model. Thus, MDA eventually advocates the principle that models
can automatically be made directly executable, instead of being
delivered to programmers as merely a source for inspiration or
requirements, in order for them to create the real software [4]. The
complete route from business model to executable code requires
model transformations that function as a bridge between business
process modelers and the IT department, and actually bring us one
step closer to real and (partially) automated business-IT
alignment.

2.2 Goal modeling and SOA
The central idea of SOA is that a service denotes the functionality
that is relevant to the user of the service, without burdening the
user with irrelevant details on how the service is implemented.
SOA therefore holds the potential of allowing the development
on-the-fly of flexible applications that can adapt rapidly by
combining and reusing existing services. However, the
technological state-of-the-art with respect to SOA (i.e., Web
service technology [24]) so far only partly realizes the SOA
potential. Design approaches incorporating the business view and
with clear architectural guidelines are to a large extent still a
subject of research.

We believe that in order to react swiftly and coherently to
changes in the business view, an agile SOA architecture must
provide a capability to capture how services, and the more
complex applications based on them, realize business motivations
(vision, goals, needs, objectives, policies, regulations, etc.). One
way to incorporate the business view in SOA design is to express
this view formally in terms of goals. Goal models provide a way
to communicate system requirements to different stakeholders.
Furthermore, specification of business goals is regarded as a
means to raise the level of abstraction at which business logic is
incorporated in model driven design in the context of service-
oriented architectures.

Goals can be refined and, eventually, translated (i.e.,
operationalised) into concrete business rules (BR) and, then,
integrated in the design and composition of services. Using

business rules as vehicle to achieve this has the advantage of
allowing the decoupling of the business logic (expressed as goals)
from business operations, such as business rules, processes and
their supporting applications. Furthermore, the effects of business
logic changes (e.g., different needs for different patients, new laws
and regulation or change of the protocol/policy, etc.) can be thus
isolated, affecting the business operations only to a limited and
controllable extent (since goals, business rules, and processes can
be modeled and maintained separately). In this way, it becomes
possible to explicitly manage and maintain goals and business
rules, which are no longer hidden and hard-coded in processes
and applications [11] and to achieve higher business process and
software agility.

2.3 Framework
We base this research on a framework for the integration of SOA,
MDA, business rules, and goals. According to [12], business rules
can be derived as the operationalisation of an organization’s goals
and strategies. As such, rules not only play a role in capturing
business goals but also in incorporating them in the design of
application services, and in the design and control of the service
orchestration. This is possible through the whole stack of MDA
models, from CIM to PSM. Following the MDA paradigm, we
assume that model transformations will be used in order to
maintain the relationships between models at different abstraction
levels in the MDA model stack (see the left-column of Figure 1).

The middle column of Figure 1 (which is a “service-
oriented” version of MDA) illustrates this. In Figure 1, a
distinction is made between the design space (the middle column),
with models expressed in design languages such as UML,
business process modeling languages, or architectural description
languages, and the goal & business rule space (the right column),
with goals and rules expressed in special-purpose specification,
such as SBVR. This framework defines our vision on how to
design service-oriented applications in a model-driven and goal-
based way [12][13].

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-

independent

model

Platform-
independent

service design

model

Service
architecture

Platform-

design model

Platform-
specific service
design model

code
Service

code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

code
Application

code
orchestration

Service
orchestration

Platform-

specific /
executable

BR

Platform-
specific /

executable
BR

+

+

+

ArchiMate

Use cases

ISDL
BiZZdesigner

ARIS

BPMN
UML

UML

WSDL

Java/EJB
C#

BPEL
BPML

Goals

RIF
ILOG
IRL

SRL
Blaze

Schematron

PRR

OCL
OWL

RuleML
SWRL

SBVR

KAOS
TROPOS

BMM
ArchiMate+GML

MDA SO-MDA G&BR-MDA

G&BR spaceDesign space

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-

independent

model

Platform-
independent

service design

model

Service
architecture

Platform-

design model

Platform-
specific service
design model

code
Service

code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

code
Application

code
orchestration

Service
orchestration

Platform-

specific /
executable

BR

Platform-
specific /

executable
BR

+

+

+

ArchiMate

Use cases

ISDL
BiZZdesigner

ARIS

BPMN
UML

UML

WSDL

Java/EJB
C#

BPEL
BPML

Goals

RIF
ILOG
IRL

SRL
Blaze

Schematron

PRR

OCL
OWL

RuleML
SWRL

SBVR

KAOS
TROPOS

BMM
ArchiMate+GML

MDA SO-MDA G&BR-MDA

G&BR spaceDesign space

Figure 1: A model-driven view on the integration of service

design enhanced with goals/business rules and their

specification languages [12].

3. METHOD
As mentioned before, the framework presented in Section 2.3 for

the goal-driven design of service-oriented applications serves as

the basis for this research. Nevertheless, in order to use this

framework in practice, we need a concrete method indicating the

actual steps that should be followed during the design process.

Figure 2 illustrates this method, which is an “instantiation”

of the framework in Figure 1. On the left-hand side of Figure 2,

the activities (i.e., steps) we have carried out during our

development process are mentioned. In the middle column, we

specify the deliverables of each activity and in the right column,

we present the concrete selection of specification languages and

technologies used during the case study. Also an indication is

given of how these columns can be mapped onto the MDA levels

of models. The first two activities cover the preliminary

requirements engineering steps necessary in order to obtain the

CIMs. These models include high-level information, structure,

and behavior models, as well as a goal model for the future

application.

The first transformation step, from the CIM level to the PIM

level, generates four new models. These are platform independent

data, structure, and behavior (process) models, and Business

Rules. These models can be enriched and, subsequently,

validated. They do not only describe the future application but

also identify the atomic services of which the future application is

composed. For each of them, data, behavior, and interface models

are to be provided. Please note that some of the business rules can

also be seen and eventually implemented as (web) services. When

the PIMs of all atomic services have been validated successfully,

it is possible to deploy them as individual web services

(application services). Furthermore, since these are merely the

building blocks of the future business service (i.e., software

application), in order to fulfill the initial application goals the

application services still have to be orchestrated into a composite

service. This step allows tailoring (i.e., customizing the

application such that it fulfils the needs of a particular user) to

take place. Before finally deploying the composite business

service, a simulation/testing activity may also take place in order

to ensure that a valid business service has been produced. Finally,

the business service is ready to be deployed and consumed.

4. CASE
In this section, we focus on the U-care case of a single business

service that we aim to model and implement following the

framework and method presented in the previous section. Then,

we describe the application of the method and the domain specific

languages used in this research to handle the problem. Finally, we

supply the results of this exercise.

4.1 Scenario
As part of the requirements engineering steps for the U-care

service platform, usage scenarios are created (an example of

which is presented in [14]). These scenarios define the main

services that the care service platform has to support. Out of these

services, we consider the case of a reminder service for end-users,

specially designed for those patients who exhibit short-time

memory deficiencies and have minor problems with remembering

things related to their daily activities (e.g., appointments, taking

medicines etc.). The main actor in our scenario, which would

benefit from using this service, is Johanna. She is an elderly

person with slight amnesia. The service reminds her of

appointments, to take her medicines, activities in the area,

birthdays, and other things to do. This helps her retain a proper

Figure 2: Method, including languages used and MDA stack.

daily routine and remember what she has to do. Reminders

activate at certain moments in time or due to events in her context,

and she can look at the things to do in the agenda when she wants

to. Some reminders, such as taking medicines, require

confirmation. She can add agenda items herself, but caregivers

can also use the service to add their appointments.

4.2 Application of the method
For this case study, we apply the framework presented in

section 3. The first activity, consisting of the requirements

gathering and informal specification of the future application (i.e.,

business service), may entail the analysis of interviews with end-

users and other stakeholders, scenarios, requirement documents,

use cases, etc.

During the following activity, we choose ArchiMate [27][28]

for the design of the CIM-level structure, behavior, and

information models. ArchiMate has been developed for modeling

enterprise architectures. From its philosophy, it does not model

one specific architectural domain, but it focuses on a wider

architecture that covers the whole organization. ArchiMate thus

enables the possibility to model the global structure within a

domain, but also the relationships between different domains. Just

like an architectural drawing in classical building architecture

describes the various aspects of the construction and use of a

building, ArchiMate offers a common language for describing the

construction and operation of business processes, organizational

structures, information flows, IT systems, and technical

infrastructure. [28]

For goal and requirements modeling, we use ARMOR [23],

which is a recent extension of ArchiMate. The starting point for

modeling high-level goals are stakeholders and their concerns.

Goals are refined into sub-goals, by means of goal trees. Low-

level goals (i.e., requirements and business rules) are then put in

relation with services, processes, and applications that implement

them. Consequently, ArchiMate/ARMOR models may also refer

to Business Rules and show how these rules constrain the

behavior of the future application. ARMOR is based on existing

requirements modeling languages and is aligned with

ArchiMate [23]. Thus, using ArchiMate and ARMOR in

combination has the advantage of a seamless integration between

the design and goal models (up to the level of modeling support).

However, ARMOR does not prescribe or contain any

language for the formal specification of a Business Rules. To fill

this gap, we have chosen for nearly natural language, as defined

by the Semantics of Business Vocabulary and Business Rules

(SBVR) standard for the Business Rules [21]. SBVR defines a

structured sub-set of English vocabulary for defining business

vocabularies and business rules in nearly natural language. It is

underpinned with formal (first-order) logic. SBVR is an integral

part of MDA. For this research, it gives us the modeling concepts

to define business rules formally [21].

Together the languages above (i.e., ArchiMate, ARMOR,

SBVR) provide sufficient support for the specification of a

consistent, high-level architecture.

Figure 3: Compact architecture in ArchiMate and ARMOR.

The next activity is the transformation of the high-level

architecture models into PIM models. Ideally, this transformation

is automated. Nevertheless, the current theoretical and

technological state-of-the-art does not allow us to perform such

transformations (yet). Therefore, for the time being we chose to

carry out this transformation manually. This shortcoming gives us

the opportunity to continue our research in this area by

investigating to what extent such transformations are feasible, and

which configuration of standards, languages, and development

platforms would make automatic transformation possible.

The PIMs, created by the manual transformation step, are

modeled mainly in the DSLs of Mendix [15]. Mendix is a model-

driven engineering platform that provides tools and architecture in

the form of a runtime environment based on models for service-

oriented applications. We use Mendix as the implementation

platform for the case. This allows us to completely abstract from

the actual code, although extension with Java is also possible in

Mendix.

As indicated in Figure 2, four types of models are created at

the PIM level: a data model, an interface model, behavior models,

and business rule specifications.

The data model is specified in the Metamodel DSL of

Mendix, which uses Mendix Objects. This data model is quite

similar to a UML class diagram, and represents the information

aspect.

An interface model, consisting of a navigable collection of

Mendix Forms, represents the structure aspect on the PIM level.

The business rules from the CIM level can be transformed from

SBVR to Mendix Microflows [8]. Finally, it is necessary to map

the behavior aspect of the high–level, CIM architecture onto

corresponding models at the PIM level, both for each of the

individual services, and for their orchestration (i.e., the composite

business service). The behavior aspects of the architecture consist

mainly of (business) processes which are mapped on low-level

processes modeled as Microflows in Mendix. The Microflow DSL

of Mendix is a subset of the Business Process Modeling Notation

(BPMN)[15][20]. The core components of the language are start

event, activities, gateways, and end event(s). It should be noted

that Mendix uses (a special type of) Microflows for the structural

modeling of business rules, which are meant to capture complex

choices and enable easy reuse.

Deploying the Mendix models, publishing them as individual

web services, orchestrating these web services and then deploying

their orchestration brings us to the PSM level. Mendix takes care

of most work in this transformation step. As this happens

automatically, there is no need to alter the PSMs or code.

Furthermore, we do not have any concerns with respect to the

exact technologies and languages used for this transformation.

The only aspect visible for the user from the PSM models is the

human interface. This is used to handle the input and output,

which the composite service requires or produce. The human

interface is a simple web portal also generated automatically in

Mendix.

While a final step would be to deploy the business service in

an operational environment, we do not go further then testing by

simulating the service. This provides a proof of concept.

4.3 Results
In the remainder of this section the concrete application of the

method to the “Johanna” scenario is presented.

4.3.1 CIM
Figure 3 shows a detail of the high-level architecture at CIM

level. It shows all four types of models (goal, structure,

information, and behavior) in a single diagram. Due to limited

space, only one of the three main services is shown, “Get

reminded”. The other two services are “View agenda items”, and

“Add/edit activities”. These are simpler and their functions are

apparent.

The goal model of the architecture in Figure 3 consists of the

Client and its associated goals (“remember activities” and “ensure

required activities are done”). These goals are operationalized by

business rules (BR). These business rules are used in the process

at the two gateways. There they decide which path to take. The

data used by the business rules is derived from the real world. The

client can enter agenda items and conditions for them (such as

whether they require confirmation) through a (web) interface.

Other information comes from the context of the client. This can

include any data from sensors, such as blood values, or even from

a video camera. For this prototype however, the context is limited

to data input through a web portal by an administrator.

4.3.2 PIM
At the PIM level, a meta model exists in Mendix, which is

comparable to the data model in ArchiMate. Attributes and

cardinalities have been added to the objects. This transformation

took place fairly smoothly, but requires manual intervention, as

information is added, which could not be derived from the

previous informational model.

The forms in Mendix are mainly transformed from the

structural model, as they represent the client interface. In this

case, Mendix automatically deploys the forms in a web portal.

Besides the structural model, the forms also use the informational

model (as fields in the forms must be bound to data objects), and

the behavior model. The forms derived from the informational

model are those to create, read, update, and delete (CRUD) the

objects in the model. The behavioral model contributes with

forms for each action where something needs to be shown to the

client. While the CRUD forms are easy to derive from the meta

model, it is harder to (automatically) find the forms for actions

that need to show something.

The behavioral model transforms to Mendix Microflows in a

straightforward fashion. However, as with the meta model, several

things have to be added, which could not be done totally

automatically. These things mainly include setting the types of

activities, and the connections between objects, activities, and

forms. However, the Mendix modeler allows to assign these fairly

easily, by providing a point-and-click interface that makes invalid

assignments impossible.

The final model to be transformed to the PIM level is the

goal model. The business rules in the goal model are transformed

from SBVR to limited Mendix Microflows. While in theory this

could be done automatically [8][25], we could not find a tool to

do so. Therefore, we did it manually, though according to the

given approach. The limitation of Microflows for business rules

compared to standard Microflows is that business rules are not

allowed to change objects in the database.

Figure 4 shows the behavior model at the PIM level. The

first two gateways connect to the business rules. The first actions

retrieve data from the data model. The last action shows a form to

the client, asking for confirmation if that is required.

4.3.3 PSM
The PSM and application code is not handled, as Mendix takes

care of the complete steps from PIM to application code

automatically. With a single mouse click the PIM deploys, and all

the forms and actions are accessible through a web portal.

5. RELATED WORK
This work builds on several of the Freeband program’s

projects [9], most notably the A-MUSE project [1] and its lower-

level project AWARENESS[3]. These respectively handle model-

driven methodology of (mobile) services and context-aware

infrastructure of such services. As our research illustrates, the U-

care project extends this with goal-driven architecture. Besides

this, context-aware tailoring and operability is handled. One of the

results from the A-MUSE project is COSMO [22], a conceptual

framework for service modeling and refinement. This can be

combined with our work to facilitate the reuse of existing (legacy)

technology in the developed architecture.

The MATCH project [16] has a similar purpose as our

research. They develop individual home care systems for

independent living, care in the community, and improved quality

of life, while focusing on sensor technologies and their integration

by means of a middleware platform. MATCH also considers the

needs of users. Our research tries to achieve this by including the

goals of the users from the start of the design process, while

MATCH resolves this issue at the infrastructure level. The

scenario-based approach is comparable in U-care and MATCH.

Including goals from the CIM level of the MDA-stack

requires a way to model and transform these goals. The BServed

project [5] has provided us with ARMOR, an extension to

ArchiMate for this purpose. Its conceptual model and concrete are

aligned with and adopted from existing languages BMM[6],

i*[30], and KAOS[7]. However, the transformation from goal

models to other (formal) specification languages is still a subject

for future research.

Applications for the U-care platform can be derived from

project such as MobiHealth[18], HealthService24[10], and

MyoTel[19]. They researched several mobile applications for

healthcare. These applications could be supported by the

developed U-care architecture in the future.

6. CONCLUSION
The above case study demonstrates how our framework can be

used to combine MDA, SOA, and goal modeling with business

rules as an architecture for a care services platform. In principle,

this framework applies to other domains as well. Our choice for

the specific languages used is based on convenience (i.e.,

availability of modeling software), although the level in the MDA

model and the technical feasibility of model transformation

significant limit the possibilities. The presented methodology can

be applied to other tools and other languages, if they support the

main concepts such as business rules and processes.

Automatic transformation from the PIM to PSM level seems

to occur correctly and successfully in Mendix. Transforming from

CIMs to PIMs is not automated yet. Whether this will ever be

fully possible is debatable. At the moment, this step seems to

require additional information, which is not (and should not?) be

captured in the CIMs. Therefore, it has to be added manually.

Mendix is working on providing model transformation from

ArchiMate to Mendix though.

The framework provides several opportunities for further

research. The first thing that comes to mind is applying it in

different, more complex, contexts and scenarios. Within the U-

care project, for example, we plan to create an overall architecture

for the combination of all requirements. Three usage scenarios

capture these requirements currently. They cover the areas of

monitoring and virtual communities [14]. Secondly, the

framework leaves opportunities for extension. Round-trip

engineering, or at least backward engineering, would help to

improve interoperability. It could allow existing and newly

developed services, as well as input and output methods, to

Figure 4: Behavior model at the PIM level. The gateways connect to business rules.

interface with the system easily. The information, behavior, and

structure aspects could be abstracted from WSDL to the PIM

level, as supported by the COSMO [22] framework for example.

7. ACKNOWLEDGMENTS
This work is part of the IOP GenCom U-CARE project, which the

Dutch Ministry of Economic Affairs sponsors under contract

IGC0816.

8. REFERENCES
[1] A-MUSE project, “A-MUSE website”

http://www.freeband.nl/project.cfm?language=en&id=489

Accessed on September 14, 2009

[2] J.P.A. Almeida, M.E. Iacob, H. Jonkers, and D. Quartel,

“Model-Driven Development of Context-Aware Services,”

Distributed Applications and Interoperable Systems,

Heidelberg: Springer Berlin, 2006, pp. 213-227.

[3] AWARENESS project, “AWARENESS website”

http://www.freeband.nl/project.cfm?id=494&language=en

Accessed on September 14, 2009.

[4] J. Bézivin, “In Search of a Basic Principle for Model Driven

Engineering,” Novatica Journal, Special Issue, March-April,

2004.

[5] BServed project, “BServed website”

http://www.novay.nl/okb/projects/bserved/4520 Accessed on

September 14, 2009.

[6] Business Rules Group, The Business Motivation Model –

Business Governance in a Volatile World. Release 1.3, The

Business Rules Group, 2007.

[7] A. Dardenne, A.V. Lamsweerde, and S. Fickas, “Goal-

directed requirements acquisition,” Science of computer

programming, 1993.

[8] R. Eder, A. Filieri, T. Kurz, T. Heistracher, and M. Pezzuto,

“Model-transformation-based Software Generation utilizing

Natural language notations,” 2nd IEEE International

Conference on Digital Ecosystems and Technologie.

(DEST2008). , 2008, pp. 306-312.

[9] Freeband program, “Freeband website”

http://www.freeband.nl/index.cfm?language=en Accessed on

September 14, 2009.

[10] HealthService24 project, “HealthService24 eTEN-517352”

http://www.healthservice24.com/ Accessed on September 14,

2009

[11] L. Hermans, W. Lemahieu, J.Vanthienen, “Real agility and

transparency requires a combination of BPM/SOA, EDA and

BRA”, In Proceedings of the 6th European Business Rules

Conference, Düssseldorf (Germany), Jun. 18-19, 2007.

[12] M.E. Iacob, H. Jonkers, A Model-driven Perspective on the

Rule-based Specification of Services, Enterprise Information

Systems, Volume 3, Issue 3 August 2009, pages 279 – 298.

[13] M.E. Iacob, D.C.F. Rothengatter, and J. van Hillegersberg,

“A Health-care Application of Goal-driven Software

Design,” Applied Medical Informatics, vol. 24, 2009, pp.

12-33/

[14] J-W. van ‘t Klooster, B-J. van Beijnum, P. Pawar, K. Sikkel,

L. Meertens, and H. Hermens, “What Do Elderly Desire? A

Case For Virtual Communities,” Proceedings of the

International Workshop on Web Intelligence and Virtual

Enterprises (WIVE09), Thessaloniki, Greece: 2009.

[15] R. Kruit, D. Roos, Modeling the Agile Enterprise: From

Software Engineering to Business Engineering, Mendix

Whitepaper, available at

http://www.mendix.com/site/files/whitepapers/Enterprise_W

hitepaper_Mendix.pdf Accessed on September 14, 2009.

[16] MATCH project, “MATCH - Mobilising Advanced

Technologies for Care at Home” http://www.match-

project.org.uk/ Accessed on September 14, 2009.

[17] J. Miller and J. Mukerji, MDA Guide Version 1.0.1, Object

Management Group, 2003.

[18] Mobihealth project, “MobiHealth - Shaping The Future Of

Healthcare” http://mobihealth.org/ Accessed on September

14, 2009

[19] Myotel project, “Myotel website” http://www.myotel.eu/

Accessed on September 14, 2009

[20] OMG, BPMN 1.0: OMG Final Adopted Specification, Object

Management Group, 2006.

[21] OMG, Semantics of Business Vocabulary and Business Rules

(SBVR), v1.0, Object Management Group, 2008.

[22] D.A. Quartel, M.W. Steen, S. Pokraev, and M.J. van

Sinderen, “COSMO: A conceptual framework for service

modelling and refinement,” Information Systems Frontiers,

vol. 9, 2007, pp. 225–244.

[23] D. Quartel, W. Engelsman, and H. Jonkers, “Modelling

requirements in enterprise architectures,” Proceedings of

EDOC 2009.

[24] M. P. Papazoglou, Web services: principles and technology.

Harlow: Pearson Prentice Hall, 2008.

[25] A. Raj, T.V. Prabhakar, and S. Hendryx, “Transformation of

SBVR business design to UML models,” Proceedings of the

1st India software engineering conference (ISEC 2008),

Hyderabad, India: ACM, 2008, pp. 29-38.

[26] R. Soley and the OMG Staff Strategy group, Model Driven

Architecture, Object Management Group, 2000.

[27] The Open Group, ArchiMate 1.0 Specification, The Open

Group, 2009.

[28] The Open Group, “ArchiMate” http://www.archimate.org.

Accessed on September 14, 2009.

[29] U-care Project, “U-care website” http://ucare.ewi.utwente.nl.

Accessed on September 14, 2009.

[30] E.S.K. Yu, “Towards modelling and reasoning support for

early-phase requirements engineering,” Proceedings of the

Third IEEE International Symposium on Requirements

Engineering , 1997, pp. 226–235.

