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Abstract: A common strategy for stabilizing the greenhouse gas concentrations in the 

atmosphere was the introduction of new emissions limits for cars, and light commercial 

vehicles. For that reason the automotive industry is facing new challenges in order to 

fulfill these considerations. One of the strategies attained, is to employ new grades of 

Advanced High-Strength Steel (AHSS) to replace conventional steels in vehicle’s body 

structures. These changes are intended to reduce the estimated total weight and increase 

fuel efficiency of vehicles. The main focus of this research is to derive a stability model 

which can encounter the enhanced formability obtained when simultaneous bending and 

stretching are applied to a sheet metal. Since experimental data is already available, it 

will be used for validation purposes. A sensitivity analysis in terms of different punch 

radii during the Nakazima test will be presented. 
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1. INTRODUCTION  

The use of advanced high strength materials in metal forming processes brought new 

defies predicting the material response under sheet metal operations. One of the 

techniques widely used to characterize this behavior is the Nakazima Test, which allows 

the generation of the Forming Limit Curve (FLC). This technique seems to be not 

accurate enough, and underestimate the formability limits for AHSS materials in cases 

where stretching and bending are combined. For this reason, in this study finite element 

simulations were developed to investigate further the effect of the introduction of these 

new materials into conventional metal forming processes. 

It is known that sheet metal can only be deformed to a certain level before local 

necking, and subsequently failure occurs. The forming limit curve (FLC) or forming 

limit diagram (FLD) is a very common tool to determine the maximum principal strains 

that can be sustained by sheet materials prior to the onset of localized necking. 

However, the validity is limited to certain conditions, such as, regions with low 

curvatures, proportional deformations, in-plane stresses only, and the absence of 

bending, among others. Some of the first studies in relation to the influence of curvature 

during forming operations were realized by [Ghosh, 1974]. After analyzing data from an 

in-plane stretching test, with experimental results from a Nakazima type test, they 

determined that the formability of a metal sheet was positively influenced by the 



 

 

constrained deformation in contact with the rigid punch. In the same year, Charpentier 

[Charpentier, 1975] investigated the influence of the punch curvature on the stretching 

limits of steel sheets. Charpentier suggested that, as the sheet curvature increases, 

resulting in larger strain gradients, the limit strains also increases. He also demonstrated 

that, the limit strains increase with increasing punch curvature (1/R) at a constant 

material thickness by varying the nose radii of the punch during the experiments as in 

[Vallellano et al., 2008].  

The use of advanced high strength steels in the following years made it more 

relevant and the influence of bending was more notorious. Some authors have shown 

that the formability, determined for a sheet, increases with decreasing radii to thickness 

ratio [Vallellano et al., 2008; Col, 2005; Till et al., 2008]. Till et al. showed that 

increased formability was seen especially for Advanced High Strength steels. More 

recent investigations predicted the necking behaviour of a metal sheet under combined 

stretching and bending by FEM simulations and an analytical method [Kruijf, 2008]. In 

FEM simulations for stretch-bending no necking was observed. In bend stretching the 

pre-bending promotes neck initiation during the subsequent stretching phase.  

In one of the recent studies done by Fictorie [Fictorie, 2009], and made available to 

a wider public through [Fictorie et al., 2010; Atzema et al., 2010] two new setups were 

developed for a set of different punch diameters (20mm-50mm). They were tested with 

four different materials, and the main goal was to compare this data with the 

experimental information from the standardized Nakazima test (100mm). In that study, 

the formability of an aluminum alloy and mild steel was improved by increasing the 

curvature of the punch and its especially clear influence in the plane strain region. Part 

of the newest work in this matter was realized by [Hudgins et al., 2010]. They 

developed an analytical model based on mechanics and material properties to predict 

instability expressed by maximum applied tensile stress as a function of die radius 

normalized by sheet thickness (R/t).  

Forming limit curves are usually determined for membrane type deformations when 

FEM simulations are employed. Furthermore, the limit curves acquired seem to 

underestimate the limit values of strains and one reason may attributed to the effect of 

the thickness stress in the material. Also, the influence of simultaneous bending 

deformation on the forming limits has attracted renewed attention, and for that reason it 

is necessary that the determination of the forming limits curve should use solid elements 

in thickness instead of shell elements. 

2. FORMING LIMIT CURVE DETERMINATION 

For the FLC determination it is assumed that necking is one of the main failures in 

terms of formability. It is known that the FLC shows under which strain conditions the 

material becomes plastically unstable and consequently starts necking. In a tensile test 

necking will first be diffuse and then localized to promote fracture. In sheet metal 

forming mostly diffuse necking cannot occur and localized necking is the only necking 

mechanism. In this study as in a previous research the Bragard method will be used to 



 

 

determine necking [Fictorie et al., 2010; Atzema et al., 2010]. In this method the strain 

distribution of the necked points are eliminated and the necking point is reconstructed 

by the use of an inverse parabolic function. Furthermore, the application of this method 

has shown that the fitting window to determine the limit strain fail to remain in the 

contact zone between the blank and the punch, which means that only the contribution 

of the stretching part will be considered and not the combination of stretching and 

bending, see Figure 1. 
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Figure 1; Bragard method illustration. 

 

The main interest of this study is to derive a stability model which can encounter 

the enhanced formability obtained when simultaneous bending and stretching is applied 

to a sheet metal. In this particular case specimens of 0.7 and 1.4mm in thickness of steel 

DC06 and HCT600x respectively, will be used in accordance with the ISO-Standard 

[ISO, 2008], and with a 20mm punch. It was concluded from previous work [Fictorie, 

2009], and literature review that some factors could be responsible for the improvement 

of formability in relation to bending in terms of the Nakazima Test. However, the 

previous FEM simulations of the process were not sufficient to fully capture the essence 

of the forming operation due to certain limits of the model itself. Summarizing these 

effects that could play a dominant role in the observed enhanced formability we 

encounter the following considerations: a) Pressure on the inside of the sheet, b) 

Friction between blank and punch, and c) Less ductile fracture behavior. 

3. FINITE ELEMENT MODEL 

In order to improve the results from the previous research and to consider some of the 

assumptions made in the past, a solid model would be used to encounter all the through 

thickness effects. A solid model would also lead to some disadvantages such as the 

number of elements needed and the increase in the overall computation time. The FEM 

simulation of the Nakazima Test was realized with the software ABAQUS/Standard and 

the elements were defined as C3D8R with enhanced hourglass control, see Figure 2.  



 

 

 
Figure 2; FEM Schematic of Nakazima test. 

 

One of the influencing factors in the simulations is the friction between the bottom 

part of the blank and the punch. It is commonly assumed as a frictionless interaction 

when the localization is defined on top of the dome and slightly higher when the 

localization is not on top of the specimen [ten Horn, 2008]. In this study a frictionless 

interaction between the bottom and the blank and the punch was used. The 

representation of the friction between the following interactions: a) workpiece(top)-die 

and workpiece(bottom)-blankholder is also straightforward since the material should 

remain clamped. For interaction a, the value of friction was defined as 0.12, which is 

commonly used for metal to metal contact. Since the area of contact of the blankholder 

(interaction b) is usually fully serrated, it is expected to have a relatively high friction 

coefficient, in this case a value of 2 was set. The required blankholder force was varied 

between 100-200kN for the 20 mm (FLC20), and 300-500kN for the 100 mm (FLC100) 

punch simulations. The sample design for both punch dimensions was developed in 

[Fictorie, 2009], and based on the original size/shape of the samples used for the 

original Nakazima test (FLC100). The samples were scaled to fit the experimental setup 

and the two different punch diameters. A summary of all the sample parameters can be 

found in [Fictorie, 2009]. 

During the first attempt to obtain a stable FEM simulation, Abaqus/Standard was 

used. The specimen was 1.4 mm thickness and the material properties for HCT600X+Z 

(often referred to as DP600) and DC06 were obtained from literature [ten Horn, 2008]. 

The yield locus description is based on Hill´s 48, and the Bergström-van Liempt 

hardening equation. The description of the hardening equation and the parameters used 

in the simulations can be found in [Vegter and van den Boogard, 2006]. 

4. SIMULATION RESULTS 

No fracture criterion was employed, so no element deletion was applied to the 

workpiece. In order to asses when the material becomes unstable, a similar criterion to 



 

 

the Marciniak-Kuczynski or M-K models was used [Marciniak and Kuczynski, 1967]. 

The criterion is based on the strain rate of the top, and bottom surface of the sheet in the 

history elements. It is assumed that the necking starts if the strain rate ratio localizes in a 

set of elements and is limited by: 

20
4/ elementstop

top




 Eq. 1 

 

A comparison was made for the strain rate values over time for the top elements, 

and the bottom elements in the region where the crack in the simulations is expected 

(strain rate localization). In Figure 3, is shown how the Top elements are referred as the 

elements with the highest strain rate value on the top surface on the sheet. Furthermore, 

the Top-/+4 are defined as four elements away from the Top element. The same applies 

for the bottom sheet surface, which in this case was found to be symmetric. 

Top

Top-4

Top+4

 
Figure 3; Schematic of elements selection for strain rate localization. 

 

Different strain paths were followed to be able to determine the forming limit 

curves for the right, and left hand side of the FLC, see Figure 4.  
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Figure 4; FLC experimental and FEM results for DC06 and 100 mm punch. 



 

 

The same procedure to determine the forming limit function as in the experiments 

was employed to determine the forming limit function for the FEM simulation data. The 

simulations of DC06 and DP600 for the 100 mm punch were used as validation of the 

finite element model. The following step was to model the 20 mm punch and determine 

the FLC function as close as possible to the ISO Standard. It can be seen that in Figure 4 

and Figure 5 the FLC function determined for the both FEM data is in well agreement 

with the FLC function determined for the experimental points. 
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Figure 5; FLC experimental and FEM results for DP600 and 100 mm punch. 

 

There are some considerations in order to be able to generate the FEM data points 

for the calculation of the FLC Fit for the 20 mm punch. The first one is related to the 

fitting window for the calculation of the inverse parabola. Since the distance is in 

relation with the 100 mm punch the fitting window tends to be considerably large for 

the smaller punch radii resulting in significantly lower values of strain. For that reason a 

scaling of the size (distance between green lines) of the fitting window parameter was 

scaled in order to try to overcome this situation, see Figure 6.  
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Figure 6; Fitting window considerations. 



 

 

The final results for the 20 mm punch for the case of the DP600 reveals that the 

current methodology cannot determine accurately the forming limit predictions, see 

Figure 7. The values of the FLC are underestimated and the shape of the FLC does not 

correspond to the actual results of the experiments. The values of the limit strains of the 

experimental results are considerable higher compared with the values of the 100 mm 

punch for the case of DP600. New alternatives to determine the FLC fit should be 

addressed. 

 
Figure 7; FLC experimental and FEM results for DP600 and 20 mm punch. 

 

5. CONCLUSIONS 

In this work, the numerical determination and comparison with experimental data for 

the Nakazima test with two different punch diameters was accomplished. The effect of 

bending was pointed as critical for the appropriate determination of the formability 

limits through FEM simulations. In terms of the 100 mm punch the simulations are in 

reasonable agreement with the experiments, but more work is necessary for the 20 mm 

punch. 
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