
Hydra: an Energy-efficient and Reconfigurable
Network Interface

M.D. van de Burgwal1, G.J.M. Smit1, G.K. Rauwerda1 and P.M. Heysters2

{m.d.vandeburgwal, g.j.m.smit, g.k.rauwerda}@utwente.nl, paul.heysters@recoresystems.com

1Department of EEMCS, University of Twente, The Netherlands
2Recore Systems, The Netherlands

Abstract— In heterogeneous tiled System-on-Chip architec-
tures a Network-on-Chip is used to transport messages between
processing elements. A reconfigurable network interface is used
to connect the processing elements to the Network-on-Chip,
converting the messages between both domains. This paper
introduces the Hydra: a network interface for the MONTIUM TP,
a coarse-grained reconfigurable processor designed for DSP
algorithms. We show that the Hydra is energy-efficient and
provides the flexibility required to interface processing elements
like the MONTIUM TP.

Index Terms— Hydra, reconfigurable, network interface

I. INTRODUCTION

Next generation multi-media appliances allow to commu-
nicate via wireless connections at any time and any place.
Digital broadcast audio (DRM, DAB) and video (DVB) re-
ceivers decode high-bandwidth streams of data to reconstruct
the original high quality signal, at the cost of computation
intensive processing. For battery powered portable devices
this may be a problem, as the energy source is limited. By
optimizing the computational intensive kernels within an ap-
plication, the energy consumption can be reduced significantly.
Typically, the streaming multi-media applications mentioned
have a regular communication scheme using connections that
remain unchanged during several executions of the application.
Since they have a strong temporal and spatial behaviour, these
applications are quite suitable to be executed by a highly par-
allel System-on-Chip (SoC) platform. For efficiency reasons,
SoCs are often designed as heterogeneous tiled architectures.
These architectures consist of several types of tiles which are
connected via a Network-on-Chip (NoC), as can be seen in
Figure 1. Each tile has a processing element (a tile processor)
and is connected to the NoC via a network interface. In this
example SoC, several types of tile processors can be identified:
application specific integrated circuits (ASIC), general purpose
processors (GPP), fine-grained reconfigurable architectures
(FPGA) and coarse-grained domain specific reconfigurable
architectures (DSRA).

A. Networks-on-Chip

A lot of on-chip networks have been developed [1][2][3][4].
Roughly classified, there are two kinds of NoCs: circuit-
switched and packet-switched networks. Generally speaking,
circuit-switched networks consume a relatively small amount
of energy since the routing information is configured in the

Fig. 1. SoC example with several different types of tiles

routers [5]. Therefore, data arriving at a certain input channel
is sent to a fixed output channel. When the routing has to be
changed, the NoC has to be (partially) reconfigured. In packet-
switched networks, the routers extract the routing information
from the packets at runtime. This header extraction process
requires a higher energy consumption for the routers, however,
they do not need to be reconfigured when the communication
pattern changes.

At the University of Twente two NoCs have been devel-
oped: a packet-switched version [6] and a circuit-switched
version [7]. The circuit-switched NoC supports guaranteed
throughput (GT) traffic only, while the packet-switched net-
work supports guaranteed throughput as well as best effort
(BE) traffic. Real-time and latency guarantees can be given
for both types. However, the packet-switched network is
more suitable for applications with changing communication
patterns. For both NoCs the transported data words, called
flits, are 18-bit: a 2-bit type field is used to provide control
information alongside the 16-bit data field. The four types of
flits that can be used are header (H), tail (T ), data (D) and
command (C). In the packet-switched NoC, the H flits are
used to create a connection for all following C and D flits,
while a T flit tears down the connection.

B. Tile Processors

Typical applications that are executed by tiled architectures
are DSP algorithms like FFT, DCT and FIR filters. Such
an application has to be partitioned in processes that can
be executed by a tile processor. Each tile processor has a
small local memory at its disposal to store input, output and



temporary data for such a process. On a SoC level, this can
be seen as a distributed memory (with a typical storage size
in the range of 10kB to 100kB per tile).

As a trade-off between energy-efficiency and flexibility,
reconfigurable architectures turn out to be a good alterna-
tive. Coarse-grained reconfigurable architectures provide the
flexibility needed for a lot of DSP algorithms, while the
energy consumption is relatively small compared to the other
architectures mentioned. The MONTIUM Tile Processor (TP)
is a coarse-grained reconfigurable tile processor invented at
the University of Twente [8] and is now further developed
by Recore Systems [9]. The processing core consists of five
ALUs, each of which has two local 1024×16-bit memories
with private address generation units at its disposal. The ALUs
are connected to these memories via ten global buses which
can also be accessed by an external interface.

The MONTIUM TP has no internal communication con-
troller. This paper proposes a network interface which supports
the functionality required by the MONTIUM TP to communi-
cate with our NoC.

C. Paper overview
In section III we give an overview of the operating en-

vironment and the requirements for the network interface.
Using these requirements, we present a network interface
architecture called Hydra in section IV. The implementation
and synthesis results are shown in section V. Using some
example DSP algorithms, the advantage of streaming-mode
operation compared to block-mode operation is shown in
section VI.

II. RELATED WORK

Remarkably, there is not much related work on network
interfaces compared to the vast amount of papers on NoC
and reconfigurable processors, although the design decisions
in the NoC interface are important for the performance of
the overall system [10]. Network interfaces are assumed to
be straight-forward and are of little importance for NoC
communication [3][11]. Therefore, they are often presented
as a minor addition to a NoC.

Together with designing a NoC, Philips [4] has implemented
a network interface that supports various on-chip commu-
nication protocols. The throughput and latency required by
each of these protocols can be guaranteed by the Philips NoC
(Æthereal) routers and the network interfaces. By designing
the network interfaces in a modular way it is relatively easy
to add support for new communication protocols. However,
these network interfaces are meant to be a bridge between
a NoC communication scheme and any other communication
protocol instead of being a controller for the tile processor.

Another approach for implementing both control and com-
munication tasks is to use a dedicated network for each of
these tasks [12]. This is, however, quite different from a
situation in which one NoC has to serve both communication
and control tasks, since with two networks the guarantees that
can be given about the latency and throughput are independent
for each task.

III. REQUIREMENTS

The network interface is the medium between the NoC and
the tile processor. The most important design decisions depend
on the requirements enforced by either the NoC or the tile
processor.

A. Operation mode

We have two mechanisms for transferring data between the
NoC and the tile processor. Some processes require all the
input data to be in the local memories before the execution
can be started. This operation mode is called block-mode.
Typically, a block-mode operation is done in three stages:
the input data is loaded into the local memories, the process
is executed and the output data is fetched from the local
memories. During the data transfers, the tile processor is halted
to make sure the execution is not started until all data is valid.
In this operation mode, the network interface acts as a master
for the tile processor.

Some tile processors support reading input data and writing
output data while they are processing, using the network
interface as a slave for performing data transfers. This op-
eration mode is called streaming-mode. Typically, during the
execution of a streaming-mode process connections for the
input data and output data remain open. Therefore, the output
data does not need to be packaged. This is an advantage
for both the sender as well as for the receiver, because the
packaging is an overhead for both. Since the packaging is
not done in streaming-mode, the latency of communication
streams is small compared to block-mode.

Whether block-mode or streaming-mode is used, is de-
termined by the application programmer and strongly de-
pends on the characteristics of the application process. When
the application operates in block-mode, no computation and
communication occurs at the same time. This increases the
ease of programming at process level, but gives some over-
head at application level. For streaming-mode applications
the programmer has to carefully plan how and when the
communication takes place. This can be hard, especially when
the results are not ordered linearly or when the ordering
depends on one or more parameters.

B. Communication to Computation ratio

The ratio of communication time to computation time is
called the Communication to Computation (C/C) ratio:

C/C =
Tcomm

Tcomp
(1)

where Tcomm is the communication time needed to transfer
both input and output data while the processor is not process-
ing and Tcomp is the computation time required to process the
data.

Figures 2 and 3 illustrate the relation between the operation
mode and the communication and communication times. Two
entire process executions (called frames) are shown for both
modes. The load L of a data transfer is defined as the number
of words that are transferred per cycle. The dashed blocks in



the upper part of each picture represent input data transfers
(indicated by Cin), the lower dashed blocks represent output
data transfers (indicated by Cout) and the dotted blocks in the
middle part show the processing (indicated by P ). The gray
shaded area is the remaining time in a frame, called slack time
(Tslack).

Cin (Input communication) P (Processing) Cout (Output communication) Tslack (Slack time)

time

0 Tframe 2*Tframe

(a) L = 1

time

0 Tframe 2*Tframe

(b) L = 2

time

0 Tframe 2*Tframe

(c) L = 4

Fig. 2. Block-mode operation

From these figures we define:

Tcomp = time (P ) (2)
Tcomm = time ([Cin ∪ Cout] \ P ) (3)

where time (t) denotes the time required for t.
Block-mode processes can only be started when all input

data is received. This means there is no overlap in time
between the communication and computation and, therefore, a
change in the communication does not influence Tcomp. How-
ever, delays caused during the communication (for example
due to blocking in the network) do influence Tcomm.

Figure 3 shows the same process in streaming-mode oper-
ation. Note that, when L = 4, Tcomp is equal for both modes.

time

0 Tframe 2*Tframe

(a) L = 1

time

0 Tframe 2*Tframe

(b) L = 2

time

0 Tframe 2*Tframe

(c) L = 4

Fig. 3. Streaming-mode operation

Streaming-mode processes behave slightly different. Since
communication and computation are done in parallel as much
as possible, Tcomm is reduced significantly. Note that this also
makes the total computation time Tcomp dependent on delays
caused during the communication. While Tcomp is comparable
for both modes, Tcomm for block-mode processes is a lot
bigger than for the streaming-mode processes. Therefore, the
C/C ratio for a block-mode process is considerable higher
than the C/C ratio for a streaming-mode version of this
process. Figure 2 shows that a high parallelism in data transfers
can be meritable, particularly for block-mode operation. The
C/C ratio can be decreased considerably when L is increased.

C. Driving model

In block-mode operation, tiles are control driven. The pro-
cess execution is started when an external source has prepared
the input samples and gives a start command. As long as no
command is received, the process halted. Using this operation
mode, communication and computation are fully separated.
This may be useful in case the input data is provided on
an irregular basis (for example non-linear addresses, variable
input size, continuously changing parameters).

In streaming-mode operation, the system is data driven. A
process on a tile is started as soon as enough samples are
available. This may be even before the last sample has been
received, providing a parallel execution of communication and
computation. For streaming-mode processes the usage and
order of input data has to be unambiguous. This implies that
such a process needs to know what to do with the next input
data: a reordering may have to be done before the data can be
used. Clearly, this also holds for the output data.

D. Real-time guarantees

After the decomposition of an application, the processes
are mapped on tile processors. Typically, each tile processor is
capable of executing only a few processes. In order to have the
entire application meet its real-time constraints, all processes
need to meet these real-time constraints. Therefore, guarantees
need to be given to be sure none of the processes can endanger
the real-time execution behavior of the application. Since we
have a NoC that supports guaranteed throughput at a fine-
grained level, the NoC is not a limitation for the real-time
guarantees that are required for the application. The delay
caused by communication via the network interface needs to
be relatively small compared to the communication time in
order to satisfy the real-time guarantees of the process.

E. Flexibility and Energy-efficiency

Typically, each of the processors in a tiled architecture runs
at a different clock speed. The clock frequency of the NoC
(fNoC ) is 100 MHz and the frequency of a tile processor
(fTP ) is derived from this clock by a clock divider that uses
a parameter n:

fTP (n) =
fNoC

2n
, n ∈ {0, 1, 2, 3, 4} (4)



Data transfers crossing these clock boundaries have to be
synchronized. For a data transfer between the NoC and a tile
processor using L channels of B bits, we define the bandwidth
BW (in bits per second) as:

BW = L ·B ·min (fNoC , fTP )
= L ·B · fTP (5)

As B is restricted by the hardware design, it can be seen that
the bandwidth only depends on the load of the data transfer
and on the selected fTP .

It is likely that, at a certain moment in time, the tile
processor has finished its computation before new data samples
have arrived. To save energy, the network interface halts the
tile processor until these new samples arrive.

In [13] an approximation is given for static power consump-
tion:

P = α · C · V 2
dd · f (6)

where α is the switching activity, C is the capacitance, Vdd is
the supply voltage and f is the frequency.

The clock net has the highest α of all parts of an ASIC
and the C is large since all synchronous components in an
ASIC are driven by the clock, hence the clock distribution net
consumes a considerable part of the power. When running a
processor at a lower clock frequency, it can also be run at
a lower core voltage. Combined, this can give a significant
reduction in the power consumption. Therefore, it is useful to
slow down or shut down the tile clock whenever possible.

Figure 2 shows that, when L is incremented, the com-
munication time decreases and thus more slack time is left.
Assuming that, for the streaming application domain, Tcomm

and Tcomp remain constant for a reasonable time and that no
blocking occurs during the input or output data transfers, some
estimations can be made about the required clock frequency. If
Tslack >

Tframe

2 , the clock divider setting n can be increased
without consequences. In fact, the number of increments of n
can be estimated as follows:

n = min
(⌊

log2

Tframe

Tcomm + Tcomp

⌋
, 4

)
(7)

From this estimation we can conclude that a smaller C/C
ratio contributes to less energy consumption. However, this
choice for n also influences Tcomm. Obviously, the delay (in
NoC clock cycles) increases when the tile processor clock is
slowed down. This may give communication problems for the
tile processor that has to receive the output data. Therefore, n
has to be chosen carefully.

IV. THE HYDRA ARCHITECTURE

In the 4S project we are designing a verification platform
which is based on a System-on-Chip with several devices.
One of these devices is a reconfigurable fabric containing
four MONTIUM TPs and a circuit-switched NoC. We expect
to get a silicon design of this platform in the end of 2006.
As an implementation of a network interface for connecting
these tile processors to our NoC, we have developed the

Hydra1 architecture (see Figure 4). Its functionality embraces
two tasks: controlling the MONTIUM TP and providing a
communication mechanism between the MONTIUM TP and
a NoC.

FIFO buffersFIFO buffers

CrossbarCrossbar

channels from NoC

St
rea
mi
ng

Co
nfi
gu
rat
ion

DM
A

Pr
og
ram
 co
ntr
ol

Flow Control

Message execution 

modules

Flit Formatting

channels to NoC

buses from Montium TP buses to Montium TP

Fig. 4. Hydra structure

A. Tile Processor control

The core of the verification platform is an ARM9 processor,
which is used as a centralized configuration manager that
controls the other devices on the SoC. The ARM controls
the MONTIUM TP by communicating with the Hydra, using
a lightweight message protocol. The Hydra, on its turn,
controls the program execution and communication for the
MONTIUM TP. Table I shows the messages available within
this protocol and their encoding.

TABLE I
MESSAGE PROTOCOL

Encoding Message Format

000 Configuration Ccfg

[
H [D]+

]+
T

001 DMA load Cload

[
H [D]+

]+
T

010 DMA retrieve Cretr [HD]+ T
011 Get status Cstatus

100 Run Crun

101 Wait Cwait

110 Reset Crst

The format field gives the order in which the flits are used,
using a regular expression notation. Each message starts with
a C flit (with the encoded command, as can be found in
the leftmost column in Table I) and additional information is
added using H flit (for address selection) and D flits (for data
or parameters). A T flit indicates the end of the message. The
messages are executed as soon as a C flit has been received,
interrupting the execution of previously received messages. As
the Hydra executes messages on a flit-by-flit base, it will not
reject incorrectly formatted messages but it will try to execute
the parts of the message that are formatted correctly.

1The Hydra was a monster from the Greek mythology with many heads,
symbolizing the parallelism of our network interface



The received messages are parsed and executed by dedicated
hardware modules (depicted in the center of Figure 4). Using
this modular approach the message protocol can be adapted
easily, requiring only little effort for altering the hardware
design. As there are no separate data and control networks,
the control messages and data arrive at the input channels in
a mixed fashion. The flow control component guarantees that
the Hydra will not stop reading the input channels, to avoid
deadlocks in message handling when input data and control
arrive at the same time.

Figure 5 shows an example Configuration message to clarify
the formatting as mentioned in Table I as well as the usage of
the flit payload.

F
lit

T
y
p
e

C
C
o
n
fi
g
u
ra
ti
o
n

H
C
o
n
fi
g
u
ra
ti
o
n
 a
d
d
re
s
s

0
x
0
0
0
0

D
D
a
ta

H D
D
a
ta

T
-

0
x
F
0
0
0

D
D
a
ta

D
D
a
ta

D
D
a
ta

F
lit

p
a
y
lo
a
d

time

Fig. 5. Configuration message

When a Configuration or DMA load message is executed,
the accompanying hardware module takes care of the address-
ing information. Each H flit that is received is used as an offset
address and, for DMA messages, for the selection of DMA
entities within the MONTIUM TP. For the following D flits
the addresses are incremented automatically. Therefore, the
address overhead in messages is reduced as much as possible.

Additional control functionality includes Get status, Wait
and Reset messages. The Get status message is used forde-
bugging purposes and can be used for synchronization with
other processors. The Wait message halts the MONTIUM TP
until a new message is sent. If needed, the MONTIUM TP can
be reset using a Reset message.

Typically, for block-mode operations the message protocol
is used in the following way. First, a Configuration message
is sent to configure the MONTIUM TP. After that, the input
samples are loaded with a DMA load message. When all input
samples are loaded, a Run message is used to start the process
that was configured in the MONTIUM TP. Subsequently, with
a DMA retrieve message the results are read from the MON-
TIUM TP memories. Now, the cycle of actions (Configuration,
DMA load, Run, DMA retrieve) can be executed again.

As mentioned before, streaming applications tend to be
data driven. Typically, the tile processor and network interface
are initialized with a Configuration message. Next, the tile
processor is activated with a Run message. The configured
process manages the input and output streaming of data and
may give an interrupt when it has finished an operation cycle.

B. Communication mechanism

Being an interface component basically implies moving
data between two domains. Since, in our architecture, it is
possible that these two domains are running at different clock
speeds, synchronization between these domains is inevitable.
A common used solution is to use of FIFO buffers (see lower
left and right components in the figure). Interference between
channels is not desired; hence, for each channel a dedicated
FIFO is used to be sure that flows from two channels do not
influence each other. Looking at the difference between the
clock frequencies, it would not be useful to introduce buffers
with a capacity of a large number of flits per channel while
the tile processor is executing at half clock speed compared
to the NoC. On average, storing up to four flits per channel
turns out to be reasonable for providing enough bandwidth.

For bandwidth intensive processes, a high throughput with
minimal latency is one of the key requirements. Therefore,
the data path contains a crossbar which supports maximal
connectivity (connections between all outputs of the NoC to
the tile processor and from the tile processor to all inputs of
the NoC). Together with a FIFO buffer for each of these inputs
and outputs, the latency is reduced to only one clock cycle (of
the tile processor’s clock frequency). In Figure 4, the data path
is the leftmost part (communication from the MONTIUM TP
to the NoC) and the rightmost part (communication from the
NoC to the MONTIUM TP).

Another communication-related task for the Hydra is the
formatting of output data, which is done just before the data
is sent to the NoC (shown in the middle of the leftmost part of
Figure 4). Memory contents, requested with a DMA retrieve
message, are always formatted as D flits. For streaming-
mode processes the MONTIUM TP determines the formatting
that has to be applied by the Hydra, by selecting a decoder
instruction in the Hydra which contains information about the
flit format for each of the outgoing channels.

Additionally, the MONTIUM TP can also address small
configurable ROMs in the Hydra, which can store up to four
flits per output channel. Using these ROMs, the MONTIUM TP
programmer has some flexibility to implement mechanisms for
synchronization, command generation, et cetera. The decoder
and ROMs form the reconfigurable part of the Hydra and
its configuration address space complements the configuration
address space of the MONTIUM TP. Therefore, the Hydra can
configure either the MONTIUM TP or itself when it receives
a Configuration message, depending on the selected address.
With this mechanism, streaming-mode applications can be
bootstrapped for the initialization.

When mapping an application on the MONTIUM TP the
programmer does not have to deal with the implementation
of communication mechanisms. The MONTIUM TP compiler
tool abstracts the physical input channels and output channels
to logical sources and destinations, while the hardware layer
halts the MONTIUM TP program when data transfers can not
be performed (for example when input buffers are empty or
when output buffers are full).



V. IMPLEMENTATION AND RESULTS

Before implementing an RTL model, the message protocol
was developed based on a list of functionalities that were
required. Since a large bandwidth was required for both block-
mode and streaming-mode operation, the data path (buffering
and crossbar) was designed as a basis for the RTL model
in VHDL. Next, the flow control block was implemented
to control the data path. For the execution of messages we
implemented the message execution modules. Finally, the flit
formatting was added.

A. Synthesis results

The VHDL model was synthesized in 0.13 µm technology,
while the clock frequency was constrained to 200 MHz. With
this constraint the area was 19k gates (0.106 mm2), which is
about 5% of the area of the MONTIUM TP. Table II shows
how this area is distributed over the several components:

TABLE II
AREA DISTRIBUTION

Component #gates Area (mm2) Area (%)
Crossbar 1810 0.010 9.5
Flit formatting 3695 0.021 19.3
Flow control 3893 0.022 20.4
Buffering 7920 0.044 41.5
Message execution 1788 0.010 9.4
Total 19106 0.106

A large part of the total area is needed for the input and
output buffering. The flow control and flit formatting each
contribute 20% of the total area, which is caused by the storage
ROMs and the instruction decoder. For the other components
(the crossbar and the message execution modules) the area is
related to the multiplexers in the data path and the control
logic around it.

VI. CASE STUDY: IMPLEMENTATION OF DSP ALGORITHMS

We have successfully mapped parts of several wireless
applications to the MONTIUM TP architecture: DRM, Hiper-
LAN/2, Bluetooth and UMTS. This section gives, for each of
these applications, an example of one or more kernels.

A. DRM and HiperLAN/2

The kernel operation in DRM [14] and HiperLAN/2 [15]
is the inverse OFDM procedure, which primarily consists of
a FFT. This transform is responsible for roughly half of all
computations of the entire baseband processing. For DRM
mode B, every 20 ms an FFT-256 has to be executed on
an OFDM symbol, while HiperLAN/2 requires an FFT-64 to
transform one symbol every 4 µs. An FFT-N operates on a data
set of N 16-bit complex samples and the results are N 16-bit
complex values. The total number of computation cycles for
a mapping of an FFT-N (where N is a power of two) on the
MONTIUM TP architecture is

(
N
2 + 2

)
log2 (N) [16]. For the

block-mode version of the FFT, the total number of tile clock
cycles required to process one FFT symbol is:

Tblock = Tcomm + Tcomp

= 2 · 2N

L
+

(
N

2
+ 2

)
log2 (N)

=
4N

L
+

(
N

2
+ 2

)
log2 (N) (8)

Our mapping for streaming-mode operation is capable of
reading the input data and writing the results during the
computation:

Tstreaming = Tcomm + Tcomp

=
(

N

2
+ 2

)
log2 (N) (9)

In the streaming-mode case, the output results are produced
in a bit-reversed order and need to be reordered [16]. Such a
reordering can be done in the MONTIUM TP in N

2 more clock
cycles. Therefore, in the HiperLAN/2 case the worst-case C/C
ratio (with L = 1) for the block-mode operated FFT-64 is
256
204 = 1.25 while for the streaming-mode it is only 32

204 = 0.16
(considering the reordering process to be a communication
issue).

Theoretically, the total time required for one FFT-64 should
be less than 4 µs, which means that the clock frequency for
a streaming-mode FFT-64 would be:

fTP =
Tstreaming

4µs
=

236 cycles

4 · 10−6 s
= 59MHz (10)

and for the block-mode operation:

fTP =
Tblock

4µs
=

268 cycles

4 · 10−6 s
= 67MHz (11)

assuming that L = 4 equals the bandwidth used by the
streaming-mode version. When L is decreased to 1, the min-
imal required frequency for the block-mode FFT-64 reaches
115 MHz. As this clock frequency is not available (see
equation 4), block-mode operation is not always feasible.

B. Bluetooth and UMTS

In Bluetooth [15], the core computation is a FIR filter that
requires the most computations. Similar to the FFT operation,
we mapped the FIR algorithm to our architecture for both
operation modes. For an M-taps FIR filter and an input data
set of size N , the total clock cycles needed by the block-mode
filter is:

Tblock = Tcomm + Tcomp

= 2 · N

L
+ N ·

⌈
M

5

⌉
+ 1 (12)

The streaming-mode FIR filter reflects the advantages of
streaming-mode processes over their block-mode counterparts:

Tstreaming = Tcomm + Tcomp

= N ·
⌈

M

5

⌉
+ 1 (13)



For a 5-tap FIR filter and an input data size of 1024 samples,
the worst-case C/C ratio for the block-mode version is 2048

1025 =
2.00 (again, L = 1), whereas the streaming-mode version has
a C/C ratio of 1

1025 = 0.00.
Additionally to a FIR filter, UMTS uses a RAKE re-

ceiver [17]. The RAKE receiver is not computational intensive,
but it does require a lot of I/O transactions in parallel (L =
4). Every other clock cycle, the RAKE receiver reads two
complex data samples (fingers) and processes these in two
clock cycles. Meanwhile, for every four fingers, it receives a
complex coefficient (scrambling code) which is used during
four clock cycles, to process the four data samples. After
four of these iterations, the results are summed and streamed
out. This process can be done at a clock frequency of about
10 MHz. Since this bandwidth can be provided by the Hydra,
the tile clock can be slowed down to 12.5 MHz (by setting
the clock divider n = 3).

VII. CONCLUSION

In this paper we presented the design and implementation
of the Hydra, an energy-efficient and reconfigurable network
interface for the MONTIUM TP and a Network-on-Chip. It
supports both block-mode and streaming-mode data transfers
and is controlled by a lightweight message protocol. The
bandwidth provided by the Hydra is only limited by the
chosen NoC, as its data path provides a maximum connectivity
between all input channels from the NoC to the MONTIUM TP
and vice versa. If constrained to operate at a maximum clock
frequency of 200 MHz, the Hydra has a total area of 19k gates
or about 0.106 mm2 in 0.13 µm ASIC technology.

Generally, not much attention is paid to network interfaces.
Communication patterns are considered being NoC dependent,
while the program execution and communication in a proces-
sor are assumed to be independent. Bandwidth turns out to be
a key requirement for the design of a network interface.

With an example we show that a high level of parallelism
during data transfers results in a short communication time.
When the communication time is decreased, the tile clock
can be slowed down while the tile processor is still capable
of performing enough computations to finish the process
within its required period. This can contribute to a significant
reduction in energy consumption.

Using the Communication to Computation ratio C/C for
some typical DSP algorithms that have been mapped on the
MONTIUM TP, we showed the advantages of streaming-mode
communication to their block-mode counterparts. The FIR
filter showed a tremendous difference in the communication
times of the block-mode and streaming-mode operation. Al-
though the block-mode and streaming-mode FFT-64 seem to
be similar, the block-mode FFT-64 can not be executed fast
enough in a worst case scenario.

The design of a lightweight message protocol developed to
support the functions that are required by the processor con-
tributes to a straight-forward implementation of the network
interface.

Although the Hydra is presented as a MONTIUM TP specific
network interface, the basic mechanisms are reusable for the
design of a network interface for any processor architecture.

ACKNOWLEDGEMENT

This research is conducted within the Smart Chips for Smart
Surroundings project (IST-001908) supported by the Sixth
Framework Programme of the European Community.

REFERENCES

[1] W. J. Dally, B. Towles, Route Packets, Not Wires: On-Chip Intercon-
nection Networks. DAC, June 2001, pp. 684-689

[2] J. Liang, S. Swaminathan, R. Tessier, aSOC: A Scalable, Single-Chip
Communications Architecture. Proceedings of the IEEE International
Conference on Parallel Architectures and Compilation Techniques, Oc-
tober 2000, Philadelphia, USA

[3] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Öberg,
K. Tiensyrjä, A. Hermani, A Network on Chip Architecture and Design
Methodology. Proceedings of ISVLSI’02, 2002

[4] J. Dielissen, A. Rădulescu, K. Goossens, E. Rijpkema, Concepts and
Implementation of the Philips Network-on-Chip. Proceedings of IP-
Based SoC Design, November 2003, Grenoble, France

[5] P.T. Wolkotte, G.J.M. Smit, G.K. Rauwerda, L.T. Smit, An Energy-
Efficient Reconfigurable Circuit Switched Network-on-Chip. Proceedings
of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) - 12th Reconfigurable Architecture Workshop
(RAW 2005), p. 155a, ISBN 0-7695-2312-9, April 4-5, 2005, Denver,
USA

[6] N.K. Kavaldjiev, G.J.M. Smit, P.G. Jansen, A Virtual Channel Router for
On-chip Networks. Proceedings of IEEE International SOC Conference,
Sep. 2004, pp. 289-293, Santa Clara, USA

[7] P.T. Wolkotte, G.J.M. Smit, N.K. Kavaldjiev, Energy Model of Networks-
on-Chip and a Bus. Proceedings of the International Symposium on
System-on-Chip (SoC 2005), ISBN 0-7803-9294-9, pp. 82-85, Novem-
ber 15-17, 2005, Tampere, Finland

[8] P.M. Heysters, Coarse-Grained Reconfigurable Processors: Flexibility
meets Efficiency. Ph.D.-thesis, ISBN 90-365-2076-2, ISSN 1381-3617,
November 2004, Enschede, The Netherlands

[9] http://www.recoresystems.com. 2005
[10] M.H. Wiggers, N.K. Kavaldjiev, G.J.M. Smit, P.G. Jansen, Architec-

ture Design Space Exploration for Streaming Applications Through
Timing Analysis. Proceedings of Communicating Process Architectures
(WoTUG-28), pp. 219-233, ISBN 1-58603-561-4, Published by IOS
Press, Amsterdam, September, 2005, Eindhoven, The Netherlands,

[11] L. Ost, A. Mello, J. Palma, F. Moraes, N. Calazans, MAIA - A Framework
for Networks on Chip Generation and Verification. ASP-DAC, Jan. 05

[12] T. Marescaux, J.Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S.
Vernalde, R. Lauwereins, Networks on Chip as Hardware Components
of an OS for Reconfigurable Systems. In: Field-Programmable Logic and
Applications (FPL’03), September 2003.

[13] E.F. Weglarz, K.K. Saluja, M.H. Lipasti, Minimizing energy consumption
for high-performance processing. Proceedings of ASP-DAC 2002. 7th
Asia and South Pacific and the 15th International Conference on VLSI
Design, pp. 199-204, Januari 7-11, 2002

[14] P.T. Wolkotte, G.J.M. Smit, L.T. Smit, Partitioning of a DRM receiver.
Proceedings of the 9th International OFDM-Workshop, pp. 299-304,
September 15-16, 2004, Dresden, Germany

[15] G.K. Rauwerda, G.J.M. Smit, L.F.W. van Hoesel, P.M. Heysters, Map-
ping Wireless Communication Algorithms to a Reconfigurable Archi-
tecture. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’03), pp. 242-251, ISBN
1-932415-05-X, June 23-26, 2003, Las Vegas, USA

[16] P.M. Heysters and G.J.M. Smit, Mapping of DSP Algorithms on the
Montium Architecture. Proceedings of RAW 2003, April 2003, Nice,
France

[17] G.K. Rauwerda, G.J.M. Smit, Implementation of a Flexible RAKE
Receiver in Heterogeneous Reconfigurable Hardware. Proceedings of
the 2004 IEEE International Conference on Field-Programmable Tech-
nology, pp. 437-440, ISBN 0-7803-8651-5, ISBN 0-7803-8652-3, De-
cember 6-8, 2004, Brisbane, Australia


	Abstract
	Introduction
	Related work
	Requirements
	The Hydra architecture
	Implementation and results
	Case study
	Conclusion and Future work
	Acknowledgement
	References

