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Abstract—In this paper, we approach the problem of modeling
the human component in technical systems with a view on the
difference between the use of model and theory in sociology and
computer science. One aim of this essay is to show that building
of theories and models for sociology can be compared to and
implemented in Higher Order Logic. We validate this working
hypothesis by revisiting Weber’s understanding explanation. We
focus on constructive realism in the context of logical explanation.
We review Higher Order Logic (HOL) as a foundation for
computer science and summarize its use of theories relating it
to the sociological process of logical explanation. As a case study
on modeling human behaviour, we present the modeling and
analysis of insider threats as a Higher Order Logic theory in
Isabelle/HOL. We show how each of the three step process of
sociological explanation can be seen in our modeling of insider’s
state, its context within an organisation and the effects on security
as outcomes of a theorem proving analysis.

I. INTRODUCTION

Models for cyber security need to incorporate the human
factor. We consider these systems as cyber-humane systems.
To deal with such systems, computer science needs to tap into
sociology. As a step towards utilizing sociological modeling
practices for the security modeling of cyber-humane systems,
we introduce the method of explanation of sociological pro-
cesses.

Our aim is to present the way modeling and theory building
are used in current sociological practice in order to relate it to
formal models for cyber security. To this end, we recapitulate
the central concept of ‘explanation’ used in Weber’s under-
standing sociology [1]. We follow a common introductory
textbook for sociologists by Hartmut Esser [2] written in the
spirit of Popper’s critical rationalism. It offers an approach
to understand sociological experiments in a fairly formal way
using a logical view on explanation based on the work of
the logicians Hempel and Oppenheim [3]. We want to relate
this view to the ideas of models, theories and proof in formal
methods of computer science to finally be able to critically
reflect on current models of human behaviour as used in formal
methods of security.

We first review the aforementioned process of explanation
in sociology (Section II) and contrast it to formal methods of
computer science in particular in Higher Order Logic (Section
III). To make such a global endeavor feasible, we narrow
down the scope to insider threats to explore the possibilities to
model the human factor in a logical model. Insider threats pose

an intricate and complex modeling and verification challenge.
Reviewing recent advances in data synthesis and analysis for
insider threats we propose a tentative higher order logic model
for the representation of human behaviour and argue for its
feasibility with respect to insider threat analysis (Section IV).

II. THEORIES AND MODELING IN SOCIOLOGY

There is a consensus in all sciences that we strive for
truth. Following Popper, it is ‘imperative to see and solve
the most urgent problems and to solve them by creating true
theories’ (wahre Theorien) [4].1 Since any theory is always
an abstraction from reality, this quest must content itself by
approximation of reality. However, reality does not need to
manifest itself in the form of the theories but it needs to
correspond to the statements in the theory. This conception
due to Tarski is known as theory of correspondence [5], [6].
It laid the foundation to model theory in the science of math-
ematical logic but is also cited as philosophical foundation in
mainstream sociology (in particular critical rationalism [2]).

According to Max Weber – one of the forefathers of
sociology, the basic process of sociology ‘understanding expla-
nation’ (Verstehendes Erklären) [1] consists of three steps: (a)
the ’interpreting understanding’ (Deutendes Verstehen), where
the sociologists needs to understand how the actors interpret
their situation, (b) the subjectively meaningful action of the
actor, and (c) the effects of the action (see Figure 1).

These three steps incorporate a dimension of interpretation
that is unique amongst the sciences as has been observed by
Boudon [7]. Alfred Schütz has taken this observation further
[8] by coining the notion of constructions of first order for
the subjective ideas of the actors that determine step (a)
of the sociological explanation while he called the models
explaining the steps of action (b) and effects (c) as second
order constructions. Does the aspect of interpretation of the
process enforce the use of an unusual logic of explanation?
However Weber, Boudon, and Schütz have emphasized that
the subjectivity of the social has to be treated with the same
objective methods of other sciences [2].

The explanation of sociological phenomena uses a three
layered approach following the logic of explanation [3] that

1‘Rechtfertigung ist kein Ziel; Brillanz und Scharfsinn an sich öde. Wir
sollten versuchen, die dringendsten Probleme zu sehen oder zu entdecken
und sie durch Aufstellung wahrer Theorien zu lösen.’
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Fig. 1. The ‘Grundmodell’ of sociological explanation [2]

correspond to Weber’s three steps. This approach refines these
general three steps as described in Figure 1 by introducing a
view on actors. The explicit modeling of humans as actors
gives rise to distinguish a macro-level view from a micro-level
view. The three steps of Weber’s model thus are a macro-
micro-macro-transition explaining sociological phenomena by
breaking down the global facts from the macro level (a) onto
a more refined local view of individual actors at the micro-
level (b). Finally those micro-steps are generalized and lifted
back on the macro-level (c) to explain the global phenomenon.
The formal description of this procedure is described by
three transitions between dedicated logics. In the first step, a
situational logic maps the global context (environment) onto
the actor ((a) from the macro to the micro).

The second step in the micro-level of the individual actor
(b) is described by a so-called logic of selection describing
how the actor selects his actions based on the situation (or
his perception thereof). The logic of selection describes how
the actor makes his choice. Examples could be straightforward
normative action models in which the actor follows – like an
automaton – given rules according to predetermined norms or
more dynamic forms of action models including, for example,
cognitive learning.

The third step called aggregation logic comprises the micro-
sociological results and lifts them back onto the macro-level
to finally explain the social phenomenon that result.

The logic of explanation has been created in 1948 later
than Weber’s original [9] but it is possible to reconstruct his
original hypotheses using this logic. In his analysis of Weber’s
arguments McClelland [10] casually uses the macro-micro-
macro transition, when he reconstructs Weber’s explanation
of the relationship between ‘protestant ethic’ and ‘the spirit
of capitalism’. Protestantism has lead to changes in familial
socialization, a ‘familial revolution’ (macro to micro-level).
The change of educational style employed by protestant par-
ents (micro-level) has equipped their children with ‘strong
internalized achievement drives’. This has created the spirit
of capitalism back on the collective, the macro-level, and has
lead to the spread of a new type of actor, the entrepreneur.

Correspondence to Computer Security Modeling

The situational logic is usually not modeled in formal
models of security. An attacker is assumed to exist and
quantified to estimate his strength, but no understanding of

motivations, social and psychological factors is attempted. The
step from the macro to the micro is a very important change
of perspective in many other disciplines like crowd control
or car traffic analysis when macro phenomena can be better
understood at the micro-level.

The logic of selection can be provided by an action model.
The characterization of an attacker’s actions and capabilities
is the subject of several formal models of security as they
are used in security protocol verification. The behaviour of
the attacker follows the Dolev-Yao model [11]: the attacker
may see every communication, can intercept all messages, and
can send anything. In this model, the security of protocols
needs to rely exclusively on secrets and cryptographic keys,
an assumption that is often considered too strong.

The aggregation logic is a constant factor in formal model-
ing for security since the only sociological fact we are inter-
ested in is security. Nevertheless, the economical aggregation
of attacks is of utmost interest, i.e., what are the direct and
implicit damages caused by attacks.

From the point of view of modeling systems in logic,
it should be noted that the notions of different orders of
constructions ( [7], [8] see above) seems to correspond to
the problem of order in logics. When modeling complex
systems, we often need to rely on higher order logics to be
able to augment levels of reasoning for applications where
we prove properties of entities and simultaneously properties
about entities.

The three steps of the logic of sociological explanation
performs a change of perspective between a consideration of
the internal psychological and emotional state of individuals
and their behaviour in a context as well as the behaviour of
groups of individuals. This is reminiscent of the challenges of
mathematical explanation that have given rise to the creation
of Higher Order Logic to cope with complex logical structures.

III. HIGHER ORDER LOGIC

Bertrand Russell stirred up the world of logics and founda-
tions of mathematics with his paradox. This paradox uses the
set R of all sets not containing themselves. The proposition
R contains itself is equivalent to R does not contain itself.
Hence, assuming that any statement is either true or false,
the definition of R is inconsistent. However, in naı̈ve set
theory this definition is possible. Hence naı̈ve set theory is
inconsistent. Russell appears to have discovered his paradox
in 1901 while working on his Principles of Mathematics [12].

Russell concluded from his observation that mathematics
needs a more restrictive foundation. He defined his Theory
of Types. Ultimately the paradox stems from the application
of the Axiom of Comprehension (or Abstraction) stating that
any predicate, i.e., propositional function, can be used to
define a set. Type theory starts there by imposing a hierarchy
on predicates. The lowest level consists of predicates about
individuals. The next level consists of predicates about sets of
individuals. Then we have the level of predicates about sets of
sets of individuals, and so forth leading to an infinite hierarchy.
It is then only possible to refer to all objects for which a given



predicate holds if they are all at the same level, or of the same
type. Hence, a predicate about the set of all sets, like R would
be on a higher level than any level in this hierarchy of types
and can thus not be formulated. Russell’s Paradox which is
based on this set R is not possible in the theory of types.

However, Russell’s type theory has been criticized for being
too restrictive and ineffective. In mathematics, the axiomatic
system for sets has eventually been refined to overcome
Russell’s paradox.

The work that revived type theory later is the simple theory
of types by Alonzo Church [13]. It is inside the higher order
logic (HOL) community considered as the starting point for
all classical HOL systems. The simple type theory of Church
is similar to the simply typed �-calculus [14] which is more
widely known in computer science. Simple type theory is
basically a �-calculus with simple function types.

The theory of types moved into the world of computer
science when logic was used to verify software. Robin Milner
introduced the Logic of Computable Functions (LCF) [15]
as an implementation for a logic devised by Dana Scott in
1969, but not published until 1993 [16]. The LCF logic is
basically domain theory [17] made practical. The use of types
seemed appropriate to describe domains and specify functions
over them. Milner suggested (at the same time as Hindley)
a polymorphic type system [18] for the simply typed �-
calculus. For the support of LCF, in particular to support
symbolic evaluation and hence reasoning, the programming
language ML was created and later developed in a fully fledged
programming language [19]. Out of the attempts to provide
reasoning support with ML for the Logic of Computable
functions the early Edinburgh LCF system was designed. It
has been reengineered by Larry Paulson into the Cambridge
LCF system [20]. This system is already an interactive proof
support system that helps users construct datatypes and ana-
lyze specifications in LCF.

Abstracting from LCF as special application logic, Mike
Gordon implemented HOL [21] as a system for interactive
verification in ML. A pure implementation of simple type
theory interpreted as a logic, the HOL system is a generic
tool in the sense that it can be applied to arbitrary logics
not just LCF. Picking up this lead, Paulson performed another
abstraction step and enhanced the genericity. He created the
Isabelle system [22]. The history of the development from
LCF to HOL is concisely presented in [23].

Classical HOL
We use the term classical HOL to refer to the Higher Order

Logic as implemented in the HOL system or the instantiation
Isabelle/HOL of the generic tool Isabelle.

As already mentioned in the previous section, HOL is
basically a typed �-calculus. The types include a constructor
) to construct the type of functions ↵ ) � from type ↵ to
type �.

This typed �-calculus is now interpreted as a logic by
assuming a type bool containing the elements true and
false. Furthermore, there is one infinite type of individuals

◆. There are the classical logical junctors, for example ^ and
_, and an equality = for all types. HOL assumes eight axioms
that suffice to lay the foundation for reasoning in the type
bool, the infinite type and other newly introduced types.

The reason for the higher order in its name stems from
the intuition that HOL is the bound over a chain of finite-
order logics. Starting from first-order logic, continuing with
second-order logic, then third-order logic, eventually the chain
reaches the so-called !-order logic. This boundary element is
HOL: in first-order logic we can quantify over variables from
some simple domains, in second-order logic we can quantify
over predicates and functions over such domains. The third
step enables quantification over predicates of predicates. In
HOL finally, we can reason about arbitrarily nested predicates.
Typing is necessary to avoid self-referential predicates.

The expressive strength gained by the unbounded quantifica-
tion has its price: HOL is neither decidable, nor is it complete.
The undecidability of the truth of logical propositions is not
surprising because already first-order logic with arithmetic
is undecidable. The reason for incompleteness is explained
as follows. As reflexivity of equality x = x is one of the
axioms of HOL it is necessary to assume that all HOL types
have to be nonempty. In order to define a notion of semantic
models for HOL it is therefore necessary to introduce standard
models containing nonempty domains for the domains of the
HOL theory. Adequacy, that is, correctness and completeness,
can only be proved with respect to such standard models.
Although this might seem like a grave deficiency it is a clear
consequence of the expressive power of the logic. Also, it has
not yet produced any major limitations.

A consequence of the undecidability of proofs is that
reasoning in HOL is interactive. A proposition is stated and
its proof is constructed by the user in an interactive process
of applying rules until already proved theorems or axioms are
reached. In all classical HOL tools the application of rules,
theorems, and axioms is transcribed in a so-called proof script.
Proofs are not first-class citizens of the logic. Proof objects are
neglected as they take up too much space.2 Once developed
theories are rebuilt by rerunning existing proof scripts. This
procedure is often referred to as LCF-style as it dates back to
the days of LCF-systems.

Although provability is not decidable, the types in classical
HOL are decidable. The type system used in HOL resembles
strongly the polymorphic higher order type system of ML due
to Hindley and Milner. The types of basic formulas are de-
clared in a type environment. For any given type environment
the type of a formula may be inferred by the type checker.

Classical HOL has a strict distinction between terms and
types. A proposition is a term that inhabits a type. Types are
themselves not logical formulas. Still, predicates, i.e., terms,
can be used to define new types. In fact this is the main
procedure of specifying applications extending the basic HOL.

A conservative extension of HOL is an extension of the

2There is no foundational reason for this decision. For example, in Isabelle
one can now choose to keep proof objects.



existing types of HOL by defining new types from old types,
as depicted in Figure 2: a new type � is defined by copying
elements of type ⌧ fulfilling predicate P� . The relationship

⌧

&%
'$

P�

�

-✏

�1

Fig. 2. conservative extension

between the new and the old type is given by an injective
embedding " from the new type � into ⌧ . Thereby, all
properties of elements of the new type � can be inferred
from properties defined over their origins in ⌧ translating them
with "

�1. In that way, no new axioms have to be assumed.
Additionally, the nonemptiness of the new type � has to be
proved by showing 9 x. P�x. Consequently, no inconsistencies
can be introduced; new types are again nonempty HOL types;
the extension is conservative. HOL types are identified by
predicates and predicates can only range over the same type –
here we see exactly the incarnation of Russell’s hierarchy of
types.

Correspondence to Modeling in Sociology
Like theory building and modeling in sociology, the HOL

modeling seeks correspondence only to reality. The three step
process of explanation is very similar to the reasoning of HOL,
in that rules are applied in order to explain (or prove) facts
from assumptions. However, the way that theories are created
is quite converse. The sociological process of explanation uses
in each of its three logical steps models from some theory
that has its own roots in reality (usually founded by empirical
research), for example the theory of control by Hirschi to
provide models for the situational logic, and action theories,
like decision models, for the logic of selection. The theory
building in HOL starts from a minimal set of axioms and two
basic types bool and ◆ and builds new theories from there.
These are then clearly consistent but their correspondence to
domains of reality are in the eye of the beholder. In principle,
we can easily define abstract nonsense, for example a new
type world that is given by one element and is injectively
embedded into bool by mapping onto True. In this world,
everything is true but this is nonsensical because there is no
falseness.

HOL has no claim to be more than a tool to provide a
foundation for mathematics and is like mathematics a com-
pletely man-made vehicle consistent in itself (modulo some
basic assumptions) to understand (model) what happens in
reality to possibly predict or prove (inside its own universe).

However, despite the fact that a logical model in HOL
cannot be considered a significant proof of historical existence
for the model, it is a consistency proof in line with the notion
of verification from computer security. Also, a significant
improvement on this notion can be obtained by forcing within
the modeling the micro-macro-micro structure from sociology,

in particular by including psychological modeling of the actors
and their actions.

IV. A TENTATIVE MODEL OF HUMAN BEHAVIOUR IN HOL
In order to approach a tentative model of human behaviour

in HOL, we concentrate on our motivating application area of
insider threats. We illustrate how each of Weber’s three steps
can be supported.

As a running example, we consider first a more data-
centric view of insider attacks. Glasser and Lindauer [24]
consider the generation of insider threat data using a synthetic
data generation framework. The input to the data generation
process is largely autonomous and produces intelligent near
realistic data. However, the kernel ingredient to this process
are basic insider scenarios that are manually inserted. These
insider scenarios are constructed using counter-intelligence
expert knowledge.

We consider here an example from [24] that nicely shows
all three steps of the sociological process of explanation and
that thus suits very well as a test case to elicitate requirements
to a HOL model for human insider behaviour.

A. Example
‘A member of a group decimated by layoffs suffers a drop in

job satisfaction. Angry at the company, the employee uploads
documents to Dropbox, planning to use them for personal
gain.’ The data generation process derives so-called ‘observ-
ables’ from this scenario. For the example, the observables are
given in the following list [24].

• Data streams end for laid-off co-workers, and they dis-
appear from the LDAP directory.

• As evidenced by logon and logoff times, subject becomes
less punctual because of a drop in job satisfaction.

• HTTP logs show document uploads by subject to Drop-
box.

When considering building a theory of human behaviour, we
can use this attack case since it shows the three steps of
Weber’s process and can thus serve for requirements elicitation
for a comprising HOL model. The situational logic needs to
be able to model the process of (a) ‘A member of a group
decimated by layoffs suffers a drop in job satisfaction.’, the
logic of selection then must embed (b) ‘Angry at the company,
the employee uploads documents to Dropbox, planning to
. . . ’, and the aggregation logic should express (c) ‘use them
for personal gain’, i.e., effects on the society, for example,
damage to the company (workers and clients of company) and
wider economical effects. The observables, as given in this
example, may be seen as our test cases to see how far a HOL
model can encode such characteristic properties. The Dropbox
scenario may serve as an illustration for this approach. The full
Isabelle/HOL model is contained in the Appendix.

B. Macro to Micro (MaMi)
The transition from the macro-level to the micro-level

is determined by the insider’s mental characteristics, e.g.,
psychological state and motivation. The theory supporting this



situational logic needs to characterise insiders. A recent frame-
work for characterising insider threats [25] offers a taxonomy
of insider threats based on a thorough survey on results from
counterproductive workplace behaviour, e.g., [26], [27] and
case studies from the CMU-CERT Insider Threat Guide [28].
The classes identified in this taxonomy are the Precipitating
Event or catalyst, the individual’s Personality Characteristics,
Historical Behaviour, Psychological State, Attitude Towards
Work, Skill Set, Opportunity, and Motivation to Attack.

It is simple to model a taxonomy in HOL since classes are
similar to types. We use here the concept of a HOL datatype:
datatypes are special HOL-types defined by a finite set of
injective constructors provided with good automated reasoning
support. As an example, consider the formal representation of
Psychological State as a datatype.

datatype psy_states = happy | depressed | disgruntled

| angry | stressed

Another example is Motivation.

datatype motivations = financial | political | revenge

| fun | competitive_advantage

| power | peer_recognition

A practical issue is the integration of causalities, quantification
or qualification into this basic model. For example, if an
employee is disgruntled this might give rise to a motivation
of revenge. In [25], these causalities are expressed by drawing
lines between boxes containing the classes of the taxonomy.
Such lines express dependencies, like ‘motivation for revenge
may be caused by anger’ but this is not a logical causality,
i.e., anger ) revenge – a logical causality expresses that anger
necessarily implies revenge motivation which might not be the
case for all actors.

Logical implication is thus not adequate for expressing
dependencies between taxonomy classes. However, HOL of-
fers other constructs like sets, functions and relations that
extend the taxonomy classes with a finer grain for modeling
dependencies. The values identified for the different classes of
the insider threat taxonomy are distinct values by construction
since we defined them as the fields of a datatype. However,
they may occur in combination. Also we might want to express
‘high’ or ‘low’. This can be easily achieved by building sets
of criteria, like the following function that uses the type
constructors set to define a set of motivations.

motivation :: motivations set

This construct allows later to attach a range of motivating
values to an actor and consequently to use standard HOL-
set relations to compare these for qualitative statements, e.g.,
motivation_alice ✓ motivation_bob to express that the
motivation to become an insider is higher for Bob. This
takes us one step further to a more qualitative model of the
insider taxonomy for (non-exclusive) insider criteria like mo-
tivation. However, for the psy_state datatype, combinations
of values, e.g., {happy, depressed} may be meaningless
and individualized relations like subtyping or inequalities are
more useful to introduce a more fine grained qualification and

dependencies. In order to add some quantification to each of
these factors, it is useful to explicitly model a quantity as part
of the assigning function for the actors. The quantity could
contain any metrics for a given insider characteristics, e.g.,
a real number denoting some measure for any of the actors
motivational values.

quant_motivation :: actor )(real ⇥ motivation)

The Precipitating Event or Catalyst has a separate role in the
characteristics given in the taxonomy. It can be any event that
has the potential to tip the insider over the edge into becoming
a threat to their employer. It has been called the ‘tipping point’
in the literature and can be formalized as a predicate on actors.
In order to carry over to the micro-level representation, it is
advisable to contain with it the various characteristics about
the actor in a combined state.

datatype actor_state = State "motivation" "psy_state"

Finally, the catalyst is encoded as a tipping point predicate
that describes the mutation of an actor to become an insider.

definition tipping_point :: actor_state ) bool

tipping_point a ⌘ motivation a 6= {}

^ happy 6= psy_states a

C. Micro to Micro (MiMi)

At the micro-level, we are interested in modeling the actors
including the insider within their context. Therefore, we adopt
an approach of modeling the organisation with the actors as a
network that can contain various layers of physical, adminis-
trative and logical views inspired by Probst and Hansen [29].
This approach originally uses the Klaim calculus to model an
organisation and its actors as a graph of locations and actors.
The central model is the infrastructure of the organisation, a
graph containing locations like rooms but also logical locations
like servers. Actors are also modeled as locations in this graph.

datatype actor = Actor string

datatype location = Location nat

datatype node = NA actor | NL location

datatype graph = Graph "(node ⇥ node)set"

In order to explore insider behaviour in organisational models,
we use an abstract view that is inspired by previous work
on policy formalisations and analysis [30], [31]. There, in-
validation of policies reveals insider attack vectors by model
checking system and workflow specifications.

In the current more refined Isabelle/HOL model we express
policies over actions in, out, move, and eval.

datatype action = in | move | eval | out

We abstract here from concrete data – actions have no param-
eters. Policies describe prerequisites for actions to be granted
to actors given by pairs of predicates (conditions) and sets of
(enabled) actions.

type_synonym policy = ((actor ) bool) ⇥ action set)

We integrate policies with a graph into the infrastructure
providing an organisational model where policies reside at



locations and actors are adorned with additional predicates to
specify their ‘credentials’.

datatype infrastructure = Infrastructure

"graph" "location ) policy set" "actor ) bool"

These local policies serve to provide a specification of the
‘normal’ behaviour of actors but are also the starting point
for possible attacks on the organisation’s assets. The enables

predicate specifies that an actor a can perform an action a’2 e

at location l in the infrastructure I if a’s credentials (stored
in the tuple space tspace I a) imply the location policy’s
(stored in delta I l) condition p for a.

enables I l a a’ ⌘
9 (p,e) 2 delta I l. a’ 2 e ^ (tspace I a �! p(a))

The behaviour abstractly specifies that good actors respect the
global policy.

behaviour I ⌘ {(t,a,a’). enables I t a a’}

Attacks can be found efficiently by invalidating a global policy
and then analysing whether the local policies enable the actors
to achieve a state violating this policy. The analysis is part of
the aggregation logic.

D. Micro to Macro (MiMa)

The third step of sociological explanation is the aggregation
back to the macro level. Since the main effect is that of
violating the global corporate policy, the effect to the macro-
level is subsumed by the negated global policy: the attack of
the insider has the effect that corporate data reaches the outside
of the corporate network. We give an outline of the Dropbox
analysis finishing the insider explanation with this final step
here. The full code of this example application is also part of
the Appendix.

The graph representing the infrastructure of the Dropbox
case study, contains only the minimal structure, i.e., nodes
for the server, and the dropbox. We only model two actors,
the actors Charly_comp and Charly_priv representing actor
Charly once as a member of the company and once as an
outsider.

A global policy could be ‘no corporate data must leave the
corporate network’ formalized in our HOL model as follows.

global_policy I a ⌘ a /2 company_actors �!
¬(9 t. t 2 company_locations. enables I t a in)

Analysis of protocol verification, like the classical
Needham-Schroeder public key attack and other insider threat
case studies [31] show that a recurring scheme in insider
attacks lies in role identification defined as the UasI predicate.
I.e., the insider manages to play a loyal member and an
attacker at the same time.3

definition UasI :: "[actor, actor] ) bool"

where "UasI a b ⌘ (act a = act b)"

3A social engineering attack may be modeled using the scheme as well
since then the outside attacker may act like an insider.

Insider attacks link the macro-level insider characterization
with behaviours like the above, formalized as Insider a.

tipping_point (astate a) �! (8 b. UasI a b)

The Dropbox insider threat can now be formalised as an
invalidation of the global company policy.

J tipping_point (astate (Actor ’’Charly_comp’’));

Insider (Actor ’’Charly_comp’’) K =)
¬ global_policy

dropbox_scenario (Actor ’’Charly_comp’’)

Since Charly_comp is at tipping point, he will ignore the
global policy and put company data on the Dropbox server.
Since Charly_comp and Charly_priv are the same real
person they can share access to the Dropbox directory that
is used as a covert channel between the organisation and the
outside. Charly_priv can get the data. The insider threat can
be modeled as an infrastructure example and the attack proved
as an Isabelle/HOL theorem.

V. RELATED WORK

The inductive approach to security protocol verification
in Isabelle by Paulson [32], the designer of the Isabelle
system, picked up on the hype generated by the earlier model
checking approach to security by Lowe [33]. In comparison,
the inductive approach is more laborious as it requires human
interaction, but it is unrivaled in its expressiveness which
allows proofs beyond the ones that are usually done in model
checkers. The model chosen in the inductive approach can be
seen as a micro-level representation of a global communication
scenario. Human behaviour is not explicitly addressed nor
is any relation to sociology intended. The security protocol
defines the ‘normal’ behaviour of communication partners
and the Dolev-Yao model [11] characterizes the attacker’s
behaviour (sees all, can intercept, and send). The first step
of situational logic (interpretation) is implicit in the inductive
approach since the attacker has been already introduced. An
explicit modeling of this first step needs to integrate a descrip-
tion of how a ‘normal’ principal turns into an attacker. This is
what we additionally address with our first step (MaMi). It is
arguable whether the proofs of secrecy of keys in the inductive
approach can be seen as a third step (MiMa).

The application of HOL for human behavior modeling has
been pioneered by Bella and Coles-Kemp in their formal
consideration of ceremonies [34]. This concept expands a
security protocol to include all those assumptions and other
context information that was previously considered as ‘out-of
band’. Thus, like in our approach, a ceremony also considers
the human factor as a central element. The main emphasis
in ceremonies, and consequently also in Bella’s and Coles-
Kemp’s work, is on incomplete or partial behaviour of humans,
for example, incomplete comparison of values. Bella and
Coles-Kemp propose a ‘multiple-layer model’ consisting of a
stack of protocols. The lower part contains the technological
protocol layers and the upper part the sociological layers.
There is one unique interface (Layer III) where the socio-
technological interaction is modeled and analyzed by state



descriptions (‘stances’) in one direction: from the user to
the computer interface. For insider attacks a more complete
representation of actors, their internal state as well as their
physical and organisational context is needed. Therefore, we
model individual actors, their mental state, actions as well as
locations that can be physical or logical entities.

Formal techniques for insider analysis have also been ap-
plied by Pieters, Dimkov, and Pavlovic [35]. They consider
policy alignment to address different levels of abstraction of
socio-technical systems. Policy alignment is in their view a
refinement of policies to more concrete system representations.
Policies are interpreted as first-order logical theories contain-
ing all sequences of actions (the behaviours) and expressing
the policy as a ‘distinguished’ prefix-closed predicate in these
theories. Refinement of consistent, i.e., policy-fulfilling speci-
fications, is then readily provided by the completeness relation
between first-order theories. Although the use of graphs as
system representations and local policies attached to those
graphs is used in the application example, contrary to our
approach Pieters et al. do not use an explicit infrastructure
model in their approach [35] but only an abstract formal notion
of action sequences to represent systems.

VI. CONCLUSIONS

In this paper, we briefly reviewed and summarized sociolog-
ical explanation according to critical rationalism, introduced
and compared to theory building and proof in HOL.

The use of Higher Order Logic permits to express notions
of the actor’s mental state like motivation or psychological
state. At the same time in a same theory the infrastructure
of an organisation including the physical network, logical
policies and an abstract behaviour of actors in this network
can be represented. Thus, human behaviour can be modeled
for insider threats according to Weber’s three steps of socio-
logical explanation. Higher Order Logic allows formalisation
of actor’s properties for all three steps as we illustrated on a
case study of the Dropbox insider attack.
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VII. APPENDIX



theory enables

imports Main

begin

datatype action = in | move | eval |out

datatype actor = Actor string

type_synonym policy = "((actor ) bool) ⇥ action set)"

datatype location = Location nat

datatype node = NA actor | NL location

datatype graph = Graph "(node ⇥ node)set"

datatype infrastructure = Infrastructure "graph" "location ) policy set" "actor ) bool"

primrec act :: "actor ) string" where "act(Actor n) = n"

primrec loc :: "location ) nat" where "loc(Location n) = n"

primrec gra :: "graph ) (node ⇥ node)set" where "gra(Graph g) = g"

definition nodes_graph :: "graph ) node set" where "nodes_graph g ⌘ { x. 9 y. (x,y) 2 gra g) _ (y,x) 2 gra g }"

definition actors_graph :: "graph ) actor set"

where "actors_graph g ⌘ {x. 9 y. NA(Actor y) : nodes_graph g ^ x = Actor y}"

definition locs_graph :: "graph ) location set"

where "locs_graph g ⌘ {x. 9 y. NL(Location y) 2 nodes_graph g ^ x = Location y}"

primrec graphI :: "infrastructure ) graph" where "graphI (Infrastructure g d c) = g"

primrec delta :: "[infrastructure, location] ) policy set" where "delta (Infrastructure g d c) = d"

primrec tspace :: "[infrastructure, actor] ) bool" where "tspace (Infrastructure g d c) = c"

primrec actorsI :: "infrastructure ) actor set" where "actorsI (Infrastructure g d c) = actors_graph g"

datatype psy_states = happy | depressed | disgruntled | angry | stressed

datatype motivations = financial | political | revenge | curious | competitive_advantage | power | peer_recognition

datatype actor_state = Actor_state "psy_states" "motivations set"

primrec motivation :: "actor_state ) motivations set" where "motivation (Actor_state p m) = m"

primrec psy_state :: "actor_state ) psy_states" where "psy_state (Actor_state p m) = p"

definition tipping_point :: "actor_state ) bool" where

"tipping_point a ⌘ ((motivation a 6= {}) ^ (happy 6= psy_state a))"

definition UasI :: "[actor, actor] ) bool" where "UasI a b ⌘ (act a = act b)"

consts astate :: "actor ) actor_state"

definition Insider :: "[actor] ) bool"

where "Insider a ⌘ (tipping_point (astate a) �! (8 b. UasI a b))"

definition enables :: "[infrastructure, location, actor, action] ) bool"

where "enables I l a a’ ⌘ 9 (p,e) 2 delta I l. a’ 2 e ^ (tspace I a �! p(a))

definition behaviour :: "infrastructure ) (location ⇥ actor ⇥ action)set"

where "behaviour I ⌘ {(t,a,a’). enables I t a a’}"

definition ID :: "[actor, string] ) bool" where "ID a s ⌘ (act a = s)"

consts role :: "actor ⇥ string ) bool"

(* Dropbox example; infrastructure 1 = company server, 2 = dropbox *)

definition company_actors :: "actor set" where "company_actors ⌘ Actor ’’Charly_comp’’"

definition company_locations :: "location set" where "company_locations ⌘ Location 1"

definition global_policy :: "[infrastructure, actor] ) bool"

where "global_policy I a ⌘ a /2 company_actors �! ¬(9 t 2 company_locations. enables I t a in)"

definition ex_graph :: "graph"

where "ex_graph ⌘ Graph {(NA (Actor ’’Charly_comp’’), NL (Location 1)),

(NL (Location 2), NL (Location 1)), (NA (Actor ’’Charly_priv’’), NL (Location 2))}"

definition local_policies :: "location �! policy set" where

"local_policies ⌘ (� x. if x = Location 1 then {(� x. role (x, ’’employee’’), in,out)}

else (if x = Location 2 then

{((� x. (ID x ’’Charly_priv’’) _ (ID x ’’Charly_priv’’)), in,out)} else {}))"

definition ex_creds :: "actor ) bool"

where "ex_creds ⌘ (� x. if x = Actor ’’Charly_comp’’ then

role(Actor ’’Charly_comp’’,’’employee’’) else False)"

definition dropbox_scenario :: "infrastructure"

where "dropbox_scenario ⌘ Infrastructure ex_graph local_policies ex_creds"

lemma ex_inv : "J tipping_point (astate (Actor ’’Charly_comp’’)); Insider (Actor ’’Charly_comp’’) K
=) ¬ global_policy dropbox_scenario (Actor ’’Charly_comp’’)"

apply (simp add: dropbox_scenario_def global_policy_def)

apply (subgoal_tac " Actor ’’Charly_comp’’ = Actor ’’Charly_priv’’")

apply (rule conjI)

apply (simp add: company_actors_def)

apply (rule_tac x = "Location 1" in bexI)

apply (simp add: dropbox_scenario_def ex_creds_def local_policies_def ex_graph_def)

apply (simp add: company_locations_def)

apply (unfold Insider_def)

apply ((drule mp), assumption)

apply (drule_tac x = "Actor ’’Charly_priv’’" in spec)

by (simp add: UasI_def)

end


